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 The paper has demonstrated the first order surface grating fiber coupler 
under the period chirp and apodization functions variations effects. The 

Fiber coupler transmittivity/reflectivity, the fiber coupler grating index 

change and the fiber coupler mesh transmission cross-section are clarified 

against the grating length with the quadratic/cubic root period chirp and 
Gaussian/uniform apodization functions. The fiber coupler delay and 

dispersion are simulated and demonstrated with grating wavelength with 

quadratic/cubic root period chirp and Gaussian/uniform apodization 

function. As well as the fiber coupler output pulse intensity is simulated 
against the time period with the quadratic/cubic root period chirp and 

Gaussian/uniform apodization function. The fiber coupler peak intensity 

variations against the transmission range variations is also demonstrated by 

OptiGrating simulation software. 
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1. INTRODUCTION  

The single mode fiber (SMF) is also known as fundamental or monomode fiber. The condition for 

verifying the single mode operation is obtained by the V-number of fibers as V≤2.405. In SMFs, the 

normalized frequency is < 2.405. The major method for minimizing the modal dispersion is to reduce the 

core diameter until the fiber propagates efficiently single mode only [1]-[5]. The SMF has a smaller core 

diameter (about 10 μm) with a 125 μm cladding diameter. The typical core diameters are from 5 to 10 μm 

and the difference of refractive index is very small [6]-[8]. Because its core is very narrow compared to the 

light wavelength being used, the SMF permits only single light path or mode to transmit through it [9], [10].  

Thus, the SMF does not suffer from mode delay differences. Its extreme smaller core diameter 

makes the interconnection or splicing of cables and interfacing or termination with optical source and 

detector or the coupling and launching of light into the SMF more difficult requiring more accuracy. 

Therefore, the fabrication of SMF is very difficult and costly [11]-[17]. The SMFs are used only with laser 

diode (LDs) due to the high coupling losses accompanying with light emitting diodes (LEDs). The SMF has a 

larger capacity to transmit data in a certain fidelity over longer distances because it exhibits transmission 
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attenuation lower than the multi mode fibers (MMF) and does not suffer from modal dispersion caused by the 

multiple modes as occurred in the MMF [18]-[23]. So, they are used for high bandwidth long haul 

communications like high-speed local area network (LAN) and wide area network (WAN) backbones where 

the amplifier/repeater span must be maximized. However, the SMFs are affected by chromatic dispersion 

which can limit the system performance at higher data rates [24]-[30].  

 

 

2. MODEL RESEARCH DESCRIPTION  
Fiber coupler has two fibers construction as clarified in Figure 1. The first fiber basic construction 

that has three regions as illustrated in Figure 1(a). The first region is the core which its linear index ranges 

from 1.455 to 1.46 with the width of 2 μm. The second region is the cladding which its parabolic index 

ranges from 1.452 to 1.456 with the width of 8 μm. The third region is the overcladding which its Gaussian 

index has max index of 1.46, normalized full width at half maximum (FWHM) of 10 with the width of 12 μm.  

 

 

 
(a) 

 
(b)  

 

Figure 1. Fiber: (a) 1 basic construction and (b) 2 basic construction 

 

 

The basic second fiber construction that has three regions as demonstrated in Figure 1(b). The first 

region is the core which its linear index ranges from 1.456 to 1.459 with the width of 3 μm. The second 

region is the cladding which its parabolic index ranges from 1.454 to 1.458 with the width of 8 μm. The third 

region is the overcladding which its exponential index ranges from 1.450 to 1.452 with the width of 15 μm. 

The average index modulation in the linear relation is estimated by [1], [3], [5], [9], [19]:  
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with Δ is the total chirp, L is the grating length. Where the grating period chirp in the linear, quadratic, square 

root and cubic root relations are given by [2], [4], [7], [9], [11], [12]: 
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where the uniform and Gaussian grating apodization functions are calculated by [1], [4], [7], [10], [12]: 

 

𝛬(𝑧) = 1 [Uniform] (6) 

 

𝛬(𝑧) = 𝑒𝑥𝑝 [− 𝑙𝑛 2 . (
2(𝑧−0.5𝐿)

𝑆𝐿
)] [Gaussian] (7) 

 

with S is the taper parameter and z is the radial distance.  

 

 

3. RESULTS WITH DISCUSSION 

We have been simulated the fiber coupler transmittivity/reflectivity, the fiber coupler grating index 

change and the fiber coupler mesh transmission cross-section against the grating length with the 

quadratic/cubic root period chirp and uniform/Gaussian apodization functions. Besides the fiber coupler 

delay and dispersion are demonstrated against the grating wavelength with the cubic root/quadratic period 

chirp and uniform/Gaussian apodization functions. The fiber coupler output pulse intensity is simulated 

clearly against the time period with the cubic root/quadratic period chirp and uniform/Gaussian apodization 

functions.  

Figure 2 clarifies the fiber coupler transmittivity/reflectivity against the grating length with the 

quadratic period chirp and Gaussian apodization function. The fiber coupler transmittivity, reflectivity are 

approximation 0.998, 0.002 respectively at 8000 μm grating length. The fiber coupler transmittivity/ 

reflectivity with grating length with the cubic root period chirp and uniform apodization function which is 

clarified in Figure 3. The fiber coupler transmittivity, reflectivity is approximation 0.996, 0.004 respectively 

at 8000 μm grating length. The fiber coupler transmittivity/reflectivity is enhanced with the quadratic period 

chirp and Gaussian apodization function than the cubic root period chirp and uniform apodization function.  

Figure 4 indicates the fiber coupler grating index change against the grating length with the 

quadratic period chirp and Gaussian apodization function. The peak grating index change is achieved at 5000 

μm grating length which it is 0.0010. With the grating period changes from 0.531998 μm to 0.533219 μm.  

Where the fiber coupler grating index change against the grating length with the cubic root period 

chirp and uniform apodization function is clarified in Figure 5. The peak grating index change is almost 

constant at a value of 0.00025. With the grating period changes from 0.614401 μm to 0.614473 μm.  

Figure 6 shows the fiber coupler mesh transmission cross-section with grating length with the 

quadratic period chirp and Gaussian apodization function. The fiber coupler mesh transmission cross section 

values varies from 11.8 μm to 55.6 μm. Figure 7 illustrates the fiber coupler mesh transmission cross-section 

with grating length with the cubic root period chirp and uniform apodization function. But the fiber coupler 

mesh transmission cross section values varies from 11.65 μm to 55.32 μm.  

Figure 8 demonstrates the fiber coupler delay versus the grating wavelength with the quadratic 

period chirp and Gaussian apodization function. The max fiber coupler transmission delay is 3 ps at 1.51 μm 

grating wavelength and the min fiber coupler transmission delay is -1.8 ps at 1.6 μm grating wavelength. The 

fiber coupler reflection varies in oscillation values along the grating wavelength. Figure 9 illustrates the fiber 

coupler delay against the grating wavelength with the cubic root period chirp and uniform apodization 
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function. The max fiber coupler transmission delay is 2.85 ps at 1.51 μm grating wavelength and the min 

fiber coupler transmission delay is approximation -1.9342 ps at 1.6 μm grating wavelength. The fiber coupler 

reflection is zero along the grating wavelength. The fiber coupler delay is enhanced with the cubic root 

period chirp and uniform apodization function than the quadratic period chirp and Gaussian apodization 

function.  

 

 

 
 

Figure 2. Fiber coupler transmittivity/Reflectivity against the grating length with the quadratic period chirp 

and Gaussian apodization function 
 

 

 
 

Figure 3. Fiber coupler transmittivity/Reflectivity against the grating length with the cubic root period chirp 

and uniform apodization function 
 

 

  
 

Figure 4. Fiber coupler grating index change against the grating length with the quadratic period chirp and 

Gaussian apodization function 
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Figure 5. Fiber coupler grating index change against the grating length with the cubic root period chirp and 

uniform apodization function 

 

 

 
 

Figure 6. Fiber coupler mesh transmission cross-section with grating length with the quadratic period chirp 

and Gaussian apodization function 

 

 

 
 

Figure 7. Fiber coupler mesh transmission cross-section with grating length with the cubic root period chirp 

and uniform apodization function 
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Figure 8. Fiber coupler delay versus the grating wavelength with the quadratic period chirp and Gaussian 

apodization function 
 

 

 
 

Figure 9. Fiber coupler delay versus the grating wavelength with the cubic root period chirp and uniform 

apodization function 

 

 

Figure 10 illustrates the fiber coupler dispersion versus the grating wavelength with the quadratic 

period chirp and Gaussian apodization function. The max fiber coupler transmission dispersion is  

1.865 ps/km at 1.51 μm grating wavelength and the min fiber coupler transmission dispersion is 

approximation -0.1243 ps/km from the grating wavelength of 1.51 μm to 1.6 μm. The fiber coupler reflection 

varies in oscillation values along the grating wavelength.  
 

 

 
 

Figure 10. Fiber coupler dispersion against the grating wavelength with the quadratic period chirp and 

Gaussian apodization function 
 

 

Figure 11 illustrates the fiber coupler delay against the grating wavelength with the cubic root period 

chirp and uniform apodization function. The max fiber coupler transmission delay is 1.9832 ps/km at  

1.51 μm grating wavelength and the min fiber coupler transmission dispersion is approximation -0.1654 

ps/km from the grating wavelength of 1.51 μm to 1.6 μm. The fiber coupler reflection is zero along the 

grating wavelength. The fiber coupler dispersion is enhanced with the cubic root period chirp and uniform 

apodization function than the quadratic period chirp and Gaussian apodization function.  
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Figure 12 demonstrates the fiber coupler output pulse intensity versus the time period with the 

quadratic period chirp and Gaussian apodization function. The fiber coupler output pulse intensity peak is 0.6 

with narrow shrinking. Figure 13 clarifies the fiber coupler output pulse intensity against the time period with 

the cubic root period chirp and uniform apodization function. The fiber coupler output pulse intensity peak is 

0.5923 with wide shrinking. The fiber coupler output pulse intensity can be upgraded with the quadratic 

period chirp and Gaussian apodization function than the cubic root period chirp and uniform apodization 

function. Figure 14 clarifies the max fiber coupler pulse position against the transmission range. The max 

pulse value at zero position is 0.993092 with the ripple factor of unity. The fiber coupler bandwidth by using 

Figure 14 can be estimated to be 45000 nm.  
 

 

 
 

Figure 11. Fiber coupler dispersion against the grating wavelength with the cubic root period chirp and 

uniform apodization function 
 

 

 
 

Figure 12. Fiber coupler output pulse intensity against the time period with the quadratic period chirp and 

Gaussian apodization function 
 

 

 
 

Figure 13. Fiber coupler output pulse intensity against the time period with the cubic root period chirp and 

uniform apodization function 
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Figure 14. Fiber coupler peak intensity variations against the transmission range variations 

 

 

4. CONCLUSION 

We have simulated the first order surface grating fiber coupler under the period chirp and 

apodization functions variations effects by OptiGrating. The fiber coupler bandwidth is 45 μm through this 

study. The fiber coupler output pulse intensity can be upgraded with the quadratic period chirp and Gaussian 

apodization function than the cubic root period chirp and uniform apodization function. The fiber coupler 

delay, dispersion are enhanced with the cubic root period chirp and uniform apodization function than the 

quadratic period chirp and Gaussian apodization function. As well as the fiber coupler 

transmittivity/Reflectivity is enhanced with the quadratic period chirp and Gaussian apodization function 

than the cubic root period chirp and uniform apodization function. 
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