
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 24, No. 1, October 2021, pp. 394~402 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v24.i1.pp394-402      394 

  

Journal homepage: http://ijeecs.iaescore.com 

An integrated machine learning model for indoor network 

optimization to maximize coverage 
 

 

Ahmed Wasif Reza, Abdullah Al Rifat, Tanvir Ahmed 
Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 22, 2021 

Revised Aug 23, 2021 

Accepted Aug 30, 2021 

 

 Indoor network optimization is not a simple task due to the obstacles, 

interference, and attenuation of the signal in an environment. Intense noises 

can affect the intelligibility of the signal and reduce the coverage strength 

significantly which results in a poor user experience. Most of the existing 

works are associated with finding the location of the devices via different 

mathematical and generic algorithmic approaches, but very few are focused 

on implying machine learning algorithms. The purpose of this research is to 

introduce an integrated machine learning model to find maximum indoor 

coverage with a minimum number of transmitters. The users in the indoor 

environment also have been allocated based on the most reliable signal 

strength and the system is also capable of allocating new users. K-means 

clustering, K-nearest neighbor (KNN), support vector machine (SVM), and 

Gaussian Naïve Bayes (GNB) have been used to provide an optimized 

solution. It is found that KNN, SVM, and GNB obtained maximum accuracy 

of 100% in some cases. However, among all the algorithms, KNN performed 

the best and provided an average accuracy of 93.33%. K-fold cross-

validation (Kf-CV) technique has been added to validate the experimental 

simulations and re-evaluate the outcomes of the machine learning models. 
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1. INTRODUCTION 

In the era of modern-day communication, the need of exchanging data is rising exponentially. This 

enormous volume of data traffic and the relevant protocols like Ethernet, universal asynchronous 

receiver/transmitter (UART), Bluetooth, bluetooth low energy (BLE), near-field communication (NFC), 

wireless fidelity (WIFI), ZigBee, and many more are based on both wired and wireless technologies. From 

the integration of the internet of things (IoT) to the industrial implications mentioned in [1]-[3], each sector is 

getting more and more reliant on wireless communication. In an untethered indoor environment, finding the 

maximum coverage with a minimum number of transmitters is not overly simplistic since there are many 

obstacles like concrete walls, windows, doors, bricks, glasses, and partitions. Still, covering a large 

environment without having line-of-sight (LoS) communication is challenging in many cases. As a result, 

there is no obvious solution that is intricately optimized and can perform robustly along with providing the 

best wireless connectivity. In this research, we have utilized four machine learning algorithms, such as  

K-means clustering, K-nearest neighbor (KNN), support vector machine (SVM), and Gaussian Naïve Bayes 

(GNB), to evaluate the maximum coverage and find the transmitter’s exact locations to propagate strong 
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signals throughout the environment. Our model is also capable of effectively predicting the new user’s 

location based on the coordinated approach and best signal strength. From the KNN algorithm, we have 

achieved the highest accuracy in average for all the experimental environments. This model can perform 

effectively to provide an integrated solution in optimizing indoor wireless networks. This paper is organized 

as follows: related works and methodology are presented in sections 2 and 3, respectively. In the 

methodology section, the system workflow is given, followed by the experimental environments and wireless 

technologies. Afterward, the results and discussion section have been presented. Lastly, the concluding 

remarks have been added. 

 

 

2. RELATED WORKS  

Optimizing indoor network coverage is a very common phenomenon in indoor wireless networking. 

Due to having various obstacles and attenuation of the signal in the environment, it has become a very 

challenging task to do. As a result, in many existing types of research, both two-dimensional (2D) and  

three-dimensional (3D) environments are considered to ensure optimum indoor network coverage. In  

paper [4], a 3D environment is considered to build the indoor model by collecting the building information 

modeling (BIM). Besides ray tracing was performed to find indoor radio coverage. Paper [5] shows that 

indoor radio coverage can be ensured by distributing a particular scenario where access points (APs) are 

installed to find the best position for the receiver and the transmitter as well. There are two core parts, one is 

to reduce the complexity of the deployed system and the other one is to find the minimum number of APs. 

Also, paper [6] shows, to reduce unnecessary power consumption, transmitters must be placed in precise 

locations. After ensuring low power consumption, removing coverage overlapping is another task in order to 

optimize indoor network coverage. In many cases, machine learning algorithms are used to find indoor 

propagation and solve localization problems with some popular algorithms like K-means, Naïve Bayes, 

KNN, and SVM. These algorithms are also utilized in various classification and clustering-based problems 

which is mentioned in [7]. From paper [8]-[13], it is discussed that how to remove overlapping by using soft-

K-means clustering. According to them, routing protocol clustering is considered the most desirable protocol 

in terms of indoor network coverage. Apart from clustering protocol, deep neural network (DNN) framework 

and its field programmable gate array (FPGA) implementation give efficient results for indoor localization 

mentioned in [14]. Du et al. [15], the proposed fingerprint localization algorithm (KF-KNN) based on FM 

signals is compared with KNN and weighted K-nearest neighbors (WKNN). KF-KNN outperformed the 

KNN and WKNN algorithms. Also, for reducing localization error, an AP deployment strategy was 

introduced in the paper [16], which outperformed the previous algorithms.  
 
 

3. METHODOLOGY  

The overall system workflow of the three algorithms, namely KNN, SVM, and GNB has been 

shown in Figure 1. First raw data are initialized to the algorithms, and after pre-processing, the data has been 

split into train set and test set. After loading the dataset, the three above algorithms have been applied and 

finally evaluated and analysed with the test set. 

 

 

 
 

Figure 1. Proposed model workflow 
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3.1.   Data visualization 

The following two 3D models in Figures 2(a) and 2(b) show the sampling points and received signal 

strength indicator (RSSI) values for better observation. We have used RSSI values collected by three 

different wireless technologies, namely ZigBee, bluetooth low energy (BLE), and WIFI. We have total RSSI 

values for scenario-1 is 441, for scenario-2 is 144 and finally for scenario-3 is 360. Therefore, the total sum 

of the RSSI values is 945.  

 

 

  
(a) (b) 

 

Figure 2. (a) User’s coordinates and (b) RSSI values 
 
 

3.2.   Data preprocessing 

For training the machine learning models, classification of the dataset was required. Feature scaling 

has been introduced here. For the RSSI scores on a positive scale of 1 to 100, if the value is closer to 100 

then it is considered as best. In the case of negative scaling, i.e., -100 to -1, if the value tends to zero then 

RSSI signal strength is considered as a good signal [17]. We have done the same thing for all the different 

scenarios by evaluating the positive RSSI scale. Considering the 3D environment, we have introduced z-axis 

that was not presented in the raw dataset. We assumed the value ‘5’ for the z-axis for every data point. Our 

assumption is based on the physical orientation of the environments. According to International Building 

Code (IBC), the standard ceiling height is 9 feet. However, we have assumed the data points were at ‘5’ feet 

high which is considered as the value of the z-axis [18] (refer to Figure 2(a)). In the dataset, RSSI A, B, C 

represent the wireless technologies ZigBee (IEEE 802.15.4), BLE, and WIFI (IEEE 802.11n 2.4GHz band). 

By utilizing the above-mentioned wireless technologies, three different RSSI values were collected. To  

pre-process the dataset, we took the average of RSSI A, B, C, so that we can classify the dataset based on the 

combined RSSI values. For instance, in the case of the scenario-1 ZigBee dataset, we have considered the 

average RSSI value 60 or greater as a threshold to be a good signal strength and anything below is 

presumably inferior. As ‘0’ and ‘1’ are our two deciding factors and other variables are independent, 

therefore, according to the deciding factors, 0 indicates a bad signal, and 1 indicates a good signal. We split 

the dataset into 20% and 80% accordingly for the test and train set. MinMaxScaler is used to transform the 

entire dataset into the range between zero and one. 

 

3.3.   K-means clustering 

For finding the optimum number of clusters, we have used sklearn.cluster.Kmeans library. Initially, 

we allocate 𝐾 = 5, which is the number of possible initial clusters. Then the sum of the squared distance 

between data points and the centroids is calculated. After that, each data point to their respective closest 

cluster is assigned. Then the iteration continues until there is no change in the position of the centroids. 

Finally, after completing the iterations, we get our optimized clusters. Also, similar approaches for finding an 

optimum number of clusters have been utilized in [19]-[21]. In Figure 3(a), initial cluster centers. 

Inertia represents the sum of squared error for each cluster. A smaller inertia score means the cluster 

is denser and the points are closer. The target of the K-means clustering algorithm is to select centroids that 

minimize inertia. The inertia score against the number of clusters has been represented in Figure 3(b).  

Figure 4(a) represents the updated four different clusters and their centers. Currently, 49 users are in four 

groups of 16,10,11,12 and they belong to their designated clusters 0,1,2, and 3 in ascending order.  
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In Figure 4(b), centroids are updated from five to four after executing the K-means clustering. In 

terms of allocating users, here we can see the total number of users is 49. Each user belongs to their clusters. 

Whenever a new user enters the environment, the user will find the best location according to the user’s 

position and optimal signal strength. The Euclidian distance formula is used to calculate the user’s new 

coordinate by calculating the distance and RSSI values. In the indoor environment, whenever the new user 

enters, it gets allocated to a specific cluster. Here, the new user belongs to the purple-colored cluster 1 

(Figure 4(b)). Euclidian distances from the new user’s location to the transmitters are calculated. After that, 

the initial clusters also get updated.   

 

 

 

 

(a) (b) 

 

Figure 3. (a) Initial cluster centers and (b) Inertia scores 

 

 

  

(a) (b) 

 

Figure 4. (a) Updated clusters for scenario 1 and (b) Allocating new users 
 

 

3.4.   KNN   

Here, we have utilized the sklearn.neighbors.KNeighborsClassifier. The KNN model is trained for 

n_neighbors = 2 to n_neighbors = 10. 𝐾 is the number of nearest n_neighbors. For instance, in 

experimental environment 1, for the 𝐾 value 4, we have got the highest accuracy and lowest mean error 

which is represented in Figure 5. The classifier uses a weight parameter that returns the weights uniformly. It 

also calculates the distance between points by using the Euclidian distance formula. A user-defined callable 

function is used to return the weighted values in the form of an array. Here, the power parameter p represents 

the Minkowski metric. The value of 𝑝 = 2 represents the Euclidean distance. Also, in [22]-[24], the 

Euclidian distance formula is used to calculate the distances between the data points.  
 

3.5.   SVM  

For the SVM classification model, we have used the sklearn.svm.LinearSVC library. The linear 

kernel is applied because it is capable of training faster than any other kernel. A hyperplane is commonly 
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used to classify the data points in SVM. After initiating the training dataset, it classifies the data into multiple 

classes. In our case, good signal and bad signal strengths are classified into two different classes.  

In [25]-[27], the datasets were also classified in the same manner. 

In Figure 6(a), all the red lines do not have perfect margin space on their left or right side except the 

blue line according to the support vectors. In Figure 6(b), two data points that are closest to the black dotted 

lines are the support vectors. Orange lines represent the distance from the dotted lines and support vectors. 

Also, the blue line shown in Figure 6(b) is the most robust solution in terms of classifying existing or new 

data. As a result, the blue line classifies the data points with maximum margin and produces the best result. 

 

 

 
 

Figure 5. Mean error 
 

 

  
(a) (b) 

 

Figure 6. (a) Initial SVM hyperplane and (b) Updated SVM hyperplane 
 

 

3.6.   GNB 

We have utilized the sklearn.naive_bayes.GaussianNB library. Firstly, GNB initializes the dataset 

for three different scenarios. After that, it calculates the probability of the RSSI values which is previously 

presented in the dataset (Figure 2(b)). Then it calculates the prior probability. After that, it determines the 

marginal likelihood for the RSSI at the unknown location and calculates the likelihood function. The 

posterior probability is calculated for a single transmitter to find the overall posterior probability for all 

transmitters which computes the estimated location. For outlier detection in the industrial internet of things 

(IIoT) system, GNB is used as mentioned in [28]. Also, in [29], [30], GNB is implemented in such detection 

problems.  
 
 

4. EXPERIMENTAL ENVIRONMENTS  

We have considered three different scenarios shown in Figures 7(a)-7(c). Few of those scenarios 

were interference-free and some of them had existing noises. Three transmitters were set and receivers were 

placed in the center of the transmitters. The transmitters were placed in a triangular shape. Scenario 1 was 

interference-free and for scenarios 2 and 3, the environment was noisy. All experimental settings presented in 

this paper are similar as in [31]. Moreover, we have partially used the same dataset, as referred to [31].  

Environment 1 was a meeting room. The size of the room was 6.0×5.5 m. Transmitters were placed 

4 m distance from each other in triangular shape and receivers were placed 0.5 m apart from each other in the 

center of the transmitters. Environment 2 was interference-free. This scenario was noisy. The size of the 

room was 5.8×5.3 m. Receivers were placed far from each other. Some extra transmitters were placed to 

interfere. Environment 3 was much noisy. The size of the place was 10.8×7.3 m. LoS communication was 

available between the transmitters and the receivers. Data were collected maintaining a 1.2 m distance in one 

direction and 0.6 m in the other. Here for RSSI measurement, ZigBee, BLE, WIFI were used. ZigBee is a 
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networking protocol for creating personal area networks. It requires low power and bandwidth to operate. 

Arduino Uno microcontrollers with series 2 XBEEs were used in [31] for getting high throughput. Gimbal 

series 10 was used in [31] as transmitters. The iBeacon produced universally unique identifier (UUID), major 

value, and minor value. Sadowski et al. [31], proposed Raspberry PI 3 Model Bs were used to collect the 

RSSI values. Also, in [31], Raspberry PI 3 was used as receivers and transmitters. PI 3s along with an 

onboard antenna were used to create a WLAN network. By polling the Raspberry antenna, RSSI values were 

collected.   
 

 

  

 

(a) (b) (c) 

 

Figure 7. (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3 
 

 

4.1.   Evaluation metrics 

For evaluating our model, we have used the confusion metrics. Confusion metrics return true 

positive (TP), false positive (FP), true negative (TN), and false negative (FN). By using these four 

parameters, we have calculated the precision, recall, F1_score, and accuracy. Precision returns the percentage 

of the model’s relevant result while recall returns the percentage of correctly classified results. Accuracy 

returns the ratio of total TP and TN. F1_score represents the weighted average of precision and recall of the 

model. For similarly distributive classes, we use accuracy, which gives more precise results, and on the other 

hand, for imbalanced datasets, F1_score gives a better result. Precision, recall, F1_score, and accuracy are 

measured using the (1)-(4).  

 

Precision   =    
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                  (1)  

 

Recall        =   
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                  (2) 

 

F1_score    =   2 × (
Precision×Recall 

Precision+Recall 
)                                     (3) 

 

Accuracy   =   
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                    (4) 

 

 

5. RESULTS AND DISCUSSION 

The result shows that our proposed model gives satisfactory and accurate results. For three different 

scenarios, we obtained the desired outcomes. Our model helps to set up indoor wireless networks by 

optimizing clusters. Our model also predicts the coordinates of the transmitters. As we can figure out the 

optimum number of clusters and their coordinates, so transmitters can easily be placed in an indoor 

environment. As a result, the maximum signal strength can be received by any user who has been roaming 

through the coverage. Table 1 illustrates the evaluation of the algorithms according to scenarios 1, 2, and 3. It 

also shows the precision, recall, F1_score, accuracy, and k-fold cross-validation (Kf-CV) scores. According 

to the scenarios and relevant wireless technologies, KNN, SVM, and GNB give 100% of accuracy in some 

cases. In Table 1, the column named Kf-CV represents the accuracy scores after the implementation of the 

cross-validation technique. This resampling technique is used for re-evaluating the outcomes of the machine 

learning models. The parameter K represents the number of groups in which the dataset will split. We have 

selected a commonly used value of 10 for the K parameter during the evaluation process. For each fold, the 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 394 - 402 

400 

accuracy scores are calculated. The mean accuracy score from the ten iterations is also calculated. In terms of 

average accuracy, KNN, SVM, and GNB return 93.33%, 86.70%, and 92.22%, respectively. These average 

accuracies were calculated from three different scenarios as presented in Figures 7 (a), (b), and (c). The time 

and space complexities of the algorithms are also mentioned. Time complexities of K-means, KNN, SVM, 

GNB are O(n2), O(n × m),  O(n2), O(n × m × n) and space complexities are O(n + m), O(n × m), 

O(n × m), O(m × c). Due to the scarcity of data, the accuracy of SVM is lower compared to KNN and 

GNB. On the other hand, KNN attained higher accuracy. Also, GNB returns a good accuracy against the 

dataset as used previously. Though the wireless technologies were utilized to collect the data, due to having a 

limited dataset in few cases, i.e., scenario 2, SVM did not perform satisfactorily. Varzakas [32] studied the 

average channel capacity of a hybrid cellular system is theoretically achieved by incorporating direct 

sequence (DS), fast frequency hopping (FFH), and code-division multiple-access (CDMA). Also, the 

comparative analysis is presented in [32] with the simulated results. In terms of comparison, the existing 

researches in this field are mainly focused on indoor localization systems while the scope of the proposed 

research is to find the optimum number of transmitters based on the clustering approach and allocating new 

users based on the signal strength by ensuring maximum coverage of the network which adds a new 

dimension in indoor wireless communication. Comparative analysis has been presented in Table 1 by 

incorporating the outcomes from KNN, SVM, and GNB. Also, the Kf-CV scores are added to present a more 

precise comparison and ensure the efficacy of the outcomes from the above-mentioned algorithms. As there 

are no unusual variations in the obtained results before and after introducing the cross-validation technique, it 

indicates that the experimental findings are identical to the objectives of the proposed research work and have 

significant potential in the extensive sector of wireless networking and communications.  

 

 

Table 1. Performance of the machine learning models 
Scenario Algorithm Technology Precision Recall F1_Score Accuracy Kf-CV 

Scenario 1   K-nearest neighbors (KNN)  ZigBee 100  100  100  100  94 

BLE  81  90  85.3  90  96 
WiFi  100  100  100  100  90 

Support vector machine (SVM)  ZigBee 93  90  90.3  90  91.5 

BLE  81  90  85.3  90  98 
WiFi  100  100  100  100  94 

Gaussian Naive Bayes (GNB) ZigBee  93  90  90.3  90  91.5 

BLE  81  90  85.3  90  94 
WiFi  100  100  100  100  94 

Scenario 2  K-nearest neighbors (KNN)  ZigBee 83 75 73.3 75 75 

BLE  100 100 100 100 85 
WiFi  100  100  100  100  95 

Support vector machine (SVM)  ZigBee  83 75 73 75 70 

BLE  100 50 67 50 90 
WiFi  100  100  100  100  95 

Gaussian Naive Bayes (GNB) ZigBee  25 50 33 50 70 

BLE  100 100 100 100 85 
WiFi  100  100  100  100  100 

Scenario 3  K-nearest neighbors (KNN)  ZigBee  100  100  100  100  87.5 
BLE  90  88  87.3  87.5  92.5 

WiFi  90  88  87.3  87.5  90 

Support vector machine (SVM)  ZigBee 100  100  100  100  100 
BLE  83  75  73.3  75  97.5 

WiFi  100  100  100  100  100 

Gaussian Naive Bayes (GNB) ZigBee  100  100  100  100  87.5 
BLE  100  100  100  100  92.5 

WiFi  100  100  100  100  97.5 

 

 

6. CONCLUSION  

In this research, we obtained the minimum number of transmitters to maximize the coverage for 

three different indoor experimental environments. We have incorporated K-means, KNN, SVM, and GNB 

and achieved the most accurate results from the KNN algorithm. Kf-CV technique has been implemented to 

validate the experimental simulations and re-evaluate the outcomes of the machine learning models. Also, the 

comparative analysis has enriched the validity of the results and ensured the efficacy of the proposed research 

work. Our proposed model is capable of detecting the minimum number of transmitters based on the RSSI 

values by incorporating machine learning algorithms. Based on the obtained results, we can conclude that the 

proposed research work would add a significant contribution to the field of wireless networking and 

communications. However, the model’s accuracy can be higher with further research and more intricate 
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tuning and also by training the model with a larger dataset. The further deployment of this work can be 

beneficial to optimize any indoor network by doing cluster analysis based on the RSSI values and coordinate 

system. In case of identifying propaganda campaigns, understanding customer’s purchasing interest and 

behavioral analysis, recommendations related to new location expansion for a business based on the 

generated traffic, this method would also be beneficial.  
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