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Abstract 
Bioluminescence tomography is known as a highly ill-posed inverse problem. To improve the 

reconstruction performance by introducing anatomical structures as a priori knowledge, an automatic 
segmentation framework has been proposed in this paper to extract the mouse whole-body organs and 
tissues, which enables to build up a heterogeneous mouse model for reconstruction of bioluminescence 
tomography. Finally, an in vivo mouse experiment has been conducted to evaluate this framework by using 
an X-ray computed tomography system and a multi-view bioluminescence imaging system. The findings 
suggest that the proposed method can realize fast automatic segmentation of mouse anatomical 
structures, ultimately enhancing the reconstruction performance of bioluminescence tomography. 
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1. Introduction 
Bioluminescence tomography is one of the optical molecular imaging modalities, 

enabling real-time non-invasive in vivo imaging of labelled molecules in biological organisms. 
Due to its high sensitivity and low cost, bioluminescence tomography has attracted much 
attention over the past decade [1-3]. It is capable of obtaining three-dimensional distribution of 
the internal bioluminescent signal source, providing an effective way of information acquisition 
and quantitative analysis for disease progression, tumour detection as well as drug efficacy [4-
6]. One of the challenges of bioluminescence tomography is that multiple scattering of photons 
propagating through biological tissues makes reconstruction a highly ill-posed problem. As 
reported in related existing literature, researchers have proposed some methods to solve the 
inverse problem, including permissible source region approach, multi-spectral information based 
algorithm and so on [7-10]. The basic idea is to reduce the number of unknown variables or to 
increase the amount of known boundary measurements for reconstruction that is 
mathematically a set of undetermined linear equations.  

Similarly, to attain more information as a priori knowledge for bioluminescence 
tomography, we utilized anatomical structures of the experimental mouse in this paper. The gold 
standard to extract the anatomical structures is using manual segmentation. It usually takes 
hours to complete the entire interactive procedure even by a skilled user. With the rapid 
development of automatic segmentation algorithms, the processing efficiency has been 
significantly improved [11-15]. However, most methods are developed for some specific organs 
or tissues, requiring interactive operations, which are not appropriate for whole-body automatic 
applications. Therefore, a general automatic segmentation framework has been proposed in this 
paper to extract the whole-body anatomical structures of the experimental mouse, which could 
be applied to build a heterogeneous mouse model to enhance the performance of 
bioluminescence tomography. 
 
 
2. Research Method 

To acquire the experimental datasets, the Caliper Life Science’s Spectrum CT was 
used, which is an integrative platform that combines bioluminescence and fluorescence imaging 
with X-Ray CT scanning. Here, two modalities including bioluminescence imaging and X-Ray 
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CT were applied to the following experiment. For X-Ray imaging, the cone-beam X-ray 
generator was operated in a continuous mode with the tube voltage being 45kVp, where 360° 
projections were scanned. For bioluminescence imaging, a cooled CCD with 13.5μm×13.5μm 
pixel size was involved in taking the multi-views of the optical images. The experimental mouse 
was injected through the caudal tail vein with Fenestra LC which is an iodinated lipid emulsion 
bloodpool contrast agent helping overcome the problem of inherently soft tissue contrast in CT 
imaging, followed by 0.3ml of anesthetic at a 0.15g/ml concentration via intraperitoneal injection. 
Then, a home-made luminescent bead was implanted into the mouse. Since the luminescent 
bead was wrapped in a plastic material, it could be easily detected by CT, enabling examination 
of the reconstruction accuracy of bioluminescence imaging. 
 
2.1. Automatic Segmentation Framework 
2.1.1. Bone structures 

To automatically extract bone structures, a thresholding method based on the principle 
of maximum entropy was utilized here, because the skeleton generally shows the highest 
contrast on CT images. This approach determines the optimal segmentation threshold 
automatically, where the basic idea is to maximize the total information entropy of the object and 
background after segmentation. The procedure can be mathematically described as follows. 
Supposing a discrete random variable v stands for a threshold value by which the pixels on a 
CT image are divided into two groups, object and background, where the object is always 
brighter than the background in this case. Assuming the probability distributions of the object 
and background, DO and DB, are defined as Equation (1), the corresponding entropies, HO and 
HB, are expressed as Equation (2) respectively. 
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variables v and i being natural numbers, and constants V and L being positive integer. Hereby, 
the entropy of the whole CT image can be written as Equation (3), and the optimal threshold 
value shown as Equation (4) will be obtained when Equation (3) attains its maximum value. 
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2.1.2. Body Outline and Lungs 

Although the body outline and lungs do not exhibit higher contrast on CT images, they 
occupy a relatively larger area. Thus, a region growing method combined with thresholding is 
applied here to automatically segment these two structures. There usually exist some 
disadvantages when images are processed only by using an individual method. On the one 
hand, background noise whose greyscale value is close to the object will be inevitably left on 
the segmentation results using the single thresholding approach. On the other hand, it will result 
in over-segmentation or under-segmentation using the single region growing method when the 
object possesses an uneven gray level distribution or a fuzzy boundary. When integrating 
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thresholding and region growing, we could avoid the above problems by taking the following 
steps. Supposing f(x,y) is the greyscale value function for an image, an optimal greyscale 
threshold T1 can be achieved using the maximum class distance method, one of the classical 
thresholding algorithms. Afterwards, we therefore get Equation (5). 
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Furthermore, assuming R stands for the seed region, the mean greyscale value m and the 
standard deviation   of the region R are respectively defined as: 
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With f(k,l) being the grayscale value function and n being the number of pixels in the seed 
region. The criterion for growth with a constraint condition is given in: 
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 with TC being a control variable. The initial value of TC can be estimated 

according to the initial seed region, and it will be adaptively adjusted during the region growing 
procedure until the target region is completely extracted. 
 
2.1.3. Other Organs 

Other major organs including heart and liver will be extracted by an atlas based 
automatic segmentation approach. The atlas used in this study was developed from ten sets of 
mice training data acquired by CT, whose anatomical structures have already been manually 
segmented. The following four steps are mainly involved in mathematically deriving this method. 
To build an average-shape atlas: Firstly, one volume data is selected from the ten sets of mice 
training data as the benchmark data. Then, the affine registration is performed using an 
algorithm presented by Slagmolend et al. [16]. Afterwords, a non-rigid registration based on a B-
spline transformation model is utilized to process the datasets, where the registration 
measurement is determined by the weighted sum of the mutual information and surface 
distance. The non-rigid registration is conducted between every two datasets, so each dataset 
Di will be processed nine times by Equation (8), finally generating 90 transformation fields Fij(i≠j). 
The mean value of the transformation field for each dataset can be calculated by Equation (9), 
and subsequently we attain the average-shape atlas shown as Equation (10). 
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To roughly localize the organs: This procedure can be generally regarded as the 

parameter (x,y,z) adjustment for the 3D translation of the registration, where x, y, z respectively 
stand for the offsets on the coronal, sagittal, and transversal planes. Prior to selecting an 
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appropriate value for z, a binary filter [17] is employed to roughly search the location of an organ 
from an experimental dataset. Then, assign the slice number of the coronal view with a 
maximum gray value for z. After finding the brightest slice from the average-shape atlas, move it 
to where z is, and (x,y) can be therefore adjusted by mapping the atlas to the experimental 
dataset. To make precise registration: A multi-resolution registration [18] is utilized to ensure the 
computational efficiency and robustness, whose basic idea is to add a pyramid filter [19] before 
making the registration between the fixed image and moving image. Furthermore, a B-spline 
transformation based on mutual information as a similarity measure is applied at last, which 
enables the deformation of an atlas organ to converge to the one of the experimental dataset. 
 
2.1.4. Whole-body Integration 

After obtaining the separated volumes of organs and tissues based on the above 
segmentation process, we need to fuse them into one volume data. During the automatic 
integration, priorities have been set for different organs and tissues to eliminate the inevitable 
overlaps and holes. Furthermore, to describe the behaviour of internal bioluminescent signals 
traveling inside living subjects, the corresponding optical properties for different parts have been 
assigned, which are measured by diffusion optical tomography. Finally, a heterogeneous mouse 
model has been completed. 
 
2.2. Bioluminescence Tomography Reconstruction 

For bioluminescence tomography, the diffusion equation and the Robin boundary 
condition are employed to model the light propagation in biological tissues [20], which are 
defined as: 
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Where D is the diffusion coefficient; a  is the absorption coefficient; x is the position vector; B is 

the bioluminescent source distribution;   is the photon flux density; R is the region of biological 
tissues; f is the boundary mismatch factor between the biological tissues and air; r is the 
refractive index of the biological tissues; v is the unit outward normal on R ; and R  is the 
boundary of the biological tissues. In order to simplify the following computation instead of 
solving the above diffusion equation directly, the linear relationship between the measured 
outgoing photon density on the boundary and the unknown source distribution is built up in the 
matrix-vector form: 
 

PΚB                                                                      (13) 
 

Where K is the system matrix, standing for the optical properties of biological tissues; P is the 
measured outgoing photon density on the boundary. 

The reconstruction procedure in bioluminescence tomography aims to recover the 
signal source distribution B in Equation (13). However, it is an underdetermined system of linear 
equations with fewer equations than unknowns, which is known as an ill-posed problem. A 
popular method [21] to reduce the ill-posedness is to introduce anatomical structure information 
as a priori knowledge. The simplest solution to Equation (13) is expressed as Equation (14), 
where the least square approach has been applied [22], but it usually magnifies noise error. To 
further enhance the practicability, the Tikhonov regularization method has been commonly 
utilized for an alternative [23]. The object function with the l2 norm constraint is given as 
Equation (15), where   is the regularization parameter and 2

2
  stands for the l2 norm. 

Therefore, the internal source distribution can be finally solved by applying optimal minimization 
to the object function. 
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3. Results and Discussion 
The acquired CT projection data was originally in DICOM format, which was then 

converted into 3D volume data by the FDK algorithm [24]. Afterwards, the volume data with a 
size of 512×512×512 was automatically segmented, where the total accumulated segmentation 
time is less than 10 minutes. The results are displayed in the following pictures, among which 
the separated volumes of organs and tissues are described in Figure 1 to 4 while the ultimate 
whole-body integration is visualized in Figure 5. 

The result in Figure 1a suggests that the thresholding method based on the principle of 
maximum entropy can be utilized to provide a precise segmentation of bone structures. It took 
less than 5 seconds to complete the automatic procedure. As shown in Figure 1b, the surface of 
the experimental mouse body is rendered based on its segmented body outline. 

 
 

 
 

Figure 1. The Results of Bone and Body Segmentation: (a) the segmented bone structures, (b) 
the segmented body outline. 

 
 

 
 

Figure 2. The Results of Lung Segmentation: (a) a CT slice in transversal view with a marked 
region in the lungs, (b) the segmented lungs rendered in 3D. 

 
 

 
 

Figure 3. The Results of Heart Segmentation: (a) a CT slice in transversal view with a marked 
region in the heart, (b) the segmented heart rendered in 3D. 
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The segmentation results of the mouse organs are given in Figure 2 to 4. The lungs are 
processed by a region growing method combined with thresholding, which is relatively easy to 
realize. The results shown in Figure 2 suggest that this approach guarantees good region 
consistence. Since the other soft tissues such as the heart and liver are in the lower gray-value 
contrast, an atlas based automatic segmentation approach is applied to obtain the results 
exhibited in Figure 3 and Figure 4. 

 

 
 

Figure 4. The Results of Liver Segmentation: (a) a CT slice in coronal view with a marked region 
in theliver, (b) the segmented liver rendered in 3D. 

 
 

 
 

Figure 5. The Heterogeneous Mouse Model after whole-body Integration. 
 
 

Figure 6 shows the two reconstruction results for bioluminescence tomography. In the 
first case, a homogeneous mouse model without any anatomical information is utilized to 
recover the internal bioluminescent source signal, and the corresponding results can be seen in 
Figure 6a. In the second case, the anatomical structure is taken as a priori knowledge for the 
reconstruction, which obviously leads to more accurate reconstruction results shown in Figure 
6b. 

 

 
 

Figure 6. The Reconstruction Results of Bioluminescence Tomography in Cross-sectional 
Views: (a) the reconstruction results based on a homogeneous mouse model, (b) the 

reconstruction results based on a heterogeneous mouse model, where the circle represents the 
real location of the bioluminescent source. 
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4. Conclusion 
To validate the feasibility of this method, the raw datasets of the two imaging modalities 

have been achieved via an in vivo mouse experiment. Subsequently processed by the proposed 
segmentation method, the anatomical mouse model has been automatically built up, which can 
guarantee computational efficiency. Further validated by the reconstruction comparison, this 
heterogeneous model is capable of ensuring the accuracy of bioluminescence tomography. 
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