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 The satisfaction of electricity customers and environmental constraints imposed 

have made the trend towards renewable energies making them more essential due 

to their advantages as reducing power losses and ameliorating system’s voltage 

profiles and reliability. This article addresses the optimal location and size of 

multiple distributed generations (DGs) based on solar photovoltaic panels (PV) 

connected to electrical distribution network (EDN) using the various proposed 

hybrid particle swarm optimization (PSO) algorithms based on chaotic maps and 

adaptive acceleration coefficients. These algorithms are implemented to optimally 

allocate the DGs based PV (PV-DG) into EDN by minimizing the multi-objective 

function (MOF), which is represented as the sum of three technical parameters of 

the total active power loss (TAPL), total voltage deviation (TVD), and total 

operation time (TOT) of overcurrent relays (OCRs). The effectiveness of the 

proposed PSO algorithms were validated on both standards IEEE 33-bus, and 69-

bus. The optimal integrating of PV-DGs into EDNs reduced the TAPL 

percentage by 56.94 % for the IEEE 33-bus and by 61.17 % for the IEEE 69-bus 

test system, enhanced the voltage profiles while minimizing the TVD by 37.35 % 

and by 32.27 % for two EDNs, respectively. 
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1. INTRODUCTION  

After the rapid increase in electricity demand, the balance between demand and electricity 

production has become an essential challenge for researchers and power producers. To deal with this, a 

conventional solution is widely used to generate electricity consists of creating new power stations. But this 

solution requires significant investments and costs as well as bad environmental effects. To mitigate these 

constraints, the distributed generation (DG) therefore presents a good alternative because of its advantages [1]. 

As the world heads toward growing its reliance on renewable energy sources, the number of DGs linked to 

electrical distribution network (EDN) has risen rapidly [2]. In order to cope with this high penetration of DGs 

into the EDN, it is critical that DGs are positioned at the optimum location with the optimum production size.  

https://creativecommons.org/licenses/by-sa/4.0/
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Recently, various researchers have suggested several ideas to resolve the optimum integration of 

PV-DG into EDN based three categories: analytical, optimization and hybrid algorithms. In this issue, the 

research has been implemented in various algorithms considered: applied teaching learning based 

optimization (TLBO) to optimize simultaneously the active power losses (APL) and voltage stability index 

(VSI) [3], particle swarm optimization (PSO) algorithm for two objective functions, the APL reduction and 

VSI improvements by active and reactive power DG [4], The invasive weed optimization (IWO) algorithm 

tested for different load models with the objective function to reducing APL and operating cost while 

enhancing the VSI [5]. Applied cuckoo search optimization (CSO) algorithm for the sizing of large-scale 

grid-connected photovoltaic system [6], adaptive genetic algorithm (AGA) with on-load taps changer to the 

objective of minimizing APL and maximum bus voltage [7], and symbiotic organism search (SOS) algorithm 

with loss sensitivity factor to minimize the APL of the EDN [8].  

In 2018, applied binary particle swarm optimization (BPSO) to minimizing the APL for 59-bus 

Cairo EDN [9], novel cuckoo search (CS) algorithm with genetically replaced nests in order to minimise 

APL, VSI, and voltage profile [10], semidefinite optimization algorithm (SOA) with the formulate problem 

based on minimizing the APL and the size of DGs [11], and population-based incremental learning (PBIL) 

algorithm to reduce the APL and the square error in the voltage profiles of the EDN [12]. In 2019, applied 

spider monkey optimization (SMO) algorithm for reduced of voltage deviation problem [13], wind driven 

optimization (WDO) algorithm consider maximizing the VSI [14], modified crow search algorithm (MCSA) 

algorithm for minimizing APL and overall voltage deviation [15], moth flame optimization (MFO) 

algorithm, is implemented to optimal allocation of the PV-DG to minimize the APL of the distribution 

system [16], and also used the genetic algorithm (GA) with the aim of APL and voltage regulation [17], and 

application of adaptive dissipative PSO (ADPSO) algorithm with an objective of minimizing the APL [18]. 

In 2020, used virus colony search (VCS) algorithm for reduced the not supplied energy (NSE) [19], 

comprehensive learning PSO (CLPSO) algorithm with an objective of minimizing the APL [20], applied 

various adaptive acceleration coefficients PSO algorithms on maximizing the APL level [21], various 

adaptive PSO algorithms for minimizing the three technical parameters [22], and hybrid chaotic maps and 

adaptive acceleration coefficients PSO algorithm to multi-objective functions [23]. Recently, applied fine-

tuned particle swarm optimization (FPSO) algorithm for APL with EDN reconfiguration [24], chaotic grey 

wolf optimizer (CGWO) to minimize a multi-objective function considering overcurrent relays indices [25], 

and adaptive quantum inspired evolutionary algorithm (AQiEA) to minimization of APL in addition to 

voltage dependent load models [26]. The authors in this paper have proposed various hybrid PSO algorithms 

based on chaotic maps and adaptive acceleration coefficients for the optimal location and sizing of PV-DG 

sources in IEEE 33-bus and 69-bus EDNs to minimize simultaniousely three technical parameters 

represented by the multi-objective function (MOF).  

 

 

2. PROBLEM FORMULATION  

2.1.   Multi-objective function 

The proposed MOF is considered to optimally allocate the PV-DGs by minimizing simultaneously 

the three parameters: total active power loss (TAPL), TVD, and TOT, as follows:  
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Firstly, the TAPL, expressed as [16], [25]: 
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Where, Nbus is the bus number, Rij is the line resistance, Vi, Vj and δi, δj are the voltages and angles at the 

buses. Pi, Pj and Qi, Qj represent powers at buses. Secondly, the TVD, which is expresses by [22], [23]: 
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Finally, the overcurrent relay’s TOT, of the type based time-current-voltage tripping characteristic 

(NS-OCR) [27], wich is defined as follow: 
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Where, Ti is the relay’s operation time, TDSi is the time dial setting, A, B and K are constants set to 0.14, 0.02 

and 1.5 respectively, VFM is the fault voltage magnitude and NR is the overcurrent relays number. Mi is the 

multiple of pickup current, IF and IP are the fault current and the pickup current, respectively. 

 

2.2.   Equality constraints  

Equality constraints can be expressed by the following equations of power balance: 

 

G PV DG D LossP P P P−+ = +  (8) 

 

G D LossQ Q Q= +  (9) 

 

2.3.   Distribution line constraints 

The distribution line inequality constraints can be given as:  

 

min maxiV V V   (10) 

 

max1 jV V−    (11) 

 

maxijS S  (12) 

 

2.4.   PV-DG units constraints 

The PV-DG unit limits inequality constraints can be expressed as: 
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3. OVERVIEW OF HYBRID PSO ALGORITHM  

3.1.   Basic PSO algorithm  

The PSO algorithm was introduced in 1995 to develop an optimal solution to a problem, which is 

inspired from the social behavior of animals evolving in swarms. Each individual of its population is called a 

particle, that illustrates a solution, hence this particle is moving according to the following equations at each 

iteration k [28]: 
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Where, ω is the inertia weight, Vi is the velocity of particle, Xi is the position of particle, Gbest and Pbest are the 

swarm overall best and previous personal best of the particle, respectively. k and kmax are iteration and 

maximum iterations numbers, c1, c2 are the acceleration coefficients, and r is a random number. Researchers 

have proposed many PSO algorithms by editing the parameters of (ω, c1, c2 and r) to reach its optimum 

performances and function. Therefor it is chosen in this paper an improved PSO algorithms which based on 

chaotic maps and adaptive acceleration coefficients. 

 

3.2.   Chaotic PSO algorithm  

The chaotic maps are important functions used for solving problems in optimization methods, where 

generally utilized as generators of random numbers. The used ones in this paper are described by their 

visualization in Figure 1 and their mathematical forms as [29]: 

- Chaotic logistic PSO (CL-PSO): 

 

( )1 1k k kx x x+ = −  (21) 

 

- Chaotic iterative PSO (CI-PSO): 
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- Chaotic circle PSO (CC-PSO): 
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Figure 1. Visualization of chaotic maps 

 

 

3.3.   Adaptive acceleration coefficients 

The applied PSO algorithms in this problem based on adaptive acceleration coefficients c1, c2 are 

represented in the following equations, also by the coefficients’ variation in Figure 2. Sigmoid-based 

acceleration coefficients (SBAC-PSO) [30]: 
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Where, λ = 0.0001, c1f  = 2.5, c1i = 0.5. Non-linear dynamic acceleration coefficients (NDAC-PSO) [31]: 

 

( )
2

1 1 1 1

max

f i f

k
c c c c

k

 
= − − + 

 

, 
2

2 1 1

max max

1i f

k k
c c c

k k

   
= − +   

   

 (25) 

 

Where, c1f  = 2.5, c1i = 0.5. Time-varying acceleration-PSO (TVA-PSO) [32]: 
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Where, c1f = 0.5, c1i = 2.5  and c2f  = 2.5, c2i = 0.5 

 

 

 
 

Figure 2. The variation of acceleration coefficients for various PSO algorithms 

 

 

Based on hybridization of two PSO algorithms which depend on chaotic maps and adaptive 

acceleration coefficients as previously mentioned. This paper proposed firstly for the chaotic logistic (CL) 

algorithm: (CL-SBAC-PSO), (CL-NDAC-PSO) and (CL-TVA-PSO), then for the chaotic iterative (CI) 

algorithm: (CI-SBAC-PSO), (CI-NDAC-PSO) and (CI-TVA-PSO). Finally, for the chaotic circle (CC) 

algorithm: (CC-SBAC-PSO), (CC-NDAC-PSO) and (CC-TVA-PSO). 

 

 

4. OPTIMAL RESULTS, DISCUSSIONS AND COMPARISON 

The proposed hybrid PSO algorithms were evaluated and validated on the standards IEEE 33-bus, 

and 69-bus, whereas illustrated by the single line diagrams in Figures 3(a) and 3(b) respectively, under a base 

voltage of 12.66 kV in the two of them [22]. The proposed algorithms are implemented in MATLAB 

software (version 2017.b) in a PC that has a processor Intel Core i5 with 3.4 GHz and 8 GB of RAM. 

The first system, the total active and reactive load are 3715.00 kW and 2300.00 kVar, while for the 

second system, are 3790.00 kW and 2690.00 kVar. Every bus of the two systems is protected and covered by 

a primary overcurrent relay (OCR), followed by its backup, and a coordination time interval (CTI) set above 

0.25 second is between them. In general, it is calculated for the IEEE 33-bus, 32 OCRs with 31 CTIs, while 

for the IEEE 69-bus, 68 OCRs with 67 CTIs. It is chosen after the integrating of multiple PV-DGs a type of 

NS-OCR for all relays in the two systems, where also a descriptive summary of their main characteristics is 

mentioned in Table 1. 
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(a) 

 
(b) 

 

Figure 3. Single line diagram of standard test systems: (a) IEEE 33-bus and (b) IEEE 69-bus 

 

 

Table 1. The main characteristics of the investigated EDN systems 

Characteristics Buses Branches Relays 
∑ PD 

(kW) 

∑ QD 

(kVar) 

∑ PLoss 

(kW) 
∑ QLoss 

(kVar) 
∑ VD 

(p.u.) 
∑ TRelay 

(sec) 
IEEE 33-bus 33 32 32 3715.00 2300.00 210.98 135.14 1.81 20.57 
IEEE 69-bus 69 68 68 3790.00 2690.00 224.95 102.16 1.87 38.77 

 

 

Figures 4(a) and 4(b) demonstrate the convergence curves of the MOF’s minimization when 

applying the various proposed hybrid PSO algorithms on both systems. According to Figures 4(a) and 4(b), 

the application of various hybrid PSO algorithms on both systems with a value of kmax=150 iterations, 

population size=10, shows for the first system that CI-NDAC-PSO algorithm converged at first about 85 

iterations and better than other proposed algorithms. At the same time, it may be seen that CC-TVA-PSO 

algorithm provided the best and minimum value of MOF among all of the applied algorithms, beside it 

converges late more than 140 iterations. On the other hand, it is also clear for the IEEE 69-bus, that the CC-

TVA-PSO algorithm provided the best and minimum value of MOF and converging by 125 iterations. 

Figures 5(a) and 5(b), illustrate the boxplot of MOF results after the application of the various hybrid PSO 

algorithms with 20 runs in each of two systems EDNs. 

 

 

 
(a) 

 
(b) 

 

Figure 4. Convergence characteristics of PSO algorithms: (a) IEEE 33-bus and (b) IEEE 69-bus 

 

 

A boxplot is presented in Figures 5(a) and 5(b), for the purpose of comparison improvement, beside 

to better evaluates the proposed algorithms. By considering 20 executions, it can be seen for all proposed 

hybrid PSO algorithms that the results are too near to their minimum and best MOF in the two systems. It is 

also clear that CC-TVA-PSO algorithm presents efficiency in delivering the minimum value of MOF in both 
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systems with the lowest median for the IEEE 33-bus. While the lowest median for the IEEE 69-bus was 

provided by the CL-TVA-PSO algorithm. 

 

 

 
(a) 

 
(b) 

 

Figure 5. Boxplot of MOF for PSO algorithms applied for (a) IEEE 33-bus and (b) IEEE 69-bus 

 

 

Tables 2 and 3, exhibit the results found when apply the various hybrid PSO algorithms on both test 

systems EDNs. Based on comparison, it can be sseen in Tables 2 and 3, that all proposed hybrid PSO 

algorithms have found good and close results to each other’s. While the minimum MOF results were 

achieved by the CC-TVA-PSO algorithm for both systems, moreover, it provides the lowest TOT value of 

19.4698 seconds for the IEEE 33-bus and lowest TAPL value of 87.35 kW for the IEEE 69-bus. 

 

 

Table 2. Comparison of optimization results for IEEE 33-bus 

Algorithms 

Applied 

DG Bus Location DG Size - PDG (kW) TAPL 

(kW) 

TVD 

(p.u.) 

TOT 

(sec) 
MOF 

DG1 DG2 DG3 DG1 DG2 DG3 

CL-SBAC-PSO 14 24 30 462.80 896.90 895.60 82.18 1.0717 19.5301 20.6803 

CL-NDAC-PSO 13 24 29 685.30 630.20 646.80 86.46 1.0737 19.5315 20.6848 

CL-TVA-PSO 5 16 31 1065.20 479.90 510.30 90.77 1.0706 19.5226 20.6840 

CI-SBAC-PSO 13 23 30 600.60 1046.60 802.00 82.73 1.0380 19.5691 20.6898 

CI-NDAC-PSO 13 23 28 523.40 516.30 1022.60 90.25 1.0733 19.5289 20.6925 

CI-TVA-PSO 15 24 30 541.00 904.30 659.80 85.63 1.0908 19.5075 20.6840 

CC-SBAC-PSO 15 25 29 454.30 913.40 803.70 86.29 1.0969 19.5022 20.6815 

CC-NDAC-PSO 12 25 31 746.30 811.50 489.90 86.92 1.0884 19.5102 20.6818 

CC-TVA-PSO 16 25 31 466.60 659.90 678.50 90.84 1.1338 19.4698 20.6735 

 

 

Table 3. Comparison of optimization results for IEEE 69-bus 

Algorithms 

Applied 

DG Bus Location DG Size - PDG (kW) TAPL 

(kW) 

TVD 

(p.u.) 

TOT 

(sec) 
MOF 

DG1 DG2 DG3 DG1 DG2 DG3 

CL-SBAC-PSO 13 51 62 541.00 239.50 908.20 98.27 1.2056 37.7569 39.0501 

CL-NDAC-PSO 25 55 63 274.50 510.60 827.80 100.14 1.2143 37.7482 39.0518 

CL-TVA-PSO 27 51 60 161.70 60.30 1119.20 104.15 1.2827 37.6717 39.0482 

CI-SBAC-PSO 23 26 61 20.20 124.50 1197.20 93.05 1.2657 37.6979 39.0566 

CI-NDAC-PSO 18 52 63 294.00 550.30 878.10 99.96 1.2144 37.7473 39.0509 

CI-TVA-PSO 13 28 62 167.00 1076.20 1010.30 104.66 1.3483 37.6091 39.0515 

CC-SBAC-PSO 24 50 62 397.70 146.30 972.40 98.29 1.1964 37.7638 39.0480 

CC-NDAC-PSO 18 50 61 317.50 284.60 1030.30 95.47 1.2276 37.7247 39.0477 

CC-TVA-PSO 32 61 62 649.50 1012.80 616.50 87.35 1.2666 37.6911 39.0451 
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It may be noted that the rest of the hybrid PSO algorithms also show a good efficiency in delivering 

good results. As examples, for the first system, the CL-SBAC-PSO algorithm delivers the minimum TALP 

value of 82.18 kW and the CI-SBAC-PSO algorithm delivers the minimum TVD value of 1.0380 p.u. 

Meanwhile, for the IEEE 69-bus, it can be noted in term of TVD, the CC-SBAC-PSO algorithm gives the 

best and minimum value of 1.1964 p.u., where in term of TOT, the CI-TVA-PSO algorithm provides the 

minimum value of 37.6091 seconds. Figures 6(a) and 6(b), illustrate the comparing between the active power 

losses for the cases, before and after the PV-DGs presence in the two systems. 

 

 

 
(a) 

 
(b) 

 

Figure 6. Branch active power loss in test systems (a) IEEE 33-bus and (b) IEEE 69-bus 

 

 

The Analyzing of Figures 6(a) and 6(b), shows that due to the best identification of location and 

sizing of PV-DGs in the two systems when using the CC-TVA-PSO algorithm, a significant reducing of the 

total active power losses is provided from 210.98 kW to 90.84 kW in the IEEE 33-bus, and from 224.95 kW 

to 87.35 kW in the IEEE 69-bus. Moreover, it is clear that the optimal installation of PV-DGs at buses 16, 25 

and 31 of the first system, and buses 32, 61 and 62 of the second system, contributed directly to the reducing 

of the active power losses almost in every branch of both of them. Figures 7(a) and 7(b), represent the voltage 

deviation for the studied cases of the PV-DGs optimal presence of in the two EDNs. 

 

 

 
(a) 

 
(b) 

 

Figure 7. Voltage derivation profiles of all buses (a) IEEE 33-bus and (b) IEEE 69-bus 

 

 

From Figures 7(a) and 7(b), it can be noted that the voltage deviation at the base case is out of the 

allowed limited range of 0.05 p.u. in almost all buses for IEEE 33-bus, and buses from 56 to 65 of the IEEE 

69-bus. Moreover, it is observed after the optimal integration of PV-DGs at buses 16, 25 and 31 of the first 

system, and buses 32, 61 and 62 of the second system, that the voltage deviation got decreased under the 

allowed limited range in all buses of both systems, and as long as it represents the difference between the 

voltage nominal value of 1 p.u., and the actual voltage value at the base case, this minimization consequently 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 50 - 60 

58 

led to the improvement of the voltage profiles in all buses for the two systems. Figures 8(a) and 8(b), 

represent the primary overcurrent relays’ operation time in the two systems for the cases before, and after 

PV-DG integration. 

 

 

 
(a) 

 
(b) 

 

Figure 8. Operation time of overcurrent relay (a) IEEE 33-bus and (b). IEEE 69-bus 

 

 

From Figures 8(a) and 8(b), and when comparing to the base case, it is obvious that the operation 

time in almost all of the NS-OCRs had a considerable minimization in both systems after the optimal 

installation of PV-DGs, at buses 16, 25 and 31 of the IEEE 33-bus, and buses 32, 61 and 62 of IEEE 69-bus, 

with a value of TOT from 20.57 to 19.46 seconds and from 38.77 to 37.69 seconds, respectively. This was 

due to the reverse relation and function between IF and VFM that measured and covered by the NS-OCR and 

its operation time according to (7). 

Table 4 represents the comparison between the various results delivered by various algorithms 

published in the literature and proposed algorithm. This comparison was carried out to see the best results of 

TAPL minimization, when basing on the three PV-DG units’ locations and sizing. As shown in Table 4, 

when comparing with the various algorithms, it is obvious that the optimal placement and size of multiple 

PV-DGs into both systems using the proposed CC-TVA-PSO algorithm provided the best results in reducing 

the TAPL until 90.84 kW by 56.94 %, and until 87.35 kW by 61.17 % in the IEEE 33-bus and 69-bus, 

respectively. 
 

 

Table 4. Comparison optimal results with different algorithms 

Algorithms 
[Ref] 

IEEE 33-bus IEEE 69-bus 

PV-DG 

Size in kW; (Bus) 

TAPL 

(kW) 

ΔTAPL 

(%) 

PV-DG 

Size in kW; (Bus) 

TAPL 

(kW) 

ΔTAPL 

(%) 

GA [17] 
1500.00 

(11) 

422.80 

(29) 

1071.40 

(30) 
106.30 49.61 

929.70 

(21) 

1075.20 

(62) 

984.80 

(64) 
89.00 60.43 

QOTLBO [3] 
1199.80 

(6) 
1200.00 

(11) 
1198.30 

(29) 
104.88 50.29 

1193.10 
(22) 

1196.70 
(61) 

1191.40 
(62) 

110.51 50.87 

ADPSO [18] 
846.00 

(16) 

384.00 

(26) 

499.00 

(30) 
94.02 55.44 

945.00 

(2) 

521.00 

(60) 

1953.00 

(62) 
94.70 57.90 

PMC [12] 
499.30 

(12) 

396.60 

(18) 

674.40 

(31) 
91.63 56.57 

1200.00 

(63) 

57.70 

(68) 

395.40 

(69) 
92.64 58.81 

CC-TVA-PSO 
466.60 

(16) 

659.90 

(25) 

678.50 

(31) 
90.84 56.94 

649.50 

(32) 

1012.80 

(61) 

616.50 

(62) 
87.35 61.17 

 

 

5. CONCLUSION  

In this paper, a study of comparison was implemented between the proposed hybrid PSO algorithms 

which based on chaotic maps and adaptive acceleration coefficients for the purpose of identifying the optimal 

location and sizing of multiple PV-DGs in the two systems, to solve the MOF problem represented as reducing 

simultaneously the technical three parameters of TVD, TAPL and TOT. The results of simulation, showed that the 

proposed CC-TVA-PSO algorithm was the best choice over the rest of the proposed algorithms that solved the 

problem of optimization by delivering the best minimization of MOF results with a slow convergence 

characteristic, meanwhile fulfilling the system operational constraints. From previous discussions, it may deduce 
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that the CC-TVA-PSO algorithm can be widely applied to EDNs and contribute to obtaining best solutions and 

results. Where, the next work will concentrate on studying the optimal allocation of DGs to improve the system’s 

technical indices, considering the DGs power output and the load demand variation at different hourly. 
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