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 Optimized positioning of antenna to obtain the best beam forming solution is 

adopted in this research. Non-uniform linear array-based beamforming 

algorithms have the challenge of placing the array of antennas in positions 

that would implement best beamforming outputs. This paper attempts to 

obtain the optimized beam forming by tuning the sparse Bayesian learning 

based algorithm. The parameters used for tuning involve choosing the hybrid 

basis vector for creating the steering vector while at the same time 

developing the optimized position of the antennas. Basis vectors are the 

building blocks of the steering vector developed for the beamforming 

algorithm that finds the angle of arrival in antennas. Reconfiguration of 

antennas is carried out using particle swarm optimization (PSO) algorithm 

and the basis vectors are generated using two different ways. One by 

cumulating similar basis vectors and another by cumulating two different 

basis vectors. The performance of accurate detection of angle of arrival in the 

beamforming algorithm is analyzed and results are discussed. This basis 

vector and antenna distance optimization is adopted on the sparse Bayesian 

learning paradigm. Performance evaluation of these optimizations in the 

algorithm is realised by validating the mean square error (MSE) versus signal 

to noise ratio (SNR) graphs for both the cumulative basis vector and hybrid 

basis vector cases. 
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1. INTRODUCTION 

Angle of arrival (AOA) estimation is a part of channel estimation procedure while receiving the 

signals in the wireless communication paradigm. Beam forming approaches are used for AOA estimation in 

antenna communication systems. Accuracy in which the estimation of AOA is performed, highlights the 

performance of the antenna communication implementation. Direction of the signal approaching the antennas 

are important in both the radar and sonar applications [1]-[3]. Traditional methods like music [1] and 

estimation of signal parameters via rotational invariant techniques (ESPRIT) [2] are capable of finding the 

AOA of N-1 signals while N element uniform linear array is used. While the number of sources that are 

resolved is less than the number of sensors used then the problem is defined as underdetermined AOA 

estimation discussed in [4]-[6]. These underdetermined approaches increase the degree of freedom (DOF) by 

creating a virtual array [5]. Completely defined non-uniform linear array and the signal received on that array 

is used to generate the virtual array. A covariance matrix is generated from the non-uniform linear array and 

the received data. Vectorizing that covariance matrix gives the virtual array. Such an array called the 

https://creativecommons.org/licenses/by-sa/4.0/
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minimum redundancy array (MRA) [7] is generated introducing the aperture that is maximum possible for N 

sensors. Design of MRAs cannot be predicted although a MRA for N≤17 sensors are created in [8]. Reducing 

the number of the sensors for the underdetermined environment is discussed in research publications [9]-[25]. 

Larger aperture virtual array or co-prime array are used for the AOA estimation for an underdetermined 

system with nonlinear uniform linear array (NULA) with the use of a lesser number of sensors [5], [25]. 

Minimum hole array (MHA) [9] is another method for virtual sensors or arrays in the underdetermined 

system. Since there is no closed form method for the AOA estimation an extensive search method is used for 

the physical arrays. Sparse arrays are the recent ways of improving the search method in the underdetermined 

system. Nested arrays as discussed in [5] concatenate two uniform linear arrays (ULAs) to resolve N square 

AOA from N physical sensors. NULA structures with coprime arrays obtained by interlacing two ULAs 

having intersensor spacing of M and N [10], where M and N are coprime. M+N-1 sensors are needed to 

resolve MxN sources. Similarly more targets using lesser sensors can be resolved using the coprime array 

with displaced subarrays (CADiS) [11]. Different AOA estimation algorithms are defined [12]-[22] that uses 

lesser sensor and sparse arrays for resolving higher number of signals are detailed. Non circular signals used 

for the AOA estimation algorithm [14]-[16] exhibited better performance while reducing the noise [14]. 

Sparse Bayesian learning based algorithms are implemented for the multiple measurement vector (MMV) 

sparse signal recovery problem [26]. Extension of this SSR algorithm is done by block sparse signal recovery 

problem in [27]-[29] by considering the temporal correlation of sources. Off grid error based algorithms for 

AOA estimation are introduced in [30]. Bayesian model which defined the off grid error as the prior is 

defined. Non negative prior information is incorporated for the sparse Bayesian learning algorithm [31]. 

To enhance the accuracy of AOA estimation, parametric changes are made in the non negative 

sparse Bayesian learning (NNSBL) algorithm. This paper attempts increasing the accuaracy of AOA 

estimation by replacing the overcomplete basis vector of NNSBL algorithm by the cumulative and the hybrid 

basis vector. Antenna reconfiguration using the particle swarm optimization (PSO) algorithm is also applied 

for better performance. The obtained results are compared using mean square error (MSE) v/s signal to noise 

ratio (SNR) and MSE v/s snapshot plots. Section 2 deals with the implementation details of the methodology 

carried out. Section 3 discusses optimization algorithm implemented for antenna reconfiguration and section 

4 deliberates on the result and discussion of the implementation and followed by conclusion and reference. 

 

 

2. HYBRID BASIS VECTOR BASED UNDERDETERMINED AOA ESTIMATION 

Non negative sparse Bayesian learning (NNSBL) for underdetermined AOA estimation is 

implemented with the hybrid basis vector based algorithm.  

 

2.1.   Sparse representation: introduction 

Since the research is based on basis pursuit denoising (BPDN) based sparse representation direction 

of arrival (DOA) estimation methods an introduction about this method is made. The advancement in the 

existing DOA estimation algorithm in sparse representation paradigm is applied and compared with the 

traditional method. The BPDN based DOA estimation algorithm thus developed in the existing literature is 

advanced with the cumulative basis vector and hybrid basis vector-based implementation. 

 

2.2.   Signal model 

Omnidirectional antennas with M elements are placed in a non-uniform linear array which are 

located at different distances [0, d1,… dM-1], which denotes distance between the reference location and 

different antennas. This distance is the integral multiples of half the wavelength. Improvement of 

convergence in any sparse representation problem is improved by increasing the degree of freedom (DOF). 

DOF considered in the omnidirectional antenna array is the difference co-array defined as:  

 

𝛺 = {𝑑𝑚1
− 𝑑𝑚2

}
𝑚1=0,1,……𝑀−1,;𝑚2=0,1,….𝑀−1

 

 

For M antennas 𝛺 provides more DOFs. Considering that N far-filed sources uncorrelated in nature 

is falling on M antennas. The narrow band sources is defined by 𝑆k(𝑡), 𝑘 = 1,2, … , 𝑁 which impinges on 

antenna arrays. The proposed implementation calculates the DOA estimation with spatially white Gaussian 

noises as the channel for all the M antennas denoted by 𝑛𝑚(𝑡), 𝑚 = 0,1, … . , 𝑀 − 1. The snapshots of the 

signal with noise is defined as:  

 

𝑥(𝑡) = 𝐴𝑠(𝑡) + 𝑛(𝑡) (1) 
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Array received vector x(t), signal from the transmitting source s(t) and the noise in the channel n(t) 

for the 𝑡𝑡ℎsnapshot is denoted in (1). The steering vectors of all the N sources are consolidated in the 

manifold matrix A. 

 

𝐴 = [𝑎(𝜃1), 𝑎(𝜃2),⋅⋅⋅⋅, 𝑎(𝜃𝑁)] 

 

Where the steering vector a(𝜃𝑛), n=1,2,⋅⋅⋅,N, corresponding to the 𝑛𝑡ℎ incident signal is defined as a(𝜃𝑛) =

[1, 𝑣(𝑑1,𝜃𝑛),⋅⋅⋅, 𝑣(𝑑𝑀−1,𝜃𝑛)]𝑇, phase component 𝑣(𝑑, 𝜃) is defined as v(dm, 𝜃) = 𝑒𝑥𝑝 [−𝑗2𝜋 (
𝑑𝑚

𝜆
) 𝑠𝑖𝑛𝜃], and 

{·}T  denotes the transpose. It is considered that the signal and the noise are uncorrelated and thus the 

covariance matrix is formulated as defined in (2). 

 

Rx  =  E{x(t)xH(t)}  =  Adiag (σ12, σ22,⋅⋅⋅, σN2)AH  +  σn2I𝑀 , (2) 

 

The uncorrelation between the source and the noise is denoted in (2) by introducing multiple 

variances σ1
2, σ2

2…., σN
2 corresponding to N sources. Expectation E {·} for the component x(t)xH(t) defines 

the covariance matrix. The identity matrix IM with size M x M. Vectorizing the (2), creates the virtual array 

from covariance matrix. The vectorization involves Khatri Roa (KR) product in the (3). 

 

 Y ⋅=⋅ vec ⋅ (Rx) = vec (ARsAH) +⋅ 𝜎𝑛 2vec (I) =⋅ (A∗ ⊛ A)g ⋅ + ⋅ 𝜎n
2IM (3) 

 

In (3) KR product ⊛, conjugate transpose {·}H ,g=[ σ1
2, σ2

2,⋅⋅⋅, σN
2]T denotes source variance vector, 

1m=[e1
T,e2

T,⋅⋅⋅,eM
T]T with emvector being zeros excluding the 𝑚𝑡ℎ entry which is 1. A=(A*⊛A), is the virtual 

array manifold matrix. The virtual manifold matrix A consisits of N virtual steering vectors with 𝑎(𝜃𝑛) =

𝑎∗(𝜃𝑛)⨂𝑎(𝜃𝑛), n=1,2,⋅⋅⋅,N, where ⨂ indicates the Kronecker product. Distinct entries of a*(𝜃)⨂𝑎(𝜃) 

increases the DOF of the DOA estimation problem. The provided data is the sample covariance matrix while 

in reality defined as �̂�𝑥 = ∑ 𝑋(𝑡)𝑋𝐻(𝑡)/𝑇𝑇
𝑡=1 . As the incident signals are defined as circularly symmetric 

Gaussian distribution. A asymptotic complex Gaussian distribution results as the residual error of covariance 

matrix. The residual error is defined in (4). 

 

�̂� − 𝑌 = 𝑣𝑒𝑐(�̂�𝑥) − 𝑣𝑒𝑐(𝑅𝑥) ~ 𝐶𝑁 (0,
1

𝑇
𝑅𝑥

𝑇⨂𝑅𝑥) (4) 

 

Let �̃�𝑥 = 𝑅𝑥
𝑇⨂𝑅𝑥/𝑇, and by using (3) and (4) is transformed to be: 

 

�̂�~𝐶𝑁(𝐴𝑔 + 𝜎𝑛
21𝑀, �̃�𝑥) (5) 

 

In (5) defines the BPDN formulation for DOA estimation. The sparse solution space is identified in 

the sample grid represented as 𝛩 = {𝜃1, 𝜃2,⋅⋅⋅, 𝜃𝑁}. The sample grid or the sparse solutions space spans range 

of all possible incident directions of the signal. Thus the (5) is converted to the following (6). 

 

�̂�~𝐶𝑁(𝛷𝑤 + 𝜎𝑛
21𝑀, �̃�𝑥) (6) 

 

Matrix 𝛷  acts as the overcomplete dictionary of the DOA estimation problem. All the direction in 

the grid 𝛩 is utilized in 𝛷  and acts as the basis vector for matrix A. The non negative sparse matrix W 

contains ones where actual DOA is present and zeros in all other positions. N being the non-negative 

Gaussian distribution defined in [32]. 

 

2.3.   Sparse Bayesian modeling 

Sparse Bayesian learning (SBL) discussed in [32] is considered as nonnegative. Due to which the 

BPDN problem is considered as the real valued problem, incorporating the positive source variance. It is 

discussed in [32] that if the incident signals follow a circular-symmetric Gaussian pattern, the positive source 

variance is converted to Gaussian distribution with real values. Thus (6) is rewritten as (7): 

 

P(�̂�|𝑤, 𝜎𝑛
2) = 𝑁(�̃�𝑤, 𝑅),  (7) 

 

where: 
 

 �̃�(𝜎𝑛
2) = [𝑅𝑒(�̂�𝑇) − 𝜎𝑛

2 ∙ 1𝑀
𝑇 , 𝐼𝑚(�̂�𝑇)]𝑇 ,    �̃� = [𝑅𝑒(𝛷)𝑇 , 𝐼𝑚(𝛷)𝑇]𝑇   
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and 

 

𝑅 =
1

2
[𝑅𝑒(�̃�𝑥) − 𝐼𝑚(�̃�𝑥); 𝐼𝑚(�̃�𝑥)𝑅𝑒(�̃�𝑥)] 

 

Traditional SBL uses 𝑙1-norm as the objective for sparse learning problem. NNSBL, uses the Laplacian prior 

distribution in place of 𝑙1-norm. The prior distribution is defined in (8): 

 

P(w|𝜆) =
𝜆𝑁

2𝑁 𝑒𝑥𝑝 (−𝜆 ∥ 𝑤 ∥1) (8) 

 

In (8) is rewritten considering that w is a nonnegative vector and given in (9). 

 

𝑝(𝜆) = 𝜆𝑁𝑒𝑥𝑝 (−𝜆 ∑ wi
𝑁
𝑖=1 ),    𝑤𝑖 ≥ 0,  i = 1, 2,⋅⋅⋅,N (9) 

 

Bayesian framework starts with the prior distribution. The solution for the sparse problem starts with 

this prior and develops a posterior distribution. If the prior distribution that is defined in (9) does not appear 

to be conjugate of the conditional distribution of the observed data, the non-negative Laplace prior is 

developed. The marginal prior of the ‘w’ is defined as a laplace distribution while the hyper prior for the 

hyper parameter 𝜆 is given as a gamma distribution: 

 

𝑃(𝜆; 𝑣) = 𝛤(𝜆|𝑣, 𝑣) (10) 

 

Definition of the gamma probability distribution function is given as 𝛤(𝑎, 𝑏) = 𝑏𝑎𝜆𝑎−1

𝑒𝑥𝑝 𝑒𝑥𝑝(−𝑏𝜆)/𝛤(𝑎). Where v is the hyperparameter, v which defines the set of constant values v → 0, 

called as the Jeffrey’s hyper prior. Another prior for the variance value 𝜎𝑛
2, is considered as a noninformative 

distribution to complete the Bayesian model: 

 

𝑝(𝜎𝑛
2) ∝ 1,    𝜎𝑛

2 > 0 (11) 

 

All the distributions defined for different variables and hyperparameters are combined to obtain a joint PDF 

to form the Bayesian model defined in (12). 

 

𝑝(𝑤, 𝛾, 𝜆, 𝜎𝑛
2, �̂�) = 𝑝(𝑤, 𝜎𝑛

2)𝑃(𝑤|𝛾)𝑝(𝛾|𝜆)𝑝(𝜆)𝑝(𝜎𝑛
2) (12) 

 

With the developed Bayesian model the Bayesian inference and the solutions are obtained to estimate the 

DOA of the given signal. Once the Bayesian model is ready with all the priors combined, the posterior has to 

be obtained in order to infer from the signal. Thus, an expectation maximization algorithm is adopted to find 

the solution. 

 

2.4.   Cumulative basis vector 

The NNSBL based DOA estimation algorithm uses the matrix 𝛷  that acts as the overcomplete 

dictionary. This overcomplete matrix is generated using usually a Gaussian basis vector. This basis vector is 

advanced in the proposed algorithm to make it a cumulative basis vector implementation. In NNSBL DOA 

estimation during a to searching a or to generate manifold matrix processing time to using multi basis vector 

using more than one basis vector using is a cumulative basis vector Using cumulative basis vector for 

generating manifold matrix increases the AOA estimation accuracy. Gaussian basis vector used in finding 

manifold matrix 𝜙(𝑥) is given by: 
 

𝛴𝑖=1
∞ 𝜙𝑇(𝑥)𝜙(𝑥′) (13) 

 

2.5.   Hybrid basis vector and optimization 

In this paper, a hybrid basis vector means using two different basis vectors, one is Gaussian and 

other is hyperbolic tangent basis vector is used to find manifold matrix. The dot product in the infinite 

dimensional space transforms the Gaussian basic vector into the Gaussian function of the distance between 

points in the data space. The angle between the basis vectors is small in the vector space, if two points in the 

data space are nearby: 
 

𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝 (−𝛾||𝑥 − 𝑦||
2

) (14) 
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Hyperbolic tangent basis vectors owe their popularity to neural networks, which, traditionally use 

the hyperbolic tangent activation function 𝑡𝑎𝑛ℎ(𝛼(𝑥. 𝑥′) + 𝑐). The hyperbolic tangent of a dot product with 

fixed linear scaling provides a basis vector based manifold matrix A. Adjusting parameter 𝛼, equilibrium 

constraint 𝑐 intercept constant. The overcomplete basis vector that is used in the NNSBL algorithm is 

changed with the cumulative and the hybrid basis vector and the performance is checked and compared. 

PSO is the bio-inspired algorithm that is developed by formulating the behavior of the birds 

searching its prey [27]. The independent variables of the objective functions are assumed as the birds and the 

objective function is analogous to the act of the bird finding the prey. The objective function in this 

implementation is the MSE between the DOA estimated from the algorithm and the actual DOA of the 

incident signals. PSO based reconfiguration is done by changing the distance between the antennas. The 

formulation defining the antenna reconfigured DOA estimation using Multibasis vector is developed. 

Distance between the antenna is optimised using the PSO algorithm, considering the MSE as the 

minimization parameter. The MSE is defined by calculating the difference between the actual DOA and the 

DOA estimated. This paper introduces more stochastic nature in this formulation using the particle swarm 

optimization that reconfigures the antenna, search for the best distance between the antennas. The PSO is a 

bio-inspired algorithm that is mathematically models the activity of the bird flock that tries to find the food in 

the swarm. Mathematically the bird in the real world is emulated as a particle in the search space. As the bird 

gains knowledge from the neighbouring bird and by its own reference similarly each particle generated gains 

the knowledge on the convergence. The bird moves faster with higher acceleration while the bird is far away 

from the food. Similarly, the particle moves faster in the search space and with higher movement when it is 

far from convergence. Near the convergence space the particle moves slower and with lesser movement. 

Particles in PSO are the sample space of solutions. These solutions are optimized using the objective functions, 

which is primarily the cause of the formulation. In this paper the objective function is the mean square error that 

is between the actual DOA angle and the estimated angle. The objective function is given by (15). 
 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (15) 

 

Here n is the number of signals incident on the antennas. 𝑌𝑖 is the actual angle of arrival for the ith 

signal and 𝑌⏞𝑖  is the estimated angle of arrival. Optimization converges towards the minimization of this mean 

square error. With a lesser number of parameters, the convergence is possible using the PSO algorithm. The 

distance between the antennas is the parameter that is populated and searched. Position of the PSO particles 

varies from one position to another by adding the velocity function that drives the particles towards the 

convergence. Velocity function is added with the particles to move from one position to another and check 

for convergence in the new position. In each iteration, the particles will move towards the convergence. 

Usually, 20 to 30 particles are generated in the first iteration and in each iteration, the movement will create 

the same number of particles. This iterative process converges towards the MSE minimization. The velocity 

values get added to the particle position values to obtain the new positions of the particles. These particles get 

the idea about the neighboring particles and the particles that are near to the convergence point from the 

velocity function defined in (16). 
 

𝑣𝑒𝑙1 ← 𝑤𝑣𝑒𝑙1 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑥1) + 𝑐2𝑟2(𝐺𝑏𝑒𝑎𝑡 − 𝑥1) (16) 
 

vel1 is the velocity function which is formed by the use of the current position values 𝑥1,, constants 𝐶1, 𝐶2  

and  𝑟1, 𝑟2, Pbest is the best particle in the previous iteration and Gbest is the best particle for all the iterations 

carried out. Constants 𝐶1 and 𝐶2 are chosen to be integer 2. While, 𝑟1, 𝑟2 are randomly generated: 
 

𝑥1𝑛𝑒𝑤 ← 𝑥1 + 𝑣𝑒𝑙1 (17) 
 

The added sum of the previous position values and the velocity values produces the new position values to 

further the process of search [29]. ‘w’ is the inertia weight control or the rate at which the velocity varies and 

chosen between 0.4 to 0.9. The pseudo code of the PSO optimized algorithm is as given in the following: 

− Initialize population (Distance of antennas are populated (total six variable is populated))  

− Evaluate the populated particles (i.e distance for the lowest MSE (objective function))  

− Find the best fit value and corresponding set of distances (Gbest),  

− Repeat  

− Find the velocity values from (16)  

− Find new particles by (17)  

− Find the best fit value (MSE) and corresponding set of distances (Pbest)  

− Update the Gbest values Stop when total number of iterations is completed 
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In this paper as the reconfiguration is developed by the use of PSO the distance between the antenna 

are populated in order to get the optimal placement of the antenna until a minimized MSE occurs for the 

angle of arrival estimation. The DOA estimation is improved by two means in this implementation. One is 

the cumulative/hybrid basis vector implementation in the creation in the manifold matrix and the other one is 

the reconfiguration of the antenna positions that improves the DOA estimation still further. 

 

 

3. RESULTS AND DISCUSSIONS 

A novel antenna reconfigurable DOA estimation problem is solved using the PSO algorithm.  

A cumulative and hybrid basis vector framework is developed on the NNSBL algorithm and optimized for 

better DOA estimation using PSO. MATLAB based simulation is developed for the PSO based 

reconfiguration on the cumulative basis vector based NNSBL and hybrid basis vector based NNSBL DOA 

estimation. The antenna signal configuration for the proposed algorithm is as shown in the Table 1.  

 

 

Table 1. Antenna signal configuration for proposed DOA estimation algorithm 
Details Configuration 

Number of Antennas 6 

Antenna Array type Non-uniform 

Angle Range -π/3 to π/3 
Min to Max degrees -70 to 70 

Carrier frequency 280Hz 
Propagation velocity 360 

Interval of angle Searching 1 

Angles of source signals -54.8, -28.6 -9.2, 10.5 31.4, 56.7 

 

 

Cumulative basis vector based manifold matrix thus developed for the DOA estimation is as given 

in the Figure 1. As per the Table 1 there are six signals thus there are six ‘A’ matrix. The source signal that is 

generated which incidents on the antenna is as depicted in Figure 2. The signal is generated with the carrier 

frequency of 280 Hz. 
 
 

 
 

Figure 1. Cumulative basis vector-based manifold matrix 

 

 

 
 

Figure 2. Source signal incident on antenna 
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The noise is added with the source signal which is the white gaussian noise and the DOA estimation 

process is started. The cumulative basis vector based NNSBL (CBVNNSBL) method is compared with 

hybrid basis vector based NNSBL (HBVNNSBL) and found that the MSE is competitive with the 

HBVNNSBL method. From Table 2 it can be observed that the MSE is reduced in the HBVNNSBL 

compared to the CBVNNSBL method. 

 

 

Table 2. Antenna signal configuration for proposed DOA estimation algorithm 
MSE vs SNR PSO CBVNNSBL and PSO NNSBL 

Sl.No SNR MSE PSO CBVNNSBL MSE PSO HBVNNSBL 

1 -10  1.0799     0.9785 
2 -8     0.1985     0.0989     

3 -6     0.1259          0.0273          

4 -4     0.0355     0.02338 

5 -2     0.0342 0.02123 

 

 

It can be observed from the Table 2 that the MSE is almost zero for positive SNR values when PSO 

CBVNNSBL and PSO HBVNNSBL methods are used. The reconfiguration of the antenna has given better 

results than the advanced basis vector method. Figure 3 also confirms that the HBVNNSBL method is 

competitive to CBVNNSBL methods taken for discussion. 

For the same configuration the SNR vs Snapshots analysis is carried out. The MSE values obtained 

for variation in the snapshots are observed. It can be observed from the Table 3 that the MSE is almost zero 

for snapshot values when PSO-HBVNNSBL and PSOCBVNNSBL methods are compared. The 

reconfiguration of the antenna has given better results for PSO HBVNNSBL than the PSO CBVNNSBL 

method. Figure 4 confirms that the PSOHBVNNSBL method is competitive PSO CBVNNSBL. 

 

 

 
 

Figure 3. MSE vs SNR (PSO CBVNNSBL, 

PSOHBVNNSBL) 

 
 

Figure 4. MSE vs snapshots (PSO-CBVNNSBL, 

PSOHBVNNSBL) 

 

 

Table 3. MSE versus snapshots (PSO CBVNNSBL vs PSOHBVNNSBL with varying snapshots) 
MSE vs snapshot PSO CBVNNSBL and PSOHBVNNSBL 

Sl.No Snapshot MSE PSO CBVNNSBL MSE PSO HBVNNSBL 

1 50    1.0380     0.9376     

2 100    0.7298     0.6269     

3 150    0.3680     0.2689     
4 200    0.1850     0.0876     

5 250    0.1586 0.0787 

 

 

4. CONCLUSION 

From the results and discussion, the objective of minimization of MSE for the antenna 

reconfiguration by optimizing the distance between them is satisfactorily performed well. The 

competitiveness of the proposed algorithm with the CBVNNSBL and HBVNNSBL algorithm is evident from 
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the results thus obtained. Antenna reconfiguration using PSO algorithm on the DOA estimation of the signals 

on a non-uniform linear array is developed. MSE as the optimization parameter the antenna reconfiguration is 

formulated as a Meta heuristic optimization problem. Distance between the antennas is considered as the 

independent variable in the parameter optimization problem thus developed. The hybrid basis function based 

NNSBL method with the proposed antenna reconfiguration method with PSO algorithm showed better 

performance in the DOA estimation method proposed. The results are found to be satisfactory. 
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