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 Kenaf plant is a fibre plant whose stem bark is taken to be used as raw 

material for making geo-textile, particleboard, pulp, fiber drain, fiber board, 

and paper. The presence of plant pests and diseases that attack causes crop 

production to decrease. The detection of pests and diseases by farmers may 

be a challenging task. The detection can be done using artificial intelligence-

based method. Convolutional neural networks (CNNs) are one of the most 

popular neural network architectures and have been successfully 

implemented for image classification. However, the CNN method is still 

considered a long time in the process, so this method was developed into 

namely faster regional based convolution neural network (RCNN). As the 

selection of the input features largely determines the accuracy of the results, 

a pre-processing procedure is developed to transform the kenaf plant image 

into input features of faster RCNN. A computational experiment proves that 

the faster RCNN has a very short computation time by completing 10000 

iterations in 3 hours compared to convolutional neural network (CNN) 

completing 100 iterations at the same time. Furthermore, Faster RCNN gets 

77.50% detection accuracy and bounding box accuracy 96.74% while CNN 

gets 72.96% detection accuracy at 400 epochs. The results also prove that the 

selection of input features and its pre-processing procedure could produce a 

high accuracy of detection.  
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1. INTRODUCTION 

Kenaf plant (Hibiscus cannabinus L. Gaud) is a plant that can produce fibre taken from the bark. 

This plant was originally used as a raw material for burlap sacks to package agricultural product, the wood 

was used as fuel, and some countries consumed its leaves as vegetables or used as animal feed [1]. In 

Indonesia, this plant began to be developed commercially and was used as raw material for gunny sacks since 

1978/1979 [2]. Currently the use of Kenaf plants is growing, namely as a raw material for the manufacture of 

geo-textile, particle board, pulp, fibre drain, fibre board, and high quality paper [3]. The emergence of plastic 

is one of the factors in the decline in the development of this plant, which originally had an area of 26,000 ha 

to ±3000 ha. In addition, things that affect the decline in development are low production due to limited land 

suitable for development in Java and not yet optimally developed on marginal land, high prices for facilities 

used for production, relatively low fibre prices, high worker wages, and disturbance from pests and disease.  

https://creativecommons.org/licenses/by-sa/4.0/
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Pest and disease attack on kenaf plants is one of the obstacles that can hinder production. In 

Indonesia, pests and diseases that are rife in attacking Kenaf plants are sundapteryx, mites, and leaf blight. 

Symptoms of these pests and diseases appear on the leaves, stems, or roots that are identified by experts or 

farmers manually. The method of identifying each expert or farmer can be different which causes the 

accuracy of low disease detection and manual identification also takes longer because farmers have to come 

to the laboratory to find out the type of disease and to find out which drugs to use. In this study, the authors 

will identify Kenaf plant diseases based on a picture of the symptoms that appear on the leaves. This 

identification is to make is easier for researchers and Kenaf plant farmers to identify a disease quickly and 

precisely. 

Several studies have been conducted by using classification methods to detect plant diseases. These 

methods include back-propagation neural network that achieves 91% accuracy [4] and 92% accuracy [5], and 

extreme learning machine which gets 66.67% accuracy [6] and 89.19% accuracy [7]. Support vector machine 

is used which gets 97.6% accuracy [8] and 92.86% accuracy [9]. Fuzzy logic based method is also used such 

as in [10] which gets 88% accuracy. While the studies report satisfactory results, there is a possibility to 

increase the accuracy and also reduce the computational time using more powerful methods. 

Optimization techniques are also implemented to increase the performance of classification methods 

such as modified simulated annealing and extreme learning machine which gets 69.7% accuracy [11], 

particle swarm optimization and extreme learning machine which gets 79.92% accuracy [12], particle swarm 

optimization and back-propagation neural network that achieves 96.2% accuracy [13], dempster-shafer 

optimization using genetic algorithm which gets 87.096% accuracy [14], and fuzzy inference systems 

optimization using Quasi-Newton and genetic algorithms which gets 94% accuracy [15]. One of drawback 

using hybrid methods is it tend to require higher computational time. 

Convolutional neural networks (CNNs) as part of deep neural networks are one of the most popular 

neural network architectures and have been successfully implemented for image classification. For example, 

the implementation of CNNs gets 73% accuracy in [16], 96.3% accuracy in [17], 96.6% accuracy in [18], and 

96.6% accuracy in [19]. By using two architectures namely AlexNet and GoogLeNet, the deep convolutional 

neural network architecture achieves the top accuracy of 99.35% [20]. 

From the comparison of these methods, the convolutional neural network method was successfully 

in detecting with high accuracy. However, the CNN method is still considered a long time in the process, so 

this method was developed into RCNN by adding a selective search method to find the area of the object. 

Then the development of RCNN, namely fast region convolutional neural network (Fast RCNN) by changing 

the RCNN classification from SVM to region of interest pooling (ROI) Pooling for its classification [21]. The 

two methods were redeveloped become a regional proposal network (RPN) to make computing faster. In 

research on breast cancer detection cases based on MRI image [22], three methods are compared to the speed 

of the process and the RCNN method can detect an object within 49 second, Fast RCNN 2.3 second, and 

faster RCNN 0.2 seconds. In addition to these methods, which pay attention to fast processing times and get 

efficient result is the SSDMobileNet method. However, in the other research that compared the Faster RCNN 

and SSDMobileNet methods, Faster RCNN can detect it better by getting 95.57% accuracy [23]. 

Based on this explanation, we conduct research on the use of faster regional based convolutional 

neural network (Faster RCNN) method to detect kenaf plant diseases based on symptom images taken on the 

leave to help the performance of kenaf farmers in detecting symptoms of kenaf plant disease. As the selection 

of the input features largely determines the accuracy of the classification results, this study contributes by 

developing a pre-processing procedure to transform the kenaf plant image into input features of faster RCNN. 

A computational experiment is carried out to prove that the selection of input features and its pre-processing 

procedure could produce a high accuracy of detection. 

 

 

2. DATA AND METHOD 

The data used in study are obtained by direct observation in the kenaf plantation owned by PT. ABA 

Lamongan and Plantation owned by Balai Penelitian Tanaman Pemanis dan Serat (BALITTAS) 

Karangploso, Malang. Then the collected data are processed in several stages such as preprocessing, training, 

testing, and classification on the faster RCNN as shown in Figure 1.  
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Figure 1. Research diagram 
 

 

2.1.   Data acquisition 

The leaves that have been taken during the observation process are then processed to become digital 

data by taking pictures of the leaves using a scanner, cellphone camera, and pocket camera with white paper 

on the back of the leaf. The use of various type of cameras is to prove the robustness of the selection of input 

features and its pre-processing procedure for obtaining the high accuracy of classification. Shooting distance 

using the camera is about 20-25 cm. The result of data acquisition is shown in Figure 2.  

 

   

   
(a) (b) (c) 

 

Figure 2. These figures are; (a) scan result; (b) pocket camera result; (c) cellphone camera result 

 

 

2.2.   Preprocessing and training 

This stage is carried out after the sample has been in the form of digital data. The results of the leaf 

image have various sizes, 2548x2664 pixels from scanner, 3264x2448 pixels from cellphone cameras, and 

4320x3240 pixels from pocket cameras. An image of these sizes causes the process to run too long, so it 

takes the resizing process to make the computation process run faster and lighter. The dimensions of the 

image after resizing are 600x800 pixels. Images that have been reduced in size will be labeled by providing a 

bounding box for the target object and class name information for each image. There are 3 classes of diseases 

used, namely leaf blight, sundapteryx, and mites. Each disease class is shown in Figure 3. A same number of 

images are taken from each device.  
 

   

   
(a) (b) (c) 

 

Figure 3. These figures are; (a) leaf blight; (b) sundapteryx; and (c) mites 
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The training process is run on Tensorflow version 1.15 with the Python programming language on 

Google colaboratory using the faster RCNN algorithm with the Inception V2 architectural model. Study [24] 

developed this method by changing the region of selective search proposal in the previous method to region 

proposal network (RPN) to get the area that allows the object to be detected. The input from the RPN is the 

feature map resulting from the last convolution layer. The RPN gives the result of several bounding boxes, 

each of which contains two probability scores for the presence and absence of object at the location. Then 

these regions are reconstructed using ROI Pooling so that they can be used to classify objects in the proposed 

region and provide bounding boxes for these objects. The faster RCNN architecture is shown in Figure 4 and 

the RPN is shown in Figure 5.  

 

 

 
 

Figure 4. Faster RCNN architecture [25] 

 

 

 
 

Figure 5. Region proposal network [25] 

 

 

The training process begins with the input of image data that has been resized to 600x800. The 

image data is processed using the Convolutional Neural Network method. Then, the feature map of the 

convolution layer is mapped to the anchor box which will be labeled based on the predetermined ground 

truth. The result of the background or foreground labeling are determined based on the Intersection over 

Union (IoU) value which has threshold of 0.6. IoU is calculated by comparing the areas of the true bounding 

box (tbb) and predicted bounding box (pbb) [26] based on (1) with the illustration shown in Figure 6.  

 

𝐼𝑜𝑈 =  
𝑎𝑟𝑒𝑎 (𝑡𝑏𝑏ꓵ𝑝𝑏𝑏)

𝑎𝑟𝑒𝑎 (𝑡𝑏𝑏ꓴ𝑝𝑏𝑏)
> 0.6 (1) 
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Figure 6. Intersection over union [27] 

 

 

Anchor box with background labels is not processed by regressors because their true value is low. 

Regressor Loss Function used is smooth-L1 loss which is located in the upper left corner (x,y) with respect to 

the ground truth location (t,v) and the logarithm of the depth (w) and height (h) of the box [26] as shown in (2). 

 

𝐿𝑙𝑜𝑐 (𝑡𝑣, 𝑣) =  ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖
𝑢 − 𝑣𝑖)

𝑛
𝑖∈{𝑥,𝑦,𝑤,ℎ}  (2) 

 

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5𝑥2 𝑖𝑓 |𝑥| < 1

|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

From this process, a collection of regions with the label foreground is generated. The collection of 

regions with various sizes from the feature map that has been generated is then processed into ROI Pooling to 

be reduced to the same size. The results of the ROI Pooling are in the form of a proposal object which is then 

given a probability value to determine the class and determine the bounding box for each area of the object. 

The final result is an image with a bounding box containing the object in it and the class name of the object. 

 

2.1.   Evaluation matrics 

In this study, the evaluation matric used is mean average precision (mAP), precision, and recall. 

Precision describes the accuracy between data that is predicted to be true positive (TP) by the system with all 

positive predicted result, namely data that are predicted to be true positive (TP) and predicted false positive 

(FP). Recall is the success of the system in predicted true positive data from all data that are actually positive, 

namely data that are predicted to be true positive (TP) and predicted false negative (FN). The equations for 

precision and recall are shown in (4) and (5). The bounding box issued by the system is a prediction of the 

boundary of the ground truth and IoU coordinates which are used to set this limit based on the specified 

threshold. This research model considers all threshold in one metric using mAP. The mAP is a curve that 

describes precision-recall in one number. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

 

In addition, in this study a visual evaluation was also carried out to see the system performance as 

seen in 20 sample images, each class consisting of 5 images. Visual evaluation results in detection accuracy 

and bounding box accuracy calculated using (6) and (7) [26].  

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (
𝑇𝑃

𝑁
) 𝑥100% (6) 

 

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (
𝐵𝐵

𝑇𝑃
) 𝑥100  (7) 

 

Detection accuracy is to see the success of the system in detecting a class and the accuracy of the 

bounding box to see the accuracy of the bounding box in determining the detection location. The accuracy of 

detection is obtained by comparing the number of diseases detected correctly (TP) and the number of all 

diseases tested (N). While the accuracy of the bounding box is obtained by comparing the exact location of 

the bounding box (BB) and the number of diseases detected (TP).  
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3. RESULTS AND DISCUSSION 

The tests are divided into 8 scenarios based on the distribution of the amount of data, different 

labeling methods, and the distribution of data based on the use of different camera types for data collection. 

The test scenario is described in Table 1. The data used are 668 data with different numbers for each class. 

For scenario A and B divided into 532 for training data and 134 for test data. These data are collections of 

data taken using scanners, cellphone cameras, and pocket digital cameras. The purpose of this test is to see 

the effect of sharing data with different amounts of data for each class on the results of accuracy. Scenarios C 

and D contain the same amount of data for each class, namely 58 data for training and 15 data for the test. 

Scenarios E and F are tests based on data taken using a cellphone camera. For scenario G and H are tests 

based on data taken using a pocket digital camera. Each scenario uses 2 types of labeling, namely full 

labeling of 1 leaf and labeling of each leaf finger as shown in Figure 7.  

 

 

Table 1. Test scenario 
Scenario Data Labeling method 

A Using 80% for training data and 20% for testing data One leaf full data labeling 

B Using 80% for training data and 20% for testing data Labeling of data for each finger 
C Train and test data for each class are same, 58 data for training and 15 data for testing One leaf full data labeling 

D Train and test data for each class are same, 58 data for training and 15 data for testing Labeling of data for each finger 
E Train and test data based on the type of cellphone camera One leaf full data labeling 

F Train and test data based on the type of cellphone camera Labeling of data for each finger 

G Train and test data based on the type of pocket digital camera One leaf full data labeling 
H Train and test data based on the type of pocket digital camera Labeling of data for each finger 

 

 

  
(a) (b) 

 

Figure 7. There figures are; (a) full labeling and (b) labeling each leaf finger 

 

 

From several test scenarios that have been carried out, the values of loss, mAP, recall, detection 

accuracy and bounding box accuracy are obtained after being run as many as 10000 iterations. The loss value 

is used to find out how much error a model has. The smaller loss value indicated that the resulting model is 

getting better. The loss value in Figure 8(a) shows that all scenarios decrease with increasing iterations. 

However, the test scenario with full labeling has a lower loss value than the test scenario with labeling of 

each leaf finger.  

Mean average precision (mAP) is a value obtained from the comparison between ground truth 

bounding box and detected bounding box by the system. If the resulting value is higher, the accuracy is also 

getting better. Figure 8(b) shows that the resulting mAP value increases with increasing iterations. This 

shows that the model produced by the system can learn to be better. The test scenario with full labeling has a 

higher mAP value than the test scenario with labeling each leaf finger, but the labeling of each leaf finger 

moves more stably between iterations.  

Average recall (AR) is the average recall in all images, all classes, and all IoU thresholds with a 

maximum of 1 detection. In Figure 8(c), the AR graph shows the increase in value with each incremental 

iteration. For data from test scenario with full labeling, AR values are higher than test scenario with labeling 

each leaf finger. However, the movement of the value is more stable for the labeling of each leaf finger.  

The visual evaluation that is carried out resulted in detection accuracy and bounding box accuracy 

as shown in Table 2. The bounding box is considered correct when all four points match the ground truth. 

The difference in the results of the bounding box is shown in Figure 9. Figure 9(a) shows a bounding box 

with full labeling that has the correct position, Figure 9(b) shows the bounding box of the finger labeling 

indicating the correct position, and (c) shows several bounding boxes generated in 1 prediction. For that case, 

only 1 is considered true positive and the others are considered false positive. 
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Table 2. Accuracy results of visual evaluation 
Scenario Detection Accuracy Bounding BoxAccuracy 

A 64.16% 83.75% 
B 63.295% 96.74% 

C 77.502% 72.86% 

D 52.27% 94.51% 
E 15% 33.35% 

F 18.51% 53.33% 

G 10% 0% 
H 13.19% 39.23% 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 8. These figures are; (a) comparison of value loss; (b) mAP; (c) average recall 

 

 

  

 

(a) (b) (c) 
 

Figure 9. Bounding box; (a) full labeling that has the correct position; (b) finger labeling indicating the 

correct position; and (c) several bounding boxes generated in 1 prediction 

 

 

From the results of scenario testing, it is known that the results of the full labeling scenario get 

better results. On the other hand, the data that was tested based on different types of cameras used to capture 

the data gave poor results. This is because the amount of data used for training is very small, namely 110 data 

for all classes. 
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The best test scenario is the use of the same data sharing for each class, which use 58 data for 

training and 15 data for testing with full labeling tested into the CNN method with batch 32 and epoch 200 

using Google Colaboratory. Because the computation process is too long and the Google Colaboratory usage 

limit of ± 12 hours had passed since the first process, only 200 epochs are used. Then, 20 leaf images are 

tested and there are 5 images for each class. The test results obtained a detection accuracy of 45% through 

visual evaluation. This data has also been used in Fajri, Mahmudy and Yulianti's research [16] using the 

convolutional neural network method with a training process that is run on a local system of 400 epochs and 

the time taken is more than 7 hours. When tested on 40 data for each class, the system can predict 122 data 

correctly. So that it gets an accuracy of 72.96%. 

Based on the visual evaluation of the proposed scenario, it can be concluded that the best kenaf plant 

detection accuracy of 77.50% comes from the scenario of testing data with the same amount of data in each 

class and the labeling used is full labeling. While the best bounding box accuracy is 96.74% from the test 

scenario with the use of data divided into 80% for training and 20% for testing and the labeling used is the 

labeling of each leaf finger. The effect of differences in the amount of data for each class used during training 

can affect the accuracy of the results. From the test scenario between the use of the same amount of data and 

the different amount of data each class gets an accuracy of 64.88% and 63.72%. 

The effect of different labeling methods on training data can also affect the results of detection 

accuracy and bounding box accuracy. The detection accuracy for full labeling is on average 70.83% and for 

labeling each finger leaf an average of 57.78%. However, the average bounding box accuracy for full labeling is 

78.30% and the labeling of each leaf finger is 95.62%. From the accuracy results obtained, it can be concluded 

that data with full labeling can be detected better. Therefore, every detection given to correctly labeled data also 

has a bounding box with an accurate position as well. What makes the accuracy of data detection with the label 

of each leaf finger low can also be due to the calculation that each finger must be detected. Indeed, from some 

images, not all fingers were detected, but enough to represent the detection of its class. 

The distribution of data based on the different types of cameras used to capture the image less 

visible effect and produce poor accuracy. Because the amount of data captured by each type of camera is 

very small for training, it can lead to many images that are not detected properly or even many images are not 

detected at all. Therefore, an additional preprocessing mechanism is needed to produce relatively the same 

values for input from various types of cameras. When compared to CNN in the best test scenario, faster 

RCNN gets better results and faster computation time. Training via google colaboratory, faster RCNN can 

complete 10000 iterations for 3 hours. While CNN completed 100 epochs with a batch size of 32 and got a 

detection accuracy of 45%. When run through the local system, CNN achieved 72.96% accuracy at epoch 

400 for more than 7 hours. 

 

 

4. CONCLUSION 

This study proves that the faster RCNN provides better results than CNN. The faster RCNN gets 

77.50% detection accuracy and bounding box accuracy 96.74% while CNN gets 72.96% detection accuracy 

at 400 epochs. The results also prove that the selection of input features and its pre-processing procedure 

could produce a high accuracy of detection. Furthermore, the computational experiment proves that the faster 

RCNN has a very short computation time by completing 10000 iterations in 3 hours compared to 

convolutional neural network (CNN) completing 100 iterations at the same time.  
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