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 Reflection based analysis has been used in previous research for various 

objectives. Materials classification is one of them. Basically, each material 

consists of two types of reflections: surface and sub-surface. To separate 

these two reflections, polarized light could be applied. Previously, multi-

reflections characteristics were analyzed using polarized light to classify 

objects such as between metals and non-metals. However, no trial has been 

done using the same method to distinguish real and fake faces that could be 

used to combat spoofing attempts in face biometric system. Since human 

skin is multi layers structure, it also produces multi reflections. In this paper, 

driven by the theory, surface and sub-surface reflections of both genuine 

human face and paper face mask were statistically examined. In addition, 

iPad displayed face images were also used as spoofing attempts. Images of 

genuine and spoofing faces were captured using polarized light under two 

different polarization angles: 0 and 90 degrees. Each angle captured images 

with surface and sub-surface reflections, accordingly. Those reflections were 

analyzed based on the mean, standard deviation, skewness and kurtosis. 

Modality distribution of each image was also studied using another method 

called the bimodality coefficient (BC). From the results, it is not possible to 

distinguish between genuine face and printed photos because of the multi 

reflections’ similarities. However, iPad displayed face images have been 

successfully identified as spoofing trials. 
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1. INTRODUCTION  

Biometric is an authentication technique that rely on measureable physical characteristics that can 

be automatically detected. There are several types of biometric identification schemes such as individual’s 

unique fingerprints, iris analysis, the analysis of facial characteristics and also the analysis of a person’s 

voice. The selection of any biometric trait depends on the purpose of the application. As in face 

authentication system, the main purpose of the development is to identify valid users for security reasons. 

Implementation of face biometric system can be widely seen in airports all around the world. However, the 

system could be easily spoofed by an impostor with no difficulty. The impostor can obtain a photo of an 

authorized person, plays a video, or display a 3D model such as a face mask which mimics a valid individual, 

in front of the sensor to gain access [1]. This vulnerability of face-based security system has encouraged 

various studies and preventive measures among biometric community. 

https://creativecommons.org/licenses/by-sa/4.0/
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Spoofing face countermeasure that relies on liveness and motion-based analysis is no longer 

relevant. liveness-based anti-spoofing detection which detect eyes and lips movements have been tricked 

with perforated mask in the eyes and mouth. While for motion-based countermeasure, it can be easily 

challenged by placing a recorded video in front of the camera. Another face anti-spoofing method which is 

based on reflectance properties has driven more studies towards this analysis. Since face masks are made of 

various types of materials, characteristics of each material which provide vital information can be used as 

classification parameters. As in [2], a reflectance-based analysis on texture images from a 2D+3D face mask 

was introduced. Images of 3D face mask were decomposed into illumination and reflectance components. 

The results reported that 3D face mask reflectance component is higher than the real face.  

Another study presents multispectral reflectance using multispectral lighting to discriminate between a 

genuine face, a photo face and variety of face masks made of plastic, silica gel, paper, plaster and sponge [3]. 

Different wavelengths were tested on each material and from the analysis, both wavelengths of 850nm and 1450 

nm produced the most discriminative values. In another study [4], two discriminative wavelengths (685 and 850 

nm) were selected after examining the albedo curves of the forehead region of facial skin and mask materials. 

At these two light wavelengths, greater reflectance contrast has been achieved between a genuine facial skin and 

2D images. In oder to find the presence of human skin, a method based on spectroscopy was employed [5].  

The processing method was divided into two regions known as visible light (VIS) and near-infrared (NIR). In 

VIS, YCbCr colour space was used to specify pixel whose colour is similar to skin. While in NIR, the 

reflectance difference in two different wavelengths of each image was used to determine human skin. 

Over the last 20 years, classifying materials have already been done by using polarized light. 

Various experiments were done to proof that reflection properties of each object may be used as classification 

method [6]. In addition, diffuse and specular reflections can be separated using polarized light by adjusting 

the polarization angles. A year later, a polarization based method was introduced to discriminate between 

metal and dielectric surfaces based upon Fresnel reflectance theory [7]. According to this theory, the specular 

component of reflection is assumed to be higher than the diffuse reflection component. 

Popularity of polarization-based techniques has increased since then, notably in differentiating 

materials. In 2011, an image sensor called complementary metal-oxide-semiconductor (CMOS) was 

developed to identify metal and dielectric surfaces [8]. Degree of polarization for plastic surface was higher 

compared to aluminium surface. Another study using polarized light has been done to classify among 

transparent and opaque objects [9]. Methodologies such as Stokes degree of polarization and polarization 

Fresnel ratio were presented. The results showed that the degree of polarization of transparent object was 

higher than opaque objects for most of incident angles.  

In oder to differentiate genuine human skin and other materials, property of human real skin can be 

manipulated. For instance, human skin texture consists of three layers structure which are known as the 

epidermis layer, the dermis layer and the fat layer [10]. Therefore, skin produces more than one reflection 

which are named as surface and sub-surface reflections. Theoritically, these could be used as a classification 

feature between human skin and fake face. Thus, polarized light could be used for this purpose. Previously, a 

study using polarized light was implemented to compare between visible light images and polarized images 

of human skin with multiple diseases [11]. Based on the study, polarization images visualized the disruption 

on skin surface such as skin cancer based on the surface and sub-surface reflections analysis.  

A polarization imaging device was demonstrated to monitor lights transmitting through healthy 

breast tissue and breast tissue with cancer [12]. In another study, Stokes values of images obtained under 

parallel polarized light are related to human skin characteristics [13]. Thus, the finding was used to evaluate 

dermatologic diseases. In 2012, the advantages of polarized light were manipulated to classify skin into 

several age groups [14]. As the results, surface reflection of younger skin is higher compared with older skin. 

In view of several previous works that has been mentioned so far, it is undeniable that polarization-

based technique can be implemented as one of anti-spoofing techniques in face recognition systems. Thus, in 

this paper, multi-reflections of real face, printed photo and iPad displayed images were separated and 

statistically analysed. This paper is organized in several sections. Section 2 lists several theories that drive 

toward this research. In section 3, research method is presented. In section 4, experimental results are 

discussed. Finally, conclusion and future work are provided in section 5. 

 

 

2. RESEARCH THEORY 

2.1.   Human skin’s structure 

To detect fake faces in a face biometric system, it is vital to understand the characteristics of 

genuine human skin. One of them is skin surface reflections. Basically, human skin structure has three layers 

which are epidermis, dermis and fat layers [15]. The outmost layer is called the epidermis that contains 

melanin which act as absorption and scattering agents. Skin colour contributes to the amount of melanin. 
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Dark skin has more amount of melanin compared to fair skin colour [16]. Dermis, the second layer is a thick 

layer underneath the epidermis. The deepest layer is made of fat and connective tissues. Figure 1 illustrates 

the structure of skin layers which was depicted from [17]. 

 

 

 
 

Figure 1. Human skin’s structure 

 

 

As can be seen in Figure 1, skin contains of multilayers structures. Because of this, skin produces 

more than one reflection. When normal light beam strikes on skin surface, part of the incidence light is 

reflected at the air-skin surface. This happens due to the different in index of refraction of each medium. 

Figure 2 shows the reflections of normal light beam when it strikes on skin surface. From Figure 2, it can be 

seen that particles like melanin, collagen and haemoglobin act as scattering and absorption agents on the light 

wave that penetrates through the layers. 

 

 

 
 

Figure 2. Reflections when lights hit human skin surface 

 

 

2.2.   Printed photo paper’s structure 

Photo attacks are usually happened when a photograph of a legitimate user is presented in front of a 

face biometric system as attempts to gain access. Imposters used paper mask as spoofing attacks because of 

some basic reasons. First, it is easy to get a photo of any legitimate users either by downloading from related 

social media websites or applications. Next, photos can also be taken by an impostor using digital or video 

camera. Those photos can be easily printed and used as spoofing attempts. Because of low cost and 

affordable, paper mask is actually a popular choice as spoofing attacks among imposters.  

Similar as other materials, paper also has its own physical properties. It is necessary to study the 

properties of a piece of paper before proceeding in examination of polarized reflection between real face and 

photo attacks. Basically, paper is made of cellulose fibres, a complex carbohydrate consisting of more than 

3,000 glucose units [18]. Paper has four important optical properties which are brightness, colour, opacity, 

and gloss [19]. According to [20], matte paper has low reflection property. Most of lights that hit matte paper 

is absorbed, only a small amount is reflected. The absorbed light is diffused by the paper before re-emerged 
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to the air. Amount of the reflected light is also affected by the inks printed on the paper. In an investigation, 

light which strikes on the black dots is absorbed while the remaining is diffused by the paper [21].  

Generally, it seems that human skin and coloured printed paper have similar reflection properties. Both 

produce more than one reflection: surface and subsurface (diffuse) reflections. Because of this, it can be assumed 

that the analysis to differentiate between real face and printed photo will experience a more intense challenge.  

 

2.3.   iPad screen displayed image 

iPad screen is a flat display panel or basically known as a liquid-crystal display (LCD). Liquid 

crystal does not emit light directly, instead it use backlight or reflector to produce images in color or 

monochrome. The backlight emitted from the screen is polarized. Light waves interference might occur if 

two or more light waves meet. Polarized light emitted from iPad screen should be perpendicular to the 

polarization axis of light source. Thus, the traveling perpendicular light wave is stopped by a polarizer from 

transmitting through. The camera captured image at 900 polarization angle without any light transmitted. This 

is a significant positive correlation between lights emitted from iPad screen and the polarization angle. The 

differences between real face and iPad displayed image at 900 polarization angle can be used to discriminate 

real face and the iPad attack.  

 

 

3. RESEARCH METHOD 

3.1.   The polarization imaging system 

Since there is no polarized images dataset that is publicly available, polarized images of human 

faces and printed photos used in this research were self-collected. The data were collected using own-

developed imaging system similar to an imaging system introduced in [22]-[24]. Figure 3 illustrates the 

experimental setup used in to capture images in this study.  

 

 

 
 

Figure 3. The polarization imaging setup 

 

 

In Figure 3, two table lights were placed 80cm each to the right and left of the camera. The lights 

were placed to light up the experimental subjects at an angle of 450. Each of them was coupled with a linear 

polarizer sheet, labelled as P2 and P3. Both polarizers were aligned in parallel position to each other at the 

same polarization axis. This setup will let the table lights wave travelled in the same direction towards the 

subject. The camera used in this experiment was Samsung Full HD camera, placed 80cm in front of the 

subject. A linear polarizer made of glass, P1, coupled with an angle rotator, was placed in front of the camera 

lens. An angle rotator was used to adjust the polarization angles during the dataset recording process.  

 

3.2.   Surface and sub-surface images’ dataset 

Polarized image captured under parallel polarization consists both surface and subsurface  

reflections [14]. Image with only subsurface reflection can be recorded under 900 polarization angle. For this, 

polarized image under 900 polarization angle is subtracted from polarized image recorded under parallel 

polarization. In this study, polarized image captured under 900 polarization angle is denoted as Img90 while 

polarized image captured under parallel polarization is labelled as Img0. Any image with surface reflection is 

known as S1 which is one of the Stokes components. Figure 4 listed samples of Img90 and S1 of the real and 

fake faces available in the self-collected dataset. There are two new datasets, namely as face-photo-spoof 

(FaPs) dataset and Face-iPad dataset. In FaPs dataset, there are 37 genuine faces were recorded randomly 

selected among the faculty members. They were then generally classified into three groups: 26 Asian; 4 

Black; and 7 Caucasian. Meanwhile, printed photos of each subject were added to the FaPs dataset. In 
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another dataset called Face-iPad dataset, there are five females and three males of two skin colours: Asian 

and Caucasian. Images of each subject were captured and digitally stored to be later displayed as spoofing 

attempt.  

As shown in Figure 4, it is quite clear that S1 images between real face, printed photo and iPad 

displayed images are significantly different. However, the subsurface images represented by Img90 are 

relatively similar between the real face and printed photo. For Img90 of the iPad displayed face shows total 

different compared to Img90 of the genuine face. These images were then statistically analysed.  
 

 

   
 

Figure 4. The surface (S1) and subsurface (Img90) images 
 

 

4. RESULTS AND DISCUSSION 

Results of this research is presented and discussed in several sub sections. Since the main objective 

is to study surface reflection properties by using statistical measures, each measure is explained in details in 

sub section accordingly.  

 

4.1.  Mean, standard deviation, skewness and kurtosis 

In this section, reflection properties for both S1 and Img90 images of each genuine and fake faces were 

statistically analysed. Figures 5 and 6 present the statistical results of S1 and Img90 images of each subject, 

respectively. As can be seen in Figure 5, there is a significant difference between real faces and iPad displayed 

faces, measured by the mean and standard deviation. In contrast, skewness and kurtosis of these two subjects are 

similar to each other. Surprisingly, none of these measures shows significant different between real faces and 

printed photo faces. Data in Figure 5 can be compared with statistical data of subsurface images in Figure 6.  
 
 

 
 

Figure 5. Surface image, S1 of real and fake faces’ statistical analysis 
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From Figure 6, it can be seen that mean and standard deviation scores between real faces and iPad 

faces are significantly different. Despite a slight mean intensity difference of Img90 between real and photo 

faces, no other differences were found in the standard deviation, skewness and kurtosis measures. To further 

examine the distribution of S1 and Img90 for the real faces and the two fake faces, histograms of each subject 

was plotted and presented in Figure 7. As displayed in Figure 7, S1 images for the real face and printed photo 

face are assumed to have unimodal distributions whereas iPad displayed face images has bimodal distribution. 

In contrast, Img90 for the iPad face shows unimodal distribution while the real and photo faces indicate bimodal 

distributions.  

 

 
 

Figure 6. Subsurface image, Img90 of real and fake faces’ statistical analysis 

 

 

 
 

Figure 7. Histograms of the S1 and Img90 images 

 

 

4.2.   The bimodality coefficient (BC) 

To measure modality of a distribution, the bimodality coefficient (BC) was used as the second 

emasure in this study. Values of the BC ranged from 0 to 1. Any empirical values that us more than 0.555 

suggesting bimodal distribution [SAS Institute, (1989)]. Otherwise, the modality of distribution is classified 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Face spoofing detection using surface and sub-surface reflections analysis (Azim Zaliha Abd Aziz) 

195 

as unimodal. The bimodality coefficient algorithm was measured using (1) as proposed by [25]. Modality of 

distributions for all S1 and Img90 images in the FaPs and Face-iPad datasets were measured and the results are 

compared in Figure 8.  

 

 (1) 

 

Where = skewness (x,0); = kurtosis (x,0) – 3; and n = sample size. 

 

 

 
 

Figure 8. S1 and Img90 prediction scores based on the BC 

 

 

From the data in Figure 8, total number of fake faces were 45 consisting of 37 printed photos and 8 

iPad displayed faces. Overall, majority of the fake faces were shown to have unimodal distributions and have 

been identified as genuine faces. True positive rate (TPR) and false positive rate (FPR) were calculated by 

using (2) and the accuracy rate was measured using (3). Table 1 provides the detection rates of the BC 

algorithm for both S1 and Img90 distributions. As shown in Table 1, the accuracy rates of the BC for both S1 

and Img90 distributions are 62.20% in which more than half of the fake faces’ distributions were labelled as 

unimodal. Based on the analysis results, surface and subsurface distributions modality using the BC 

algorithm, seem not possible to be used as one of the face spoofing detection parameters. 

 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑃𝑅)  =  ∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) / ∑ 𝑟𝑒𝑎𝑙 𝑓𝑎𝑐𝑒 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑃𝑅)  =  ∑ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃) / ∑ 𝑓𝑎𝑘𝑒 𝑓𝑎𝑐𝑒 (2) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶) =
TP+TN

TP+FN+FP+TN
 (3) 

 

 

Table 1. Detection rates of the BC for S1 and Img90 
 TPR FPR Accuracy (AC) 

 in percentage (%) 
S1 91.89 62.22 62.20 

Img90 89.19 60.00 62.20 

 

 

5. CONCLUSION 

As stated in the Introduction, multi reflections properties of real face and fake faces could be 

manipulated as one classification method in spoofing face detection. Surface and sub-surface reflection of 

each material were differentiated using polarized light. However, the findings showed that real faces and 

printed photo faces consist similar reflections properties. Due to these similarities, it is difficult to distinguish 

between real faces and printed photo faces based on S1 and Img90 images. On the other hand, iPad attacks can 

be easily detected only by the mean values of S1 and Img90. Moreover, density of the iPad distributions mode 

was also significantly different from the genuine faces. The results of this study will now be compared to the 

findings of previous works: classification between plastic and aluminium object; and classification between 

transparent and opaque objects. Both results measured the degree of polarization (DOP) values of the materials. 

Several possible explanations can be listed for these results. The polarization of the reflected light depends on 

the properties of the object surface. In accordance to the surface properties, the difference between transparent 

and opaque objects is physically obvious. Transparent object such as glass not only allows light to transmit but 

also reflects light. The reflections from a transparent object have been reported to be mostly specular while an 
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opaque object’s reflections are diffused. As been discussed in section 2, the iPad screen was made of glass 

which is an insulator. Printed photos were obviously insulators. Apart from that, the three materials were 

opaque objects although the iPad screen was made of glass. Another similarity between the real face and 

printed photo is that both of them produce two types of reflections: specular and diffuse. In contrast, iPad 

does not reflect light but emits its own light. Despite these similarities, statistically, printed photos were 

unable to be distinguished from the genuine faces by using both surface and sub-surface reflection.  
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