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 Performance comparison of some weak signal detection techniques is 

introduced. This comparison is very necessary since different applications 

require different operating conditions such as signal-to-noise ratio (SNR), 

bandwidth, coherency, processing time and complexity. Three methods for 

detecting weak signals are considered. These are based on chaos theory, 

wavelet transform, and stocastic resonance. A detection algorithm based on a 

rectangular region in phase space plane is suggested in chaos method. The 

stocastic resonance method is considered in this research, as it is used for 
signal detection in underwater at a certain frequency. Simulation results 

obtained from MATLAB programs verify the studied methods giving an 

estimation of probability of detection and probability of false alarm versus 

SNR. 

Keywords: 

Chaos (Duffing oscillator) 

Discrete-wavelet-transform 

Signal-to-noise ratio 

Stochastic resonance 

Weak signal detection This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Sarah Sabah Mohammed 

Department of Electrical Engineering, Faculty of Engineering, Al-Mustansiriyah University 

Baghdad, Iraq 

Email: eema1036@uomustansiriyah.edu.iq 

 

 

1. INTRODUCTION  

Recently, there has been an increase in studies on detecting weak signals in a strong noise 

environment. A weak signal is a signal that has a negative signal-to-noise ratio, which means that the signal 

level is smaller than the noise level. Applications of weak signal detections include very long-distance 

communication, snooping purposes, pipeline leakage, seismic testing, acoustic telemetry systems, war fields, 

radar, sonar, fault diagnosis of mechanical system, industrial measurement and underground/underwater 

communication. The comparison between different detection techniques is based on the required SNR, 

bandwidth, coherency, processing time, and complexity. This comparsion is very necessary since the 

requirements in each application are different. 

One of the methods used to detect weak signals is chaos theory using Duffing equation. This 

equation is used to detect very weak signals based on the very high sensetivety of chaotic system [1]–[7]. 

However, detecting a weak signal without knowing the signal's information is a major problem that can be 

solved using wavelet transform. Wavelet can identify local signal properties and perform multiresolution 

analysis using scaling and translation in both time and frequency domains. It breaks down the signal plus 

noise into a succession of sub-bands with various spatial resolutions, frequency characteristics, and direction 

characteristics [8]–[16]. 

Stochastic resonance is a fascinating physical nonlinear phenomena that occurs when noisy signals 

have an increased signal-to-noise ratio (SNR) output under particular conditions. Since it is suggested by  

Benzi et al. [17], it has large interest in a wide range of research fields, including electrical, optical, physical, 

biological sciences, and as an advanced signal processing method [17], [18]. The effective SNR is increased by 

increasing the energy of weak signal and reducing noise energy at a certain resonance frequency [19]-[29]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In this paper, chaotic, wavelet, and stochastic resonance methods are implemented and compared. A 

suggestion to improve the performance of chaotic method is also introduced. Comparsions are made based on 

probability of detection and probability of false alarm for different SNR ranges. The remainder of the paper is 

organized as: Section 2 discusses some weak signal detection techniques; section 3 discusses the simulation 

results of the aforementioned techniques; section 4 gives some conclusions. 

 

 

2. SOME WEAK SIGNAL DETECTION TECHNIQUES 

2.1.  Chaotic detection system 

2.1.1 Basic model (Duffing Holmes oscillator) 

The main principle of detecting weak signals is based on Duffing-Holmes oscillator 2nd order 

differential as (1). 

 

𝑥′′ +  𝛾 𝑥′ −  𝑥 +  𝑥3 =  𝑑 𝑐𝑜𝑠(𝑡) (1) 

 

Where, 𝛾 is a damping ratio and 𝑑 𝑐𝑜𝑠(𝑡) is the periodic reference signal of the system, − 𝑥 +  𝑥3 is the 

nonlinear restoring force. After fixing 𝛾 value, 𝑑 can range from tiny to large values, and the system state can 

range from modest periodic motion to chaotic motion, and finally huge periodic motion. The phase transition 

from chaos to big periodic motion is employed in this research to determine whether there is any signal 

hidden in the noise [3], [4]. The value of d is fixed to dcr (dcr is a term that refers to a critical value), so the 

system is put into the critical state. As a result, the chaos system is on the edge of transitioning to periodic 

motion. The detected signal can be thought of as a deviation from the main sinusoidal driving force, 𝑑 𝑐𝑜𝑠(𝑡) 

(the reference signal). Despite the fact that noise can be very large, it can only influence the local trajectory 

on the phase plane diagram, not create phase transitions. When a signal s(t) has the same frequency as the 

reference signal, it is buried in noise [5]. As a result, if d exceeds dcr, a phase transition will occur, and the 

large periodic motion will draw it out of the background noise.  

The transformation from chaos to regularity is highly difficult if the difference in frequency between 

the weak signal and the reference signal is too large, and the degree of difficulty is nearly equal to the level of 

noise. This represents a single oscillator's selectivity, i.e. one oscillator can only detect its close frequencies. 

To detect signals with unknown frequencies, an array of oscillators must be utilized. The chaotic system has 

a sensitive dependence on initial conditions, which means that even if the initial condit ions are somewhat 

changed, the chaotic signals produced are extremely different. Time series and phase diagrams from the 

numerical solution of the Duffing-Holmes equation is shown in Figure 1. Figure 1(a) shows the chaotic 

motion while Figure 1(b) shows the great periodic motion. Hence, the detection model designed as (2). 

 

 

 
(a) 

 

 
(b) 

 

Figure 1. Time series and phase diagrams of chaotic system of (a) time series and phase diagram of chaotic 

motion and (b) time series and phase diagram of great periodic motion 
 

 

𝑥′′ +  𝛾 𝑥′ −  𝑥 +  𝑥3 =  𝑑 𝑐𝑜𝑠(𝑡) +  𝐼𝑛𝑝𝑢𝑡 (2) 
 

𝐼𝑛𝑝𝑢𝑡 =  𝑠(𝑡) +  𝑛(𝑡), 𝑠(𝑡) =  𝐴𝑐𝑜𝑠(𝑤𝑡) is the signal to be detected and 𝑛(𝑡) is additive white Gaussian 

noise (AWGN) with variance 𝜎2 and the SNR= 𝐴2/2σ2.  
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2.1.2 Detection model 

Often Lyapunov exponent (LE) method is used to specify the parameters of the system and also 

calculate the optimum threshold value to detect the weak signal. However, this method is complicated and 

takes a very long time in simulation. To solve this problem, another method called the rectangular-method is 

suggested. This depends on recognizing the detection from the phase-space plane. Figure 2 shows this 

rectangular window where Figure 2(a) shows the case of no detected signal while Figure 2(b) shows the case 

for signal being detected. If absolute of x(t) is less than k1 and absolute of x'(t) is less than k2 , the points will 

be inside a rectangle bounded by k1 and k2 , otherwise it will be outside this rectangle. Depending on the 

above conclusion, calculation is done to find the percentage of points inside the rectangular area to the total 

points introduced from the numerical solution. Then, the resulting values are compared with a threshold to 

determine if the signal is present or not. The threshold value is related to the probability of detection 𝑃𝑑 and 

the required probability of false alarm 𝑃𝑓𝑎. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Rectangular window in phase plane for chaotic system shape of (a) rectangular window for no 

detected signal and (b) rectangular window for signal is detected 

 

 

2.2.  Wavelet method 

The wavelet transformation is perhaps the best for multi-resolution analysis, as developed by Mallat 

[8]. The integral transformation in the wavelet transform, on the other hand, is obtained by expanding and 

shifting basic wavelet functions. The time-frequency signal may be processed since these functions are in 

time and frequency domains. The criterion and the set of scaled and shifted functions 𝑔𝑎,𝑏(𝑡) are satisfied by 

the wavelet transform, expressed as (3). 

 

𝑔𝑎,𝑏(𝑡) =
1

√𝑎
 𝑔(

𝑡−𝑏

𝑎
) (3) 

 

The scale parameter for scale transformation is 'a', and the shift parameter for shift transformation is 

'b', which becomes the wavelet's time domain central location. 1 √𝑎⁄  is the normalized constant, which 

ensures that the energy is consistent across all scale parameters. Using the transform coefficient W(a,b), the 

wavelet transform of function f(t) is given by (4). 

 

𝑊(𝑎, 𝑏) = ∫ 𝑓(𝑡) �̅�𝑎,𝑏(𝑡) 𝑑𝑡 =  
1

√𝑎
 

∞

−∞
∫ 𝑓(𝑡)

∞

−∞
 �̅� (

𝑡−𝑏

𝑎
)  𝑑𝑡 (4)  

 

The complex conjugate is represented by the overbar (�̅�). The wavelet transform involves time domain signal 

correlation with the wavelet and frequency domain filtering, and it provides high time resolution for high 

frequencies and high frequency resolution for low frequencies. The signal is filtered using wavelet transform 

in both time and frequency domains. Consider the relationship between the signal's time spread and the 

wavelet's time spread and select the right scale parameter to achieve the best response of the signal's 

transform coefficients.  

The wavelet packet transform is an extension of the discrete wavelet. It's employed in a variety of 

applications, including noise reduction. The outcome is a low pass (scaling function) and a high pass 
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(wavelet function) are calculated in one stage of the wavelet transform. The low pass result of the first level 

is a smoother version (has less noise level) of the original signal 𝑓(𝑡)  =  𝑠(𝑡)  +  𝑛(𝑡). Recursively, the low 

pass result becomes the input to the next wavelet layers, which calculate another low and high pass results as 

shown in Figure 3. The signal detection 𝑠(𝑡) in noise 𝑛(𝑡) is then calculated from the energy of the low-pass 

output of the last level and compared with a threshold value to decide the existence of the signal. Again, this 

threshold value is related to 𝑃𝑑 and the required 𝑃𝑓𝑎. 

 

 

 
 

Figure 3. Multi-level discrete wavelet implementation using filter bank 

 

 

2.3.  Stochastic resonance (SR) 

2.3.1 Basic model of bistable SR 

A stochastic resonance is a nonlinear event in a modulated bistable system or multistable system 

generated by periodic signals with additional noise. It is illustrated by the second-order nonlinear differential 

equation [23], expressed as (5). 

 

𝑥′′ + 𝛾 𝑥′ = −𝑉(𝑡)′ + 𝑠(𝑡) + 𝑛(𝑡) (5) 

 

Where γ is a damping factor. 𝑠(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑡) is the weak signal to be detected, where A and f0 are 

amplitude and driving frequency, respectively, 𝑛(𝑡) =  √2𝐷 𝜉(𝑡) with 〈𝑛(𝑡), 𝑛(𝑡 + 𝜏)〉 = 2𝐷𝛿(𝑡) stands for 

the noise, where D is the noise intensity, τ is time delay. V(x) is a potential function given by (6). 

 

𝑉(𝑡) =  −
𝑎

2
 𝑥2 +

𝑏

4
 𝑥4 , 𝑎, 𝑏 > 0 (6) 

 

In which 'a' and 'b' represent the bistable potential's barrier parameters. As shown in Figure 4, there 

are two stationary places that are both stable at ±𝑥𝑚 = ±√𝑎 𝑏⁄  and an unstable one at 𝑥0 = 0. The barrier 

height can be measured as ∆𝑣 = 𝑎2 (4𝑏)⁄ . The characteristic frequencies to the system are 𝑤𝑏 =

[𝑉′′(±𝑥𝑚)]
1

2 = √(2𝑎) and 𝑤0 = [𝑉′′(±𝑥0)]
1

2 = √(𝑎). Substitute (6) into (5), then (7). 

 

𝑥′′ = 𝑎𝑥 − 𝑏𝑥3 −  𝛾 𝑥′ + 𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑡) + √2𝐷𝜉(𝑡) (7) 

 

 

 
 

Figure 4. Bistable SR system potential V (x) 
 

 

The system model at (7) can be illustrated in Figure 5, where it can be seen that the measured of SR output 

x(t) is equal to a secondary integration operation and also equals to a secondary filtering operation. 
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Figure 5. The system model of the underdamped second-order SR 

 

 

2.3.2 The matching framework based on Kramers rate 

The Kramers rate rK is initially considered as the most important characteristic linked to noise 

intensity D and driving frequency 𝑓0. When a signal is periodic with suitable noise and a particle's mean 

passage time is equal to the half-period of the periodicical force given to the particle, the stochastic resonance 

phenomena occurs. The noise and signal are statistically synchronized, resulting in a mild periodic force. The 

transition particle probabilities agree with Kramers rate rk, which may be computed as follows [18], 

expressed as (8). 
 

𝑟𝑘 =
𝑤𝑏𝑤0

2𝜋𝛾
exp (−

∆𝑣

𝐷
) =  

𝑎

√2𝜋𝛾
exp (−

∆𝑣

𝐷
) = 2𝑓0 (8) 

 

Moreover, define a discrimination function, to the fitness of parameter analyzing 𝐹(𝑎, 𝑏, 𝐷, 𝛾, 𝑓0) as [23], 

expressed as (9). 
 

𝐹(𝑎, 𝑏, 𝐷, 𝛾, 𝑓0) =
𝑎

√2𝜋𝛾𝑓0
exp (−

𝑎2

4𝑏𝐷
) (9) 

 

Clearly, when 𝐹 = 1 is examined in conjunction with both signal frequency and noise intensity, the 

SR phenomenon occurs, and we get the best relationship between noise intensity and system characteristics. The 

parameter a=1 can be considered as a modest parameter constraint because the noise intensity is only varied in a 

narrow range. Then we can have the relationship between 'a', 'b', and 𝛾 as shown in (10), (11), and (12). 

 

𝐷𝑜𝑝𝑡 =
𝑎2

4𝑏
= ∆𝑣 (10) 

 

𝑏 =
𝑎2

4𝐷
 (11) 

 

 𝛾 =
𝑎2

2√2 𝜋 𝑓0 𝑒
 (12) 

 

Solving (7) for x(t) using Runge Kutta method (RK4), the energy of x(t) is calculated and compared with a 

threshold to determine if the signal is present or not. Again, this threshold value is related to 𝑃𝑑 and the 

required 𝑃𝑓𝑎. 

 

 

3. SIMULATION RESULTS 

3.1.  Detection by Duffing-Holmes’s oscillator 

Intuitively, the damping factor γ and driving force d play a critical role to obtain the periodic 

movement necessary for the signal detection process and to achieve the desired optimum output. Therefore, 

the optimal factors are γ=0.5 and dcr=0.824322 corresponding to the optimal output with noise intensities 

with initial conditions 𝑥(0) = 0, 𝑥′(0) = 1. To check the chaotic behavior of the system, AWGN noise 

𝑛(𝑡) = 𝜎 𝑟𝑎𝑛𝑑𝑛 (MATLAB m-file function for Gaussian noise) only is added to the equation where σ 2 is 

the noise variance, and (1) will be (13). 

 

𝑥′′ +  𝛾 𝑥′ −  𝑥 +  𝑥3  =  𝑑 𝑐𝑜𝑠(𝑡 )  +  𝜎 𝑟𝑎𝑛𝑑𝑛 (13) 

 

And the system shows a chaotic behavior. However, if the signal to be detected 𝑠(𝑡) = 𝐴𝑐𝑜𝑠(𝑡), is added as 

in (2), the system will show periodic response due to 𝑠(𝑡). 
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The procedure of obtaining probability of detection (𝑃𝑑) versus SNR is achieved by repeating this 

simulation for 1000 times or more. The decision of detection is based on the rectangular window shown in 

Figure 2. Figure 6 and Figure 7 show system response due to noisy input for SNR=-20 dB and -55 dB 

respectively. Figure 6(a) shows the pure signal, Figure 6(b) shows the noisy signal for SNR=-20 dB, Figure 

6(c) shows the phase representation and Figure 6(d) shows the phase representation for output Duffing 

oscillator. Also Figure 7(a) shows the pure signal, Figure 7(b) shows the noisy signal for SNR=-55 dB, 

Figure 7 (c) shows the phase representation and Figure 7(d) shows the phase representation for output 

Duffing oscillator. 

 

 

  

(a) (b) 

  

  

(c) (d) 

 

Figure 6. Detection weak signal using chaotic system at SNR=-20 dB of: (a) pure signal wave, (b) noisy 

signal wave, (c) phase representation for noisy signal, and (d) phase representation for the output of Duffing 

oscillator 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 7. Detection weak signal using chaotic system at SNR =-55 dB of: (a) pure signal wave,  

(b) noisy signal wave, (c) phase representation for noisy signal, and (d) phase representation for the output of 

Duffing oscillator 

 

 

The performance of probability of detection versus SNR under different 𝑃𝑓𝑎 is given in Figure 8. 

The input SNR varies from -80 dB to 0 dB. For 𝑃𝑓𝑎=1%, 𝑃𝑑  ≈100% down to -75 dB while 𝑃𝑑=97% at SNR=-

80 dB. For 𝑃𝑓𝑎=0.5%, 𝑃𝑑=91% at SNR=-80 dB. To further evaluating the detection performance, the receiver 

operating characteristic (ROC) curves at SNR=-75 dB and -80 dB are shown in Figure 9. It is noted from 

previous figures that chaotic method can detect very very weak signals. Hence, the SNR required may be 



      ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 2, May 2022: 732-742 

738 

reduced down to -80 dB due to high sensitivity of chaotic system. The only weak point here is it's 

dependency on the operating frequency (coherent detection). 

 

 

  
  

Figure 8. Probability of detection versus SNR using 

Duffing oscillator 

Figure 9. ROC curve using Duffing oscillator under 

SNR=-75 dB and -80 dB 

 

 

3.2.  Detection by wavelet method 

By using Debauches wavelet with L-levels of decompositions, the effectiveness of decomposition 

and reconstruction depends on the number of levels. Figures 10 shows system response to a noisy input 

signal for SNR=-3 dB. In Figure 10(a) a pure signal is shown. In Figure10(b) a noisy signal is shown after 

filtering. Figure 10(c) shows the case when L=2. Figure 10(d) shows the case when L=3. Figure 10(e) shows 

the case when L=4. Figure 10(f) shows the case when L=5. 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 10. Detection weak signal using discrete wavelet transform (DWT) at SNR =-3 dB for:  

(a) pure signa wave, (b) noisy signal; signal wave after filtering, (c) the case when L=2, (d) the case when 

L=3, (e) the case when L=4, and (f) the case when L=5 

 

 

Figures 11 shows system response to a noisy input signal for SNR=-13 dB. In Figure 11(a), a pure 

signal is shown. In Figure 11(b) a noisy signal is shown after filtering. Figure 11(c) shows the case when 

L=2. Figure 11(d) shows the case when L=3. Figure 11(e) shows the case when L=4. Figure 11(f) shows the 

case when L=5. These figures display pure signal with number of samples N=12000 and noisy signal as 

shown in subplot Figure 11(a) and (b). Subplots Figure 11(c)-(f) show the signals after applying wavelet 

decomposition process to coefficient details and approximate details, for different levels L=2,3,4,5 

respectively. It is clear that the noise level decreases with the increase in the wavelet levels and in each stage 

the time is divided by two. 
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(a) (b) 

  

  

(c) (d) 

  

  
(e) (f) 

 

Figure 11. Detection weak signal usind DWT at SNR=-13 dB for: (a) pure signal wave, (b) noisy signal, 

signal wave after filtering, (c) the case when L=2, (d) the case when L=3, (e) the case when L=4, and  

(f) the case when L=5 

 

 

The performance of 𝑃𝑑 versus SNR for different levels under different 𝑃𝑓𝑎 is given in Figure 12. The 

input SNR varies from -20 dB to 0 dB. As an example, at L=4, the variation of SNR down to -16 dB gives 

𝑃𝑑 ≈100% and at SNR=-18 dB gives 𝑃𝑑=93% at 𝑃𝑓𝑎=1%. Less 𝑃𝑑 is obtained with the value of 65% at the 

same SNR and with 𝑃𝑓𝑎=0.1%. To further evaluating the detection performance, the receiver operating 

characteristic curves under low SNR of SNR=-15 dB and -18 dB are shown in Figure 13 for L=3,4,5 

respectively. It is noted from previous figures that the wavelet technique can detect signals at SNR down to -

20 dB. However, it can detect weak signal irrespective of the operating frequency (noncoherent detection). 

This is considered as an advantage over previous chaotic method. 

 

 

  
  

Figure 12. Probability of detection versus SNR using 

DWT with three levels L=3, L=4, and L=5 according 

to 𝑃𝑓𝑎 

Figure 13. ROC curves of detection using DWT 

under SNR=-15 and -18 dB, with levels L=3, L=4, 

and L=5 

 

 

3.3.  Detection by stochastic resonance method 

The denoising performance of the  tochastic resonance approach is presented in this subsection. 

First, (7) is used to find x(t) using a numerical technique, which is based on fourth order Runge-Kutta method 

(RK4). Figure 14 shows the timing waveforms for SR method. In Figure 14(a), the tested signal is a sinusoid 

with amplitude A=1 volt and normalized frequency fo=1 Hz, and the data length (number of samples) is 

N=100000. As seen in Figures 14(b), an AWGN with SNR=-5 dB is added to the pure signal. The system 

response is shown in Figure 14(c). Figure 15 is the same as Figure 14 but with an SNR of -15 dB. The 

detection probability of the  tochastic resonance method is based on energy of the calculated x(t). 

Figure 16 shows the detection performance of SR method in terms of 𝑃𝑑. The performance of 𝑃𝑑 

versus SNR under different 𝑃𝑓𝑎 are given in Figure 16(a). The input SNR varies from -25 to 0 dB. As an 
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example, at SNR=-15 dB with 𝑃𝑓𝑎=1% then 𝑃𝑑 =96%. To further evaluating the detection performance, the 

ROC curves at SNR=-15 dB, -18 dB, and -21 dB are presented in Figure 16(b). 

 

 

 
(a) 

 

 
(b) 

 

 
© 

 

Figure 14. Detection of weak signals using SR 

method with SNR=-5 dB of: (a) pure signal wave,  

(b) noisy signal wave, and (c) SR output wave 

 
(a) 

 

 
(b) 

 

 
© 

 

Figure 15. Detection weak signals using SR method 

with SNR=-15 dB of: (a) pure signal wave,  

(b) noisy signal wave, and (c) SR output wave 

 

 

  
(a) (b) 

 

Figure 16. Performance of SR of (a) probability of detection versus SNR using SR method and (b) ROC 

performance curves of detection using SR method under SNR=-15 dB, -18 dB, and -21 dB 

 

 

3.4.  Comparison between previous techniques 
Table 1 demonstrates a comparison of the SNR requirement for Pd=0.9 for Pfa=0.001, 0.005, and 

0.01 for each signal detection techniques. One can easily notice that for Pd = 0.9, the Duffing osillator method 

is much better than wavelet mathod and stocastic resonance. Table 2 demonstrates a comparison of the 

coherency requirement and the order of the SNR required for detection. 

 

 

Table 1. A comparison of SNR requirement at 𝑃𝑑=0.9 to keep 𝑃𝑓𝑎 at a specific value 
Parameters Duffing oscillator Wavelet transform L=4 Stocastic resonance 

SNR required for Pfa = 0.001 -78.2 dB -15.1 dB -15.5 dB 

SNR required for Pfa = 0.005 -82.7 dB -17.4 dB -15.9 dB 

SNR required for Pfa = 0.01 -89.6 dB -18.2 dB -16.2 dB 
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Table 2. A comparison of coherency and SNR requirements 
Parameters Duffing oscillator Wavelet transform L=4 Stocastic resonance 

Coherency  Yes No Yes 

SNR range in dB (Pd >0.9) 0 down to -80  0 down to -18  0 down to -16 

 

 

4. CONCLUSION 

In this paper, some of the techniques for detecting submerged weak signals in a stronge background 

noise are discussed. From the aforementioned, chaos theory works with very large noise levels, but this 

ability is canceled when the frequency is changed. As for wavelet transform, it is an easy-to-implement 

method for unknown signals, but its efficiency is limited by the problem of determining the basis wavelet. 

Finally, in this paper, stochastic resonance method is considered that gives good results compared to 

wavevlet transform, but it only works at a certain resonance frequency. 
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