
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 25, No. 1, January 2022, pp. 281~290 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v25.i1.pp281-290      281  

 

Journal homepage: http://ijeecs.iaescore.com 

Slantlet transform used for faults diagnosis in robot arm 

 

 

Muhamad Azhar Abdilatef Alobaidy1,2, Jassim Mohammed Abdul-Jabbar1, Saad Zaghlul Al-khayyt2 
1Department of Computer Engineering, College of Engineering, University of Mosul, Mosul, Iraq 

2Department of Mechatronics Engineering, College of Engineering, University of Mosul, Mosul, Iraq 

 

 

Article Info  ABSTRACT 

Article history: 

Received Aug 20, 2021 

Revised Oct 24, 2021 

Accepted Nov 25, 2021 

 

 The robot arm systems are the most target systems in the fields of faults 

detection and diagnosis which are electrical and the mechanical systems in 

many fields. Fault detection and diagnosis study is presented for two robot 

arms. The disturbance due to the faults at robot's joints causes oscillations at 
the tip of the robot arm. The acceleration in multi-direction is analysed to 

extract the features of the faults. Simulations for planar and space robots are 

presented. Two types of feature (faults) detection methods are used in this 

paper. The first one is the discrete wavelet transform, which is applied in 
many research's works before. The second type, is the Slantlet transform, 

which represents an improved model of the discrete wavelet transform. The 

multi-layer perceptron artificial neural network is used for the purpose of 

faults allocation and classification. According to the obtained results, the 
Slantlet transform with the multi-layer perceptron artificial neural network 

appear to possess best performance (4.7088e-05), lower consuming time  

(71.017308 sec) and higher accuracy (100%) than the results obtained when 

applying discrete wavelet transform and artificial neural network for the 

same purpose. 
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1. INTRODUCTION 

Robots that being developed in recent years and are now utilized in number of fields. They have 

been used in industries, militaries, medical equipment, and many other fields [1]. For most of these 

applications, it is recommended that the used robot must be safe and precise as much as possible. That 

because any failure in a robot can have a significant impact on the performance during work, resulting in 

poor results [1]–[4]. Condition monitoring for robots differs from that simple rotating gear due to their 

extremely sophisticated mechanics. To fulfil any given scenario for a robot, each joint in the robot's body will 

move at different angular speeds (and accelerations), demand different torques, and rotate at different angles. 

The mechanical or electrical impulses sent by the robot will be transitory, lasting only a few seconds. The 

signals generated by malfunctioning parts are non-stationary [5]. The fault diagnosis method normally 

consists of three steps: fault identification, which may indicate the presence of irregular behaviours, fault 

isolation, which determines the location and form of the failure that occurs, and finally fault analysis, which 

reveals the relationship between failure causes and symptoms [6], [7] 

In 2011, Eski et al. [8] published a study that described an experimental investigation on a robot 

manipulator by using a neural network to analyse the vibration condition on joints. Each joint's noise and 

vibration were calculated. Then, to predict the servicing time, the relevant parameters are checked with a 

neural network predictor. Two types of neural predictors are used to find a stable and adaptive neural 

https://creativecommons.org/licenses/by-sa/4.0/
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network structure. These two methods enhanced performance, allowing for the adoption of a rotated binary 

neural network (RBNN) form to forecast vibrations on industrial robots. In 2016, Jaber and Bicker [9] 

developed an intelligent condition monitoring system for industrial robot joints to detect the most common 

bearing failures, such as inner/outer race bearing faults. For precise defect diagnosis, the discrete wavelet 

transform (DWT) was utilized to perform time-frequency signal analysis. After that, an artificial neural 

network (ANN) was applied to classify the faults. Using the PUMA 560 robot, an experimental investigation 

setup was carried out. The standard deviation features were computed for multi-band frequency levels and 

used to design, train, and test the proposed neural network. The created approach was extremely accurate in 

diagnosing a variety of seeded robot defects. Lin and Boldbaatar [10] proposed a model-based fault 

accommodation control technique for biped robot locomotion with unknown uncertainties and faults, which 

relied on a recurrent wavelet elman neural network (RWENN) to achieve appropriate control with minimal 

output degradation. The adaptive laws of the RWENN-based fault accommodation regulation are derived 

using the Lyapunov theorem, ensuring the system's stability; a numerical comparison with other neural-

network-based control methods was utilized to illustrate its superiority. In 2019 Cho et al. [11], presented a 

method of fault detection using a special algorithm using neural network for robot manipulators. The study 

proposes a neural network-based fault detection approach that does not require the use of a physical robot 

model or acceleration. A neural network can be used to calculate the fault torque, allowing for successful 

defect identification and diagnosis. 

According to the obtained results in the pre-mentioned studies, there is no single simulation study 

applying more than one technique for the purpose of faults detection and diagnosis. Due to that, no 

comparisons have been done between different techniques. Moreover, in the mentioned studies, only one 

type of fault in one location at a time is tested; there are no expectations for more types of faults on different 

locations. The pre-mentioned studies also give no focus on the consuming time. In addition, the Slantlet 

transform (SLT) [12]–[15], is not used yet for the faults diagnosis in robot arms. In this paper, two types of 

features (faults) detection methods are used for many faults in many locations at a time, the used methods are 

the DWT and the SLT. In the following sections, the robot arm simulation, DWT, SLT, and also the faults 

classification are explained deeply; also the results and discussion, conclusion and future works are included. 
 

 

2. ROBOT ARM SIMULATION 

A robot is a reprogrammable multifunctional manipulator that is programmed to move (materials, 

components, and tools). The robot arm system can be exposed to many problems, which can lead to failures 

or system faults [16]. Robots can malfunction due to human mistake, control panel issues, mechanical faults, 

power outages, and environmental variables. The main reason for preventing such failures is that they might 

result in human injury or death, as well as costly downtime. Positional error is responsible for half of all 

robot failures [17]. The motion of any robot arm is usually depends on the number of joints and their 

properties. Thus, there is a difference between the two and the three joints robot arms. Addit ional z 

dimension, which comes from the third joint is added, makes the robot arm's motion more flexible, but with 

some complexity in design, works and robot arm's kinematics equations. In this paper, two robot arms are 

presented using Matlab Simulink, to simulate real models. The first model is designed to simulate the planar 

robot arm (two joints robot arm), Figure 1. The second model is designed to simulate LabVolt 5150 robot 

arm Figure 2 and Figure 3. 
 

 

 
 

Figure 1. Two joints robot arm simulation model (planer robot arm) 
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Figure 2. LabVolt 5150 robot arm 

 

 

 
 

Figure 3. LabVolt robot arm simulation 

 

 

In the two simulations, a cubic trajectory generation block Figure 4 is used representing the typical 

implementation case. A standard scope is connected to track the output signal. The original signals in the 

joints represent the joints positions. The suitable cubic polynomial has the form [18]: 

 

𝜃(𝑡) = 𝜃0 +  (3/𝑡𝑓2)(𝜃𝑓 − 𝜃0)𝑡2 − (2/𝑡𝑓3)(𝜃𝑓 − 𝜃0)𝑡3 (1) 
 

where; 

𝜃0:initial position 

𝜃𝑓:final position 

𝑡𝑓:time duration for motion 

The signals are then merged with an external signal as a disturbance model, which consists of a 

repeated stair sequence with a gain. The purpose of using the disturbance model is to used the robot signals 

faulty. The signal at each joint of the robot arm is to be converted into Cartesian coordinates using the 

forward kinematics equations. The forward kinematics equations for the planner are: 

 

𝑋 = 𝐿1𝐶𝑂𝑆𝜃 + 𝐿2𝐶𝑂𝑆(𝜃1 + 𝜃2) (2) 

 

𝑌 = 𝐿1𝑆𝐼𝑁 𝜃 + 𝐿2𝑆𝐼𝑁 (𝜃1 + 𝜃2) (3) 

 

While, the forward kinematics for LabVolt 5 robot arm are: 

 

𝑋 = 𝐶𝑂𝑆𝜃1[𝐿1𝐶𝑂𝑆𝜃2 + 𝐿2𝐶𝑂𝑆(𝜃1 + 𝜃2)]  (4) 

 

𝑌 = 𝐿1𝑆𝐼𝑁 𝜃2 + 𝐿2𝑆𝐼𝑁 (𝜃2 + 𝜃3) (5) 

 

𝑍 = 𝑆𝐼𝑁𝜃1[𝐿1𝐶𝑂𝑆𝜃2 + 𝐿2𝐶𝑂𝑆(𝜃2 + 𝜃3)] (6) 

 

Where; L1 and L2 are the lengths of link1 and link 2; respectively. 
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For noisy or faulty signals, it is preferred to deal with the acceleration signals (the 2nd order 

derivation of positions) because they are more sensitive to both time- and frequency-changes. In this paper, 

the detected acceleration signals are to be registered and diagnosed with the wavelet transform, and the 

process is repeated with SLT. ANN is then used to classify the defective signals. The most detected faulty 

signals occur because of the unstable torque or force applied to the joints or because of high loads, which 

lead to additional noisy signals, appear as oscillations [17], [19]. The acceleration is expected to be easily 

read since accelerometer sensors are used in the majority of real-world recent works [4]. A noisy signal is 

produced in this simulation by adding a disturbance signal at joints. This condition causes the original signals 

to be disrupted, resulting in the output of a defective signal. The ANN is then applied for the purpose of 

fault's classification. 

 

 

3. DISCRETE WAVELET TRANSFORM 

The wavelet is considered as one of the recent approaches for signal transformation, that has a wide 

range of applications [20]. The wavelet transform is viewed as a solution to the shortest time fourier 

transform (STFT)'s problems. As shown in Figure 4, it considers a variety of windows with varying scales 

and widths (7). In this way, the wavelet transform will divide data into several frequency components and 

investigate each one separately [16], [20]. 

 

 

 
 

Figure 4. Wavelet time-scale representation [16] 

 

 

𝛹/𝑎, 𝑏(𝑡) =
1

√𝑎
𝛹(

𝑡−𝑏

𝑎
) (7) 

 

The wavelet transform is used to decompose non-stationary time series domains into frequency– 

time domains in a variety of fields [21]. This concept's mean is a little wave, which is an oscillatory function 

for a zero average that is localized in a minor span. Wavelet coefficients can be manipulated in a frequency-

based manner, then, inverted to a time-based representation. The mother wavelet function can be modified to 

generate other daughter wavelet functions, forming the wavelet family group. Each daughter wavelet 

function is a moved-extended, or a moved-compressed version of the mother wavelet [21]. The wavelet 

transform is divided into two types: continuous and discrete. Haar and Daubechies are usual forms of discrete 

wavelet that are discontinues in time, possessing Shannon discontinues in frequency [22]. According to the 

applications' purposes, discrete wavelet transforms is used. The impracticality and redundancy of continues 

wavelet transform (CWT) are both familiar problems; the first is because both parameters are constant, while 

the second is due to the wavelet's existence. During the wavelet calculation, when the continuously-scalable 

function is continuously shifted the over the signal to determine the correlation between them, the stated 

redundancy problem occurs. As a result, the wavelet coefficients must be extremely redundant [23]. The 

DWT is a type of wavelet that is developed by sampling the wavelet coefficients to overcome this problem. 

The discrete wavelet is not continuously scalable or translatable, but it can be scaled and translated in discrete 

steps. To accomplish this, the wavelet equation is modified as shown in (8). 

 

𝛹𝑗′𝑘(𝑡)=
1

√𝑆0
𝐽

𝛹 (
𝑡−𝑘Ʈ0 𝑆0

𝐽

𝑆0
𝐽 ) (8) 
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Where;(j, k) are integers, and (s0>1) is a constant dilation phase. The dilation phase determines the 

translation factor S0 in (8). S0 is usually set to two such that the frequency axis sampling leads to dyadic 

sampling. The translation factor is normally set to one; this results in a dyadic sampling of the time axis.S=2j, 

t=k*2j. In this paper, Daubechies four (DB4), which is a type of DWT, is used for the purpose of fault 

detection in robot arm signals (trajectory). This type is proposed to be used because of the limited period of 

time used to complete the trajectory (path) of the used simulated robot arm. Five levels are analyzed to reach 

the suitable banks' filters for the purpose of features extraction. Figure 5, D0-D4 represent the features for 

faults diagnosis, the high frequencies, which represent the high pass filters' (HPFs) outputs, are depended. 

While the low frequencies from the low pass filters (LPFs) are not used. 

 

 

 
 

Figure 5. Wavelet five level opened diagram 
 

 

4. SLANTLET TRANSFORM 

The DWT is a teqniche used especially for multi-resolution analytic applications. It has changeable 

windows that are short at high frequencies and long at low frequencies [24]. To solve one of DWT's 

weaknesses, the inability to construct an ideal discrete time basis for a finite number of zero moments, 

Selesnick invented the SLT in 1999, a type of filter comparable to DWT that outperforms DWT by 

increasing time localization qualities [12]. SLT is a high-resolution multi-resolution approach that uses 

piecewise linear data. SLT, is like DWT, in orthogonality and capability of decomposition at several 

resolutions. SLT filters are commonly implemented as a tree structure with filter bank iteration, whereas 

DWT filters are typically built as a tree structure without filter bank iteration [25], [26]. SLT is just a series 

of parallel filters built from an orthogonal DWT with a time-localization improvement [24], as shown in 

Figure 6. In [27], the second scale's coefficients of SLT filter bank were calculated with their. Sum-of-

powers-of-two (SOPOT) representations, while the third scale coefficients of SLT filter bank were calculated 

in (9) and (10) [28]. In such work, the same coefficients for second scales were obtained. Those coefficients 

of the SLT filters' bank (F2(z), G2(z), and z-3G1(1/z) are used in this paper for the purpose of feature detection 

(fault diagnosis), while H2(z) filter which represents the LPF is not used, because of its inefficient 

coefficients. These measured and used coefficients were relied on and used. The coefficients of the used 

filters are convoluted with the robot arm's output acceleration signals of each joint to extract the required 

features for fault diagnosis. These diagnosed features are then used as inputs for an ANN to identify the 

faults according to their types and locations. The coefficients of the 2nd scale SLT's filter bank are shown in 

Tables 1-4. 

 

gi(x) = {
  a0′0      +  a1′0                             for n = 0 … . 2j

a1′0      + a1′1  ∗ (n − 2j)        for n = 2j … 2j+1 − 1 
  

m=2j 

S1= 6* √(m)/((m^2 ) − 1) (4m^2 − 1)) 

t1=2* √3/(m(m2 − 1) 

S0= -S1 * (m − 1)/  (9) 

 

t0 =((m+1)(s1/3)-mt1)((m-1)/2m)  

a0′0 = (s0 + t0)/2 

a1′0 = (s0 − t0)/2 

a0′1 = (s1 + t1)/2 

a1′1 = (s1 − t1)/2  (10) 
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Figure 6. Second scale SLT filter bank structure 

 

 

Table 1. SLT second scale H2(z) filter's initial coefficients 
SLT Filters h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7) 

Coefficients  0.2698 0.3948 0.5198 0.6448 0.2302 0.1052 −0.0198 −0.1448 

 

 

Table 2. SLT second scale F2 (z) filter's initial coefficients 
SLT Filters h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7) 

Coefficients  −0.0825 −0.1207 −0.1589 −0.1971 0.7533 0.3443 −0.0648 −0.4738 

 

 

Table 3. SLT second scale Initial coefficients of G1(𝒛) filter 
SLT Filter h(0) h(1) h(2) h(3) 

Coefficients  −0.5117 0.8279 −0.1208 −0.1954 

 

 

Table 4. SLT second scale initial coefficients of G1(𝒛) filter (𝒁−(𝟏/𝒛)) 
SLT Filter h(0) h(1) h(2) h(3) 

Coefficients  −0.1954 −0.1208 0.8279 −0.5117 

 

 

5. FAULTS CLASSIFICATION 

The mostly used process for the purpose of separation and classification in recent studies, is the 

ANN. Jaber [4], [5] the multi- layer perceptron (MLP) with one hidden layer is used, refereeing to that and 

according to their accurate results obtained beside of its similarity of this works, the same ANN with some 

modifications, is used here. In this work, two simulations are designed and tested, the first one is a planer 

robot arm that has two joints, while the second simulation is also a robot arm but with three joints. The faults 

are supposed to be happened in joints, each joint can be exposed to problems, which usually lead to faults, 

causing a motion's failure in robot. Ten inputs/four outputs MLP is designed for the planer robot arm, and 

fifteen inputs/eight outputs is designed for the LabVolt (three joints example) robot arm manipulator,  

Table 5. The data is divided according to that 70% for training, 15% for validation and 15% for testing 

process. The confusion matrix, which is calculated to show the adjacency between the output and targets in 

addition to the system accuracy.  
 

 

Table 5. MLP-ANN characteristics 
 Characteristics  Planner robot arm LabVolt robot arm 

1 Number of input layer neurons  10 15 

2 Number of hidden layer neurons  1 1 

3 Number of output layer neurons  4 8 

5 Hidden layer activation function  Bayesian Regularization Bayesian Regularization 

6 Output layer activation function  Linear Linear 

7 Learning rate  0,05 0,05 

8 Minimum performance gradient  1.00e-07 1.00e-07 

9 Maximum number of epoch  5000 5000 

 

 

6. RESULTS AND DESCUTION 

In this section, a faults diagnosis study is presented; two methods of fault detection and diagnosis 

(DWT and SLT) are applied for the acceleration output signals of two robot arm simulations (Planer and 
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LabVolt), Figure 7. Both of robot arm models are built using Matlab Simulink. As mentioned before, 

disturbance signal is added to the joints of the robot arms joints. Many cases are supposed to be happened; in 

the planer simulation four cases are expected to be happened according to the following scenario:  

 One of the two joints are disturbed (two cases) 

 Both of the joints disturbed (one case) 

 Both of the joints are healthy (one case) 
In the second designed simulation, which represent LabVolt industrial robot arm (three joints robot 

arm), eight cases can be expected to be happened when disturbance signals have to be added according to the 

following scenario: 

 One joint disturbed signal (three cases) 

 Two joints are disturbed (three cases) 

 All signals' joints are healthy (one case) 

 All signals' joints are disturbed (one case) 

Each of these cases, for the both simulations, is referred to a motion situation which represents 

signals of acceleration in (x, y) directions for the planner, and in (x, y, z) directions for the LabVolt robot 

arm. These cases can indicate if the motion is noisy (distorted signal) or not, specifying the location of 

disturbance if exists. The recorded initial and final positions for planer are [-15o, 15o] and [60o, 75o]; 

respectively, while for LabVolt robot arm are [-15o, -15o, 15o] and [60o, 60o, 75o]; respectively. At the 

beginning, the robot arm simulation is run, for a duration time, the acceleration signals are recorded using 

0.001 sec. as a simulation time per wall clock and 3.973 sec. for all [1], [5]. Each recorded signal consists of 

(3973) samples in a raw, representing the three-directions accelerations (Ax, Ay, Az). After the completion 

of data recording, the features detection process is taken a place. A five-level decomposition with DB4 filters 

is applied for the data, it gave better and stable results with more accuracy than others (DWT with less than 

five number of level decomposition). Thus by using wavelet for the planer robot arm (x, and y), ten output 

coefficients are resulted, while fifteen coefficients are produced for the LabVolt robot arm simulation (x, y, 

and z). Each of the resulting wavelet coefficient consists of (1x1990) samples. As mentioned before, four 

cases are expected to be happened due to the faults with their locations. According to that, each one of the ten 

coefficients (D0–D10), will be produced four times (four cases). These coefficients are then concatenated as 

shown in Figure 7. After concatenation, ten inputs of 1x7960 samples (4x1990) will be applied as an input to 

the ANN for the purpose of faults classification according to their locations. The MLP is used for this 

purpose (as in section 5, Table 5). The same procedure is repeated for the LabVolt robot arm simulation, but 

with three signals in the (x, y, and z) directions. The results of these experiments are recorded in Table 6. 

 

 

 
 

Figure 7. Planner robot arm's faults diagnosis process 

 

 

As shown in Figure 7, four outputs from the ANN will represent four classes. when the inputs to the 

ANN are related to data in case 1, then the ANN output will be [1 0 0 0], while when they are related to cases 

two, thee and four, ANN output will be [0 1 0 0], [0 0 1 0], and [0 0 0 1] respectively as given in Table 6. The 

same procedure is used for the LabVolt (three joints) robot arm simulation, but with differences of fifteen 
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inputs and eight classes (ANN outputs), Table 7. As mentioned in section 5, the MLP-ANN is used for the 

purpose of features (faults) classification. The Bayesian regularization activation function is used for the 

hidden layer that has 18 neurons (the best-experimented case), and the linear activation function is used for 

the output layer. The accuracy of the system reaches 93.9% for the planner robot arm, while it reaches 88.6% 

for the LabVolt robot arm using DWT. 

 

 

Table 6. MLP-ANN classification for planar cases 
Cases Output Fault location 

1 [1 0 0 0] No faults (Healthy) 

2 [0 1 0 0] Joint 1 (Shoulder) 

3 [0 0 1 0] Joint 2 (Arm)7 

4 [0 0 0 1] Joint 1 & 2 

 

 

Table 7. MLP-ANN classification LabVolt cases 
Cases Output Fault location 

1 [1 0 0 0 0 0 0 0] No faults (Healthy) 

2 [0 1 0 0 0 0 0 0] Joint 1 (Base) 

3 [0 0 1 0 0 0 0 0] Joint 2 (Shoulder) 

4 [0 0 0 1 0 0 0 0] Joints 1 & 2 

5 [0 0 0 0 1 0 0 0] Joint 3 (Arm) 

6 [0 0 0 0 0 1 0 0] Joint 1 & 3 

7 [0 0 0 0 0 0 1 0] Joints 2 & 3 

8 [0 0 0 0 0 0 0 1] Joints 1, 2, & 3 

 

 

The results of these experiments are recorded in Table 8. In the second part, the SLT filters (F2(z), 

𝑮𝟏(𝒛), and (𝒁−𝟑𝑮𝟏(𝟏/𝒛)) are used instead of the DWT for the purpose of feature (faults) detection. The 

acceleration's signals those comes from coordinates (x, and y) in planar and (x, y and z) in LabVolt are 

convoluted with the coefficients of these banks filters of the SLT [25]. The resulted features are used as 

inputs for the MLP-ANN to classify the faults according to their types and locations. The accuracy by using 

these filters instead of the DWT is increased to be 100% for the planar and 99.9% for the LabVolt robot arm, 

Table 9. 

 

 

Table 8. DWT (5 level Db4) and ANN for faults' diagnosis in robot arms 
 Robot arm  Performance (MSE) Time of Process (sec) Accuracy 

1 Planar 0.0259 3075.551457 93.9% 

2 LabVolt 0.0282 16369.924428 88.6% 

 

 

Table 9. SLT 2 scale and ANN for faults' diagnosis in robot arms 
 Robot arm  Performance (MSE) Time of Process(sec) Accuracy 

1 Planar 4.7088e-05 71.017308 100% 

2 LabVolt 8.3969e-05 26.460 99.9% 

 

 

According to the given results in Tables 8 and 9, it is clear to proof that the SLT filters are much 

better than the DWT for the faults' diagnosis in robot arms, for both planar and three joints robot arms. 

Besides the accuracy, the processing time needed for the SLT is smaller than the time needed for the DWT, 

also the number of iterations is reduced for reaching the results with better performance. 

 

 

7. CONCLUSION 

Nowadays, faults diagnosis is a very important field to focus on and perform many studies about. 

The signal of robot arm tip's accelerations always give the required information about faults. The DWT was 

used in many works for the purpose of faults diagnosis in a robot arm, but only for one joint. In this paper 

many faulty joints have been studied at the same time. Two methods have been used; namely, the DWT and 

the SLT filters. The features of the faults at joints have been extracted clearly from coefficients of the two 

methods. More than one fault at the same time in different joints have been detected and isolated in the 

simulation. The suggested methods have succeeded in detecting and isolating the faults in robot arm joints 
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which are moving in short time duration tasks. The results of SLT have shown better accuracy, smaller time 

of process, better performance, and lesser complexity than the DWT. Thus, the method of using both (SLT 

and MLP-ANN) is suggested to be used instead of (DWT and MLP-ANN) for fault diagnosis, especially in 

robotics systems. 
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