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 A real threat to the people of the world has appeared as a result of the spread 

of the Coronavirus disease of 2019 (COVID-19) disease. A lot of scientific 

and financial support has been made to devote vaccines capable of ending 

this epidemic. However, these vaccines have become a subject of debate 

between individuals, as some people tend to support taking vaccines and 

others rejecting them. This paper aims to create a framework model to 

classify the sentiment and opinions of individuals that published in Twitter 

regarding the COVID-19 vaccines. Identify those opinions can help public 

health institutions to know public opinions and direct their efforts towards 

promoting taking vaccinations. Two of the machines learning classification 

models which are the support vector machine (SVM) and naive Bayes (NB) 

classifier are applied here. Other pre-processing methods were applied as 

well to filter unstructured tweets.  
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1. INTRODUCTION 

There has been a lot of global effort to evolve and test an effective Coronavirus disease of 2019 

(COVID-19) vaccine since the outbreak of the pandemic. Although preventive measures have contributed to 

limit the spread of this disease, hopes are pinned on finding an effective and sustainable vaccine to end this 

epidemic. Encouraging public for vaccination is critical to end COVID-19 pandemic. According to [1] over 

60-80% of populations have to be vaccinated to reach some level of herd immunity. Also, realizing emotion 

is considered one of the essential aspects of building a successful life and growing human relationships. 

Furthermore, understanding others' thoughts has an effect on acquiring knowledge and making decisions [2]. 

Therefore, it is necessary to know public opinion about vaccination and their inclination to receive it. Social 

media is widespread platform that are used to discuss many topics. Spreading COVID-19 and receiving 

vaccinations is one of these topic [3]. Information obtained from social media may encourage individual to 

take vaccines or refuse them. The confidence of individuals in science and its role in solving this crisis can be 

destroyed by false information [4], which will affect the level of vaccination [5]-[7].  

Obtained opinions of individuals about this topic is a challenging mission. Statistical processing of 

such huge information obtained from survey mostly loses the ability to give reliable results. Thus, robotic 

classifier for analysing opinions could be more practical. Using data from Twitter that consider one of the 

most used social media outlets can be more illustrative of real opinions [4]. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:noralhudan.hadi@uokufa.edu.iq


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 3, December 2021: 1727 - 1734 

1728 

Various aspects have to be considered for building a robust and accurate classifier. In most online 

comments, people uses irregular language to announce their opinions. Furthermore, these comments and 

posts contain various language errors, such as in grammars and word spelling [8], [9]. This obstacle opens 

challenges for analyzing and interpreting human language [10]. Text mining or sentiment analysis [11] 

appears to be fully grasp the automatic processing of natural language (NLP) [9], [12]. Yang et al. in [11] 

believed that sentiment analysis is aimed to analyse users' comments on the Internet in order to identify the 

underlying emotional information. According to [12], sentiment analysis is a process of analysis, processing, 

extrapolation, and conclusion of individual texts with an emotional color. Generally, sentiment analysis 

classifies opinions into positive and negative attitude [13]. This paper is organized: Section 1 provides an 

introduction and about the existing research. Section 2 presents a brief background and related work. Section 

3 explains the framework that is developed for sentiment analysis. Section 4 highlights the analysis results. 

Finally, the conclusion is presented in the last section. 
 

 

2. RELATED WORK 

Several researches and different processes are performed in the field of sentiment analysis. Authors 

in [14], [15] used unsupervised learning algorithms to calculate the average semantic orientation of texts. In 

the article of [16], authors defined the feature of a product based on latent semantic analysis (LSA). Also, 

they used a statistical approach to determine opinion phrases. Authors in [17] stemed on adjective opinion 

words to extract information. They collected textual data from the web pages. Then, they manually labelled 

adjective words and use a comparative sentence to distinguish between positive and negative phrases. In [18], 

the polarity of sentences is identified based on baseline and support vector machines (SVM) methods. They 

extracted the polarity of overall documents for certain words by detecting the sentiment of dictionaries and 

classifying them based on textual data information. Khan and Baharudin [19] proposed a method which used 

SentiWordNet to classify words as a positive, negative, or neutral phrase. Authors in [20] used each of 

machine-learning techniques and cosine similarity to create a scheme for opinion classification. They 

suggested pre-processing the web data to improve the structure of textual data. Others researches used 

various techniques in sentiment analysis using method of neural network [21], [22], data mining [23], and 

artificial intelligence [24]. 

Some studies provide a simple descriptive analysis of Twitter data related vaccines to estimate 

individual's opinions toward vaccination [25], define prevailing opinions [26], track discussion societies on 

vaccination [27], determine patterns of vaccine [28]. A study examined the increasing activity in Twitter for 

anti-vaccination group and its result confirmed the effectiveness of these activities in refusing vaccinations [7]. 

Another study showed that the reluctance to take the vaccine is due to the negative impression taken from 

Twitter bots [28]. Generally, public opinion on vaccines regarding COIVD-19 is unclear. Identifying the 

public opinion on COVID-19 vaccines is of great significance as a rejection case against vaccination, which 

could contribute to widespread pandemic from a public health view. 

Some have focused on distinguishing emotional expressions [29]-[32]. Others [33]-[37] have based 

on determining the polarity of the reviews whether these opinions are positive, negative, or neutral. In fact, 

the emotion detection task and polarity detection task are associated with each other, and in most cases, 

detection of the emotion represents a sub-function from the detection of the polarity. For the more advanced 

analysis task, polarity detection can be used as a subtask to classify customers' reviews whether they like or 

dislike services [38], [39]. This helps in judging the quality of the products [2], [5], [40], [41].  

The influential sentimental analysis models also need to identify the topic of a review. This can help 

to improve the performance. For example, analyzing texts and ignoring the topic section can lead to obtain 

irrelevant emotional information and mislead the polarity analysis of the main topic. In addition, the topic of 

a review may discuss multiple subjects which are attractive for users. In addition, some topics may discuss 

multiple subjects which are attractive for users as well. Therefore, it is necessary to define topics [2]. Other 

features such as subjective and objective opinions classifications [42], aspect extraction [43], concept 

detection, gender of users [44] and topic recognition [45]. Also, they have their effects on the validation of 

the sentiment analysis models. 

The increasing numbers of devices, which are used to post reviews, have an effect on creating 

different formats of information such as texts, audio files, and video material. Different activities can be 

utilized to collect the affective information such as analysis face expressions, physical interaction, the gaining 

impression from the background of videos and images [46], [47]. All of these data resources have to add to 

an integrated SA model [2]. According to the data of [35], it is possible to combine phonetics and linguistics 

to obtain information and assess opinions. Authors in [48] were indeed able to combined phonetics, 

linguistics, and videos to analyze information and determine opinion polarity. However, the manual transcript 

stills the main source of information to implement sentiment classification. 
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A natural language is a tool used to declare human ideas. Mostly, these ideas contain complex 

knowledge and expressions. Natural languages do not follow restricted rules as with artificial and 

programming languages. Thus, natural languages can contain unpredictable difficulties and formats. Many 

aspects are needed to be considered when there is a need to create the model of sentiment analysis such as 

extracting the meaning of negations, emotional words, understanding the meaning of the emoji symbols, and 

others. Meanwhile, text processing technologies can be utilized to remove useless data, which lead to reduce 

the processing time and improve the efficiency of sentiment analysis. 

 

 

3. SENTIMENT ANALYSIS FRAMEWORK 

3.1.  Collecting the dataset 

To collect Twitter posts related to the topic of COVID-19 vaccination, we utilized Twitter 

application programming interface (API) in Python programming language to pull tweets [49], [50]. A 

combination of keywords "Corona", "COVID-19"," Coronavirus", and "vaccines" are used to retrieve tweets 

post in January 2021. The data was taken from English-speaker from the countries: the United Kingdom and 

India. In total, this data is about (15,000) tweets. There was a study to create a model of real time sentiment 

analysis [51]. However, Table 1 shows some of the retrieval tweets for the proposal model. It is noted that 

positives tweets are higher average than negative or neutral tweets. Figure 1 shows the proportion of tweets 

in each class. Figure 2 displays some examples from the training data set that included all of the three labels.  

 

 

Table 1. Training dataset statistics 
Total number of tweets 15030 

Positive tweets  49 % 

Negative tweet 30 % 

Neutral tweets 21 % 

 

 

 
 

Figure1. Polarity sentiment distribution of tweets 

 

 

 
 

Figure 2. Examples from collected tweets 

 

 

3.2.  Labelling the dataset 

A machine learning algorithm (ML) is a two-step process, training, and testing dataset. Thus, we 

need to label some of the tweets with real opinions to be used in the training stage. Labelling the dataset has 
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been done manually by using the human in the loop (HITL) services. We used three terms to annotate the 

polarity of tweets toward vaccine: positive, negative and, neutral. We added a certain condition in order to 

accept the selected label by users. This condition determines the compatibility in the opinion of both the user 

and the author through the labelling process. Otherwise, it is recommended that this tweet should be labelled 

by a third evaluator, and the final result should be determined by the majority of votes. 

 

3.3.  Pre-processing dataset 

Pre-processing is an essential phase in texts mining [52]. It could be applied to texts for omitting 

unwanted terms such as punctuation, emails, numbers, and links. For that, natural language processing (NLP) 

techniques offer significant services. These techniques are used to reduce the size of textual data [53] and 

transfers texts from their original format to another reduced structure. Also, we used these techniques for 

normalizing/stemming, filtering the unwanted words, and tokenization. The scenario of pre-processing 

methods that were implemented for this work is: first, each tweet is split to obtain separated tokens. There are 

many ways that could be used to split words and not just depend on whitespace. For this, the comma, 

semicolon, and colon are also used for segmentation. Then, the following pre-processing technique was 

omitting unwanted words. These words are diverse that could be auxiliary verbs or negation terms. In 

sentiment analysis, the negation words are important to determine the polarity of text. Therefore, we built a 

special dictionary of English words that can be used to remove the useless words and keep the negation 

clauses. Finally, the stemming tokens technique was applied by using a specific function available in the NLP 

library. 

 

3.4.  Building model 

We implemented two kinds of machine learning (ML) classifiers to classify tweets into positive, 

negative, and neutral expressions. We used two of the most influential classifiers which are the naive Bayes 

(NB) classifier and SVM classifier. Different pre-processing techniques are applied along with each classifier 

to examine the main factors that cause those differences in performance between these classifiers. Figure 3 

shows the proposed scheme. 

 

 

 
 

Figure 3. Outline of sentiment analysis scheme 

 

 

4. RESULTS AND DISCUSSION 

The collected dataset has been explored with two standards from ML classifiers. The F-measure 

score was used for evaluating the performance of each classifier. The collected tweets are partitioned into a 

training and testing set. The ratio of the data among the training, and testing sets is 8:2. 

Tweets were pre-processed by using: tokenization, stop word removal and punctuation, and 

stemming. Also, part-of-speech (PoS) tags are applying to define distinctive attributes. We focused on 

selecting the adjectives phrase that can help to interpret the ambiguous words. For filtering the useless word, 

the negation expressions are considered useful and essential words. Thus, we kept these expressions. In the 

following tables, the results of the different classifiers with various types of settings are displayed. In Table 2, 

The original texts were pre-processed by removing stop words. In this setting, the performance of SVM is 

slightly better than NB with increasing by 0.01. Table 3 shows a Noticeable change when the PoS tag is used 

beside removing stop words steps. The performance of NB is increased to 0.80 while SVM is decreased  

to 0.74. 
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Table 2. Evaluation results of NB and SVM classifier with removing stopwords 
Accuracy Stemming Stop Word POS Classifier 

0.77 0 1 0 NB 

0. 78 0 1 0 SVM 

 

 

Table 3. Evaluation results of NB and SVM classifier with removing stopwords and enable PoS tag 
Accuracy Stemming Stop Word POS Classifier 

0.80 0 1 1 NB 

0.74 0 1 1 SVM 

 

 

The accuracy of both classifies was re-measured but in this time we enabled the stemmer. As shown by 

Table 4, the worst result is obtain. The performances of NB and SVM are reduced to 0.68 and 0.65 respectively 

after stemming. The reason for that may be attributed to the role of the stemming technique in lemmatizing 

words and this may change its emotional means. Also, the stemming operations may not be accurate. After that 

in Table 5, it can be seen that the performance of SVM was improved once the removing stop words and 

enable stemming steps are applied. The same case occurred with NB with the same settings.  
 

 

Table 4. Evaluation results of NB and SVM classifier with stemming 
Accuracy Stemming Stop Word POS Classifier 

0.68 1 0 0 NB 

0. 65 1 0 0 SVM 

 

 

Table 5. Evaluation results of NB and SVM classifier with removing stopwords and stemming 
Accuracy Stemming Stop Word POS Classifier 

0.81 1 1 0 NB 

0. 75 1 1 0 SVM 

 

 

Obviously, the best accuracy reached 0.80 and 0.78 for NB and SVM consequently. NB model 

showed a slight better performance than the SVM model. This shows that the NB classifier can correctly 

classify more texts into positive and negative than the SVM classifier. This result is consistent with the 

results of [54]. However, others found that SVM works better than NB [35], [55], [56]. On the other hand, 

other declared that both algorithms are equally efficient with a slightly small difference [57]. 

Typically, Researchers in [54], [58] described the supervised approach as the baseline for sentiment 

classification. It is found that the supervised learning has a higher efficiency when it is applied on a large 

textual data than unsupervised learning methods [1], [59]. Also, as reported by [2], [60], the supervised 

learning approach can classify unknown documents based on the supervised learning method rather than the 

lexicon method which depends on the deep learning of their resources for categorizing texts.  

 

 

5. CONCLUSION 

Communications media are still in progress. This is due to the involving the applications of social 

media in our daily lifestyle. This motivates different Institutions and governments systems to move towards 

involving the active part of textual classification in their works to achieve their goals. In the current paper, we 

presented a model for sentiment analysis of Twitter posts related to the COVID-19 vaccines. This can help 

the health system and organizations such as World Health Organization (WHO) to use social media like the 

Twitter and Facebook. Platform to promote the importance of vaccination. Also, understanding individual's 

opinions concerning vaccination could help to end the pandemic through supporting positive tweets concern 

vaccines and reject negative ones. We utilized two ML classifiers (NB and SVM) for analyzing the sentiment 

and opinions of around 15,000 tweets. Experimental results showed that the NB classifier performs 

outperforms the SVM classifier. The obtained results are promising and encouraging to keep working on this 

topic by examining more countries and different languages. Also, we plan to imply or combine supervised 

and unsupervised learning methods to test more models.  
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