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 Optimal reactive power dispatch (ORPD) is an important task for achieving 

more economical, secure and stable state of the electrical power system. It is 

expressed as a complex optimization problem where many meta-heuristic 

techniques have been proposed to overcome various complexities in solving 

ORPD problem. A meta-heuristic search mechanism is characterized by 

exploration and exploitation of the search space. The balance between these 

two characteristics is a challenging problem to attain the best solution 

quality. The artificial bee colony (ABC) algorithm as a reputed meta-

heuristic has proved its goodness at exploration and weakness at exploitation 

where the enhancement of the basic ABC version becomes necessary. Salp 

swarm algorithm (SSA) is a newly developed swarm-based meta-heuristic, 

which has the best local search capability by using the best global solution in 

each iteration to discover promising solutions. In this paper, a novel hybrid 

approach-based ABC and SSA algorithms (ABC-SSA) is that developed to 

enhance the exploitation capability of the ABC algorithm using SSA and 

applied for solving ORPD problem. The efficiency of ABC-SSA is 

investigated using two standard test systems IEEE-30 and IEEE-300 buses, 

and that by considering the famous objective functions in ORPD problem. 

Keywords: 

Hybrid ABC and SSA 

algorithm 

ORPD  

Total transmission active losses 

TVD 

VSI 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Souheil Salhi 

Department of Electrical Engineering 

University Mohamed khider of Biskra 

BP 145, 07000 Biskra, Algeria 

Email: s.souhail@univ-biskra.dz 

 

 

NOMENCLATURE 

PG / QG : Active power generation/reactive power generator 

Pl /Ql : Active power of load demand/reactive power of load demand 

Sl : Apparent power flow of branch l-th 

Gk : Conductance of k-th branch of the network  

𝛿𝑖𝑗  : Difference of voltage angle between buses i and j 

Qc : Injected VAR power from compensator 

IPV  /IPQ  : Injected current vector of generator and load buses, respectively 

F(x,u)  : Objective function of the problem. 

Yij/𝛼ij : Magnitude/angle of admittance matrix element between buses i and j 

NLB / NG : Number of load buses/number of generator buses 

NTL / NT : Number of transmission lines/number of tap setting transformers 

https://creativecommons.org/licenses/by-sa/4.0/
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NC / NB : Number of shunt capacitor banks/number of total buses 

Tk : Ratio of k-th tap changing transformers  

g(x,u) / h(x,u) : Set of equality constraints/set of inequality constraints 

x : Vector of dependent variables (state variables) 

u : Vector of independent variables (Control Variables) 

Vi,/ Vj : Voltage magnitude of i-th and j-th bus, respectively 

VPV / VPQ : Voltage vector of generator and load buses, respectively 

VG/ VL : Voltage at the generator and load buses, respectively 

 

 

1. INTRODUCTION 

The optimal reactive power dispatch (ORPD) is an optimization problem recognized as an important 

tool in the electrical power engineering area, to manage reactive power in electrical networks. The main 

objective of ORPD is to assess the optimal operating state of the electrical power grid based on the criteria of 

economy, service quality and security [1]. The economy and service quality require appropriate voltage 

control at all buses of the system with tolerable limits to ensure proper reactive power flows and minimal 

active transmission losses. On the other hand, the security of the power system requires sufficient voltage 

levels and reactive reserves to prevent voltage stability failures and to maintain the integrity of the power grid 

in a safe state when critical unforeseen events occur. Power grid security control can be performed by 

improving the voltage stability margin reflected by the voltage stability index (VSI) or minimizing the total 

voltage deviation (TVD) from the rated voltage magnitude. The aforementioned goals of ORPD problem can 

be achieved through the optimal adjustments of all kinds of control variables in the power system given by 

the voltage magnitude at all buses of generation (continuous control variables), tap setting transformers and 

reactive power from VAR compensators (discrete control variables). By combining these two types of control 

variables, the ORPD becomes a mixed integer nonlinear programming (MINLP) optimization problem. The 

mono-objective resolution of ORPD is stated for minimizing  the transmission power active losses (Ploss), to 

reduce the TVD or to improve the VSI related to load buses, while accomplishing the satisfaction of 

predefined operational constraints related to the physical system [2]. 

In literature, many classical optimization methods have been applied to solve the ORPD problem. 

Linear programming (LP), nonlinear programming (NLP) [3] and Newton method [4] were among the 

presented techniques in the literature. Unfortunately, these conventional methods present some drawbacks in 

dealing with non-convex and MINLP optimization problems considering non-differentiable objective 

functions and constraints, additionally to their premature convergence by trapping in local optima when 

solving complex optimization problems [5], [6]. Recently, computational intelligence methods have been 

imposed as an alternative to the classical optimization techniques called meta-heuristics, which are based on 

mimicking physical or biological phenomena and their main advantage concerns the ability in dealing with 

combinatorial and non-convex optimization problems. Many of the meta-heuristics have been developed in 

recent years, and each of them is inspired according to a natural phenomenon. Some of them have been 

widely employed in solving ORPD problem, such as genetic algorithms (GA) [7], particle swarm 

optimization (PSO) [8], artificial bee colony (ABC) [9], firefly algorithm (FA) [10], Gravitational search 

algorithm (GSA) [11], and whale optimization algorithm (WOA) [12]. 

Therefore, there is no guarantee for a particular meta-heuristic algorithm to reach a perfectly optimal 

solution and to solve all optimization problems effectively referring to the no free lunch (NFL) theorem [13]. 

Thus, various research works have been elaborated to enhance the search capability of some meta-heuristics 

in solving ORPD problem. Radosavljevic and Jevtic [14], studied a combination of gravitational search 

algorithm and sequential quadratic programming (GSA-SQP) has been implemented as efficient hybrid 

algorithm to solve ORPD problem in the case of Institute of Electrical and Electronics Engineers (IEEE)-

(30buses) test system. This approach tends to ovoid a premature convergence of GSA without trapping in 

local optima. Ghasemi et al. [2], studied a modified imperialist competitive algorithm (MICA) was 

hybridized with invasive weed optimization  (IWO) method to improve the optimal solution of the ORPD 

problem compared to that of the original ICA or IWO method. In the aim to surmount the early convergence 

problem of the PSO algorithm, Singh et al. [15] suggest a more effective alternative method by hybridizing 

the basic PSO and ant lion optimizer (ALO) algorithm named PSO-ALO with no significantly undermining 

the fast convergence of (PSO) method. This hybrid approach has proved its success in improving ORPD 

solution since it finds a better objective functions than most competitive optimization techniques.  

Recently, the ABC algorithm inspired by the foraging behavior of honeybees to find and to exploit 

the nectar of flowers has been extensively applied as an efficient population-based algorithm. Since its 

development in [16], it has gained great popularity to solve complex optimization problems in various fields 

of engineering, especially in electrical power system considering economic dispatch (ED) [17], optimal 
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power flow (OPF) [18] and ORPD [19] due to its sample implementation. Referring to a huge number of 

works regarding ABC algorithm applications, practical studies have brought into focus that this algorithm is 

weak in the exploitation of promising solutions and powerful in the exploration of search space [20]-[22]. 

Conversely, salp swarm algorithm (SSA) inspired from navigating and foraging behaviors of salp swarms 

living in oceans [22] highlights weak exploration search mechanism and powerful exploitation  

capability [23], [24] . Therefore, we resorted to improving the exploitation capability of the ABC algorithm 

by using SSA and developing a hybrid approach based on the ABC algorithm and SSA (ABC-SSA) to 

improve the optimal solution of the ORPD problem. To the best of our knowledge, this is the first time that 

this hybrid approach ABC-SSA is suggested and applied to solve ORPD problem. Various test systems are 

implemented such as IEEE-(30buses) and large system IEEE-(300buses) to confirm the validity of the 

proposed hybrid ABC-SSA in finding a better solution than using one method at a time and over the 

proposed hybrid techniques in the literature. The simulation results obtained using ABC-SSA are compared 

to those of other recently published techniques in literature for the same problem. The presented comparison 

proves the robustness of this hybrid technique under different cases of study on various scales of power 

systems. The presented technique promotes its extension to other complex optimization fields.    

The main contributions in developing the presented hybrid ABC-SSA technique are as follows: 

 The ability of the proposed hybrid ABC-SSA approach to balance between the two searches mechanisms 

of meta-heuristics (exploitation and exploration) in order to reach better solution of ORPD problem.  
 The development of an effective hybrid thechnique of ABC and SSA algorithms to benefit from 

advantages of both algorithms.  
   

 

2. PROBLEM FORMULATION 

Generally, the ORPD problem is stated in the following manner: 

Minimize F(x, u) 

 

Subject to: {
𝑔(𝑥, 𝑢) = 0

ℎ(𝑥, 𝑢) ≤ 0
 

(1) 

  

𝑥 = [𝑉𝐿1 … 𝑉𝐿𝑁𝐿𝐵
, 𝑄𝐺1 … 𝑄𝐺𝑁𝐺

, 𝑆1 … 𝑆𝑁𝑇𝐿]  (2) 

  

𝑢 = [𝑉𝐺1 … 𝑉𝐺𝑁𝐺
, 𝑇1 … 𝑇𝑁𝑇 , 𝑄𝐶1 … 𝑄𝐶𝑁𝐶

]  (3) 

 

2.1.    Objective functions 

2.1.1. Total active transmission losses  

The mathematical expression of the active transmission losses in the electrical power network is 

defined as follows [25]: 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐺𝑘 × (𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝛿𝑖𝑗)𝑁𝑇𝐿
𝐾=1   (4) 

 

2.1.2. Voltage deviation   

The total voltage deviation (TVD) forms an important objective function for electrical network 

analysis and operation, it represents the sum of voltage magnitude deviations for all load buses concerning 

their desired values (𝑉𝐿
𝑟𝑒𝑓

=1.00 pu). The minimization of TVD improves voltage profile and enhances the 

security level of power systems, it is expressed as follows [22]: 
 

𝑇𝑉𝐷 = ∑ |𝑉𝐿,𝑖 − 𝑉𝐿
𝑟𝑒𝑓

|𝑁𝐿𝐵
𝑖=1   (5) 

 

2.1.3. Voltage stability index   

The improvement of the voltage stability is achieved through the minimization of the voltage 

stability index (VSI) Lj given by the j-th load node of the electric power grid. In the purpose to enhance 

voltage stability and to keep the electric power grid so far away from the operating point which provokes the 

voltage collapse (by improving the stability margin), the maximum of Lj among all load buses is employed as 

an objective function to minimize for handling the ORPD issue. The voltage stability index Lj of  j-th load 

bus is defined as follows  [26]: 
 

𝐿𝑗 = |1 − ∑ 𝐹𝑖𝑗
𝑉𝑖

𝑉𝑗
𝑖 ∠ (𝜃𝑖𝑗 + (𝛿𝑖 − 𝛿𝑗))|            𝑖 = 1, 2, . . 𝑁𝐺       j=1, 2, .. NLB 

(6) 
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where: 𝐹𝑖𝑗 = |𝐹𝑖𝑗|∠𝜃𝑖𝑗 

 

𝐹𝑖𝑗 = −[𝑌1]−1[𝑌2]  (7) 

  
    

 

𝛿𝑖/ 𝛿𝑗 = Voltage angle of bus-i and bus-j, respectively.
 

Y1 = Describes the sub-matrix linking the injection current vector and voltage vector of load 

nodes. 

Y2 = Describes the sub-matrix linking the injection current vector of load nodes and voltage vector 

of generation nodes. 

 

[
𝐼𝑃𝑄

𝐼𝑃𝑉
] = [

𝑌1      𝑌2

𝑌3     𝑌4
] [

𝑉𝑃𝑄

𝑉𝑃𝑉
]  (8) 

 

when the Lj value is closer to zero, the electric power grid is further stable. Represents an equation that 

maximizes a parameter: 
 

Lmax=max (Lj)                              where: j=1, 2…BLN (9) 

 

Lmax  the maximum value of Lj among all load buses. 
 

2.2.   Operational constraints  

2.2.1. Power flow equality constraints 

The power flow for each node of an electrical power grid is characterized by the equality constraints 

expressed as follows: 
 

𝑃𝐺,𝑖 − 𝑃𝑙,𝑖 − ∑ |𝑉𝑖|
𝑁𝐵
𝑗=1 |𝑉𝑗||𝑌𝑖𝑗| cos(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) = 0  (10) 

  

𝑄𝐺,𝑖 − 𝑄𝑙,𝑖 − ∑ |𝑉𝑖|
𝑁𝐵
𝑗=1 |𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) = 0  (11) 

 

2.2.2.  Operating inequality constraints 

The mathematical form of inequality operating constraints is stated in the following manner: 

 Constraints description of generator: The output voltage of each generator is characterized by its 

magnitude, which is limited by upper and lower limits 𝑉𝐺,𝑖
𝑚𝑖𝑛 and 𝑉𝐺,𝑖

𝑚𝑎𝑥, respectively. 

The reactive power generation is also limited between lower and upper capacity limit 𝑄𝐺,𝑖
𝑚𝑖𝑛 and 

𝑄𝐺,𝑖
𝑚𝑖𝑛, respectively. 

 

{
𝑉𝐺,𝑖

𝑚𝑖𝑛 ≤ 𝑉𝐺,𝑖 ≤ 𝑉𝐺,𝑖
𝑚𝑎𝑥

𝑄𝐺,𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺,𝑖 ≤ 𝑄𝐺,𝑖

𝑚𝑎𝑥
              𝑖 = 1, 2, 3 … 𝑁𝐺  

(12) 

 

 The tap setting Tk of transformers is imposed to the restrictions given by lower and upper boundary 𝑇𝑘
𝑚𝑖𝑛 

and 𝑇𝑘
𝑚𝑎𝑥, respectively. These limits are mathematically given by: 

 

{𝑇𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘

𝑚𝑎𝑥               𝑘 = 1, 2, 3 … 𝑁𝑇  (13) 

 

 The generated reactive power Qci from a capacitor bank is confined by two limits 𝑄𝑐𝑖
𝑚𝑖𝑛 and Qci

max of lower 

and upper generation bound, respectively, and expressed as follows: 
 

 {𝑄𝑐,𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑐,𝑖 ≤ 𝑄𝑐,𝑖

𝑚𝑎𝑥               𝑖 = 1, 2, 3 … 𝑁𝐶 (14) 

 

 The power flow rate for each transmission line is confined by its transit capacity limit: 
 

{𝑆𝑙 ≤ 𝑆𝑙
𝑚𝑎𝑥               𝑙 = 1, 2, 3 … 𝑁𝑁𝑇𝐿  (15) 

 

For limiting the dependent variables 𝑉𝐿𝑖, 𝑄𝐺 and 𝑆𝑙, we use the technique of penalty factors which 

prevents the considered dependent variable to go out its limits (by ruling out the solutions providing the limit 

violations of considered state variable) even if the objective function at these points gives a good solution. 

For this aim, we use an augmented objective function described by (16): 
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𝐹𝑎𝑢𝑔 = 𝐹(𝑥, 𝑢) + 𝜆𝑉 ∑ ∆𝑉𝐿𝑖 +𝑁𝐿𝐵
𝑖=1 𝜆𝑄 ∑ ∆𝑄𝐺𝑖 +𝑁𝐺

𝑖=1 𝜆𝑆 ∑ ∆𝑆𝑙𝑖
𝑁𝑇𝐿
𝑖=1   (16) 

 

where: 𝜆𝑉, 𝜆𝑄 and 𝜆𝑆are the factors of penalty. 

 

∆𝑉𝐿𝑖 = {

(𝑉𝐿𝑖
𝑚𝑖𝑛 − 𝑉𝐿𝑖)

2 𝑖𝑓 𝑉𝐿𝑖 < 𝑉𝐿𝑖
𝑚𝑖𝑛

(𝑉𝐿𝑖 − 𝑉𝐿𝑖
𝑚𝑎𝑥)2 𝑖𝑓  𝑉𝐿𝑖 > 𝑉𝐿𝑖

𝑚𝑎𝑥

0    𝑖𝑓  𝑉𝐿𝑖
𝑚𝑖𝑛 ≤  𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑖𝑛

  

(17) 

  

∆𝑄𝐺𝑖 = {

(𝑄𝐺𝑖
𝑚𝑖𝑛 − 𝑄𝐺𝑖)

2 𝑖𝑓 𝑄𝐺𝑖 < 𝑄𝐺𝑖
𝑚𝑖𝑛

(𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑎𝑥)2 𝑖𝑓  𝑄𝐺𝑖 > 𝑄𝐺𝑖

𝑚𝑎𝑥

0         𝑖𝑓 𝑄𝐺𝑖
𝑚𝑖𝑛 ≤  𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑖𝑛

  

(18) 

  

∆𝑆𝑙𝑖 = {
(𝑆𝑙𝑖 − 𝑆𝑙𝑖

𝑚𝑎𝑥)2 𝑖𝑓  𝑆𝑙𝑖 > 𝑆𝑙𝑖
𝑚𝑎𝑥

0    𝑖𝑓 𝑆𝑙𝑖
𝑚𝑖𝑛 ≤  𝑆𝑙𝑖 ≤ 𝑆𝑙𝑖

𝑚𝑖𝑛   
(19) 

 

 

3. ARTIFICIAL BEE COLONY ALGORITHM  

The artificial bee colony algorithm as an interesting meta-heuristic optimization technique has 

proven its efficiency for solving various numerical optimization problems in the engineering area [18]. It has 

been inspired by the honeybees activities to collect the nectar of food sources and to share roles during the 

foraging process. The ABC algorithm considers the food source position as a proposed solution in the search 

space, while the nectar quantity of food source corresponds to the fitness value of the potential solution. The 

hive population is divided in two groups of bees: employed and unemployed bees, where each group contains 

the half population of the hive. The employed bees are sent to search for food sources, while the unemployed 

bees, called onlooker bees, are waiting in the hive to receive information about food sources discovered by 

employed bees. Once onlooker bees have received information about food sources, they try to select the best 

ones among them (with high quantity of nectar) to further explore the vicinity of the best food source 

positions (exploiting the best solutions). When a food source is exhausted, its employed bee changes the role 

to become a scout bee, which tries to find a new food source in other location. Three phases are performed to 

accomplish one cycle after the initialization phase of the population. A predefined number of cycles can be 

selected as stopping criteria of the ABC algorithm (16-18-20). 

 

3.1.   Initializing a population of solutions  

Initially, random positions of SN food sources are generated in the hive environment using the 

following equation: 

 

𝑥𝑖𝑗 = 𝑥𝑗,𝑚𝑖𝑛 + 𝑅𝑛. (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)  (20) 

 

where xj,max ,xj,min are, the upper and lower limits of j-th decision variable in the D-dimensional search space 

respectively with i Є [1, 2, .. SN], j Є [1, 2,.. D], and Rn is a randomly generated number in the interval [0, 1]. 

 

3.2.   Exploiting food sources by employed bees 

After the initialization of food source locations, all employed bees are sent to discover the food 

sources in the neighborhood of the previously memorized food source positions. Each employed bee tries to 

find a food source around an old one in its memory. This behavior is modeled mathematically using the 

following equation:  

 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + ∅𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝐾𝑗)  (21) 

 

where 𝑣𝑖𝑗 and 𝑥𝑖𝑗 indicate the new and the old j-th variable related to the i-th position of the food source, 

respectively, with iЄ{1,2,...SN} and j Є{1,2,…D}. 𝑥𝐾𝑗 is the j-th variable of the k-th position of food source 

chosen randomly. ∅𝑖𝑗 is a randomly generated real number between -1 and 1. If 𝑣𝑖𝑗 in (21) violates its 

predefined limits, it is fixed to its violated limit. A greedy selection process is carried out to select between 𝑥𝑖 

and 𝑣𝑖. 
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3.3.   Exploiting food sources by onlooker bees 

Once the employed bees have accomplished their investigation phase, they will communicate with 

onlooker bees about all information of food sources, particularly, the positions and nectar quantities. Each 

onlooker bee must choose one food source based on the probability evaluation pi corresponding to this food 

source. Using the probability of roulette wheel, pi can be evaluated by the following expression: 

 

𝑃𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑆𝑁
𝑗=𝑖

  (22) 

 

fitnessi:  Fitness value of solution i  

The vector from the population of solutions 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝐷] is evaluated by calculating its 

corresponding objective function
 
𝑓(𝑥𝑖) = 𝑓𝑖 and the fitness function 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 is given by: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1+𝑓(𝑥𝑖)
                             𝑖𝑓       𝑓(𝑥𝑖) ≥ 0

1 + 𝑎𝑏𝑠(𝑓(𝑥𝑖))                      𝑖𝑓          𝑓(𝑥𝑖) < 0
  

(23) 

 

The onlooker bee searches the neighborhood of selected food source position xi in order to produce a 

new candidate solution by changing one parameter in the vector xi using (21). The new generated solution vi 

is evaluated referring to (23). Then the greedy selection takes part again in this case, to retain the best 

solution and rejecting that of poor quality.  

 

3.4.   Exchanging role of the employed bee to a scout bee  

After the full exploitation of a food source, its corresponding employed bee becomes a scout bee 

and it will change the location to look for a new food source in the search space. This stage is reached when a 

proposed solution xi has not improved after a predetermined number of trials named "limit" and based a Trial 

Counter (TC) corresponds to each potential solution. TCi of i-th solution is incremented by 1 if no 

improvement of this solution, else TCi is reset to zero. Thus, the new food source is generated randomly 

using (20). The control parameter "limit" can be used as a key factor to avoid the ABC algorithm to be 

trapped in local minima during the search process. The ABC algorithm steps are illustrated as below: 

Step 1: Set the ABC algorithm parameters SN, limit, D and maxCycle. 

Step 2: Creating an initial random population (food sources) using (20). 

Step 3: Evaluating each food source by determining the fitness value using (23) and reset TC to zero 

for each one. 

Step 4: Start Cycle =1. 

Step 5: Start the phase of employed bees. 

for i =1 to SN 

        discover a new food source position vi depending on the old one xi by applying (21) where 

(k≠i),    

        evaluate each new food source using (23), apply the greedy selection to choose between xi 

and vi,    

        increment TCi by 1 if no improvement of the i-th food source, else reset TCi to zero. 

 end for 

 Step 6: Calculating the probability pi for each bee using (22). 

Step 7: Start the phase of onlooker bees. 

 for i=1 to SN 

     Generate a random value Rn 

      if  Rn<pi 

        discover a new food source position vi depending on the old one xi by applying (21) where 

(k≠i),    

        evaluate each new food source using (23), apply the greedy selection to choose between xi 

and vi,    

        increment TCi by 1 if no improvement of the i-th food source, else reset TCi to zero. 

      end if 

 end for 

Step 8: Start the scout bee phase 

  for i=1 to SN 

         if TCi> limit 
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            Create a new food source emplacement xi using (21) 

          end if 

  end for 

Step 9: Store the global best food source obtained until now. 

Step10: Verifying if Cycle>maxCycle, if yes exit by stopping the algorithm execution, otherwise do 

Cycle=Cycle +1 and go to step 5.  

 

 

4. SALP SWARM ALGORITHM 

The imitation of the SSA is from the attitude of salps belonging to salpidae species, living in oceans 

and possessing a transparent body in the form of a barrel like a jelly-fish. The salps move with pumped water 

through their body to propel themselves forward Figure 1 (a). It is believed that the salps move so that they 

organize a salp chain in oceans and seas searching the best sources of food as shown in Figure 1 (b). 

 

 

 
 

Figure 1. (a) Individual salp, (b) Swarm of salps (salps chain) 

 

 

To model the salp chain behavior in the mathematical aspect, the salp swarm is partitioned in two 

sub-populations of leader and followers. By leading the salp chain, the leader tries to govern the displacement 

of the followers. Each follower of the salp chain tracks the path mapped by one leader. In a similar manner as 

other categories of optimization techniques founded on the swarm attitude, the salp position is expressed in 

the search space with D-dimensions, where D reflects the number of control variables relating to the 

optimization problem. Consequently, Np positions of salps are memorized in a matrix X with  

two-dimensions. By assuming that the target of the swarm is a food source designated by Fj, the salp chain 

attempt to reach it during the search process [27], [28].To deal with the update of the leader position, the (24) 

can be suggested: 
 

𝑋𝑗
1 = {

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)               𝑐3 ≥ 0.5

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2+𝑙𝑏𝑗)               𝑐3 ≤ 0.5
  

(24) 

 

where: 

𝑋𝑗
1  = Leader position in j-th dimension relating to the first salp. 

𝐹𝑗  = The position occupied by the best food source in the dimension j at each iteration. 

𝑢𝑏𝑗and 𝑙𝑏𝑗 = Are upper and lower limits in the dimension j of D-dimensional space, respectively. 

c2, c3:  = Two randomly generated numbers in the interval between 0 and 1. 
 

In (24) exposes the update of the leader position by referring to the food source position. The factor 

𝑐1 represents the key factor in the harmonization between two important mechanisms of meta-heuristics 

exploration and exploitation during the research for good solutions specified in the following equation: 
 

𝑐1 = 2𝑒−(
4𝑙

𝐿
)

2

  (25) 

 

By considering: 

l: Current iteration, L: Maximum number of iterations. 

For updating the follower salp position, this task is accomplished according to the suggested (26). 
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𝑋𝑗
𝑖 =

1

2
(𝑋𝑗

𝑖 + 𝑋𝑗
𝑖−1)  (26) 

 

where the index i must be greater or equal to 2 and 𝑋𝑗
𝑖 depicts the i-th follower salp position in j-th 

dimension. By employing (24) and (26), the simulation process of salps in regrouped chains can be 

mimicked. Referring to mathematical inspiration, the principal steps of the SSA algorithm are shown below:  

 

 

5. HYBRID ABC-SSA APPROACH 

All meta-heuristic optimization techniques try to balance between their two important mechanisms: 

exploration and exploitation. The exploration is related to the search capacity of the algorithm in finding 

encouraging new solutions, while exploitation is associated with the capability of the algorithm to discover 

an optimum near the best solution. Referring to (21), which describes the search mechanism of the ABC 

algorithm, the new generated position 𝑣𝑖 (new solution) moves away from (or near) the old position (solution 

𝑥𝑖) depending on the selection probability 𝑝𝑖 in (23). This behavior tends to improve the exploration 

capability. The main disadvantage affecting the ABC algorithm is the update of position 𝑥𝑖 based only one 

search (21) by changing one parameter (one variable related to this solution). In addition, when the greedy 

selection is applied between 𝑥𝑖 and 𝑣𝑖, the bad solution is ignored without giving it more chance of 

exploitation. Therefore, the ABC method is good at exploration but poor at exploitation. The SSA uses the 

(24) in order to update the position of the leader referring to the best solution Fj (food source), which 

enhance the exploitation capability to find promising solutions in the vicinity of the optimal solution found so 

far Fj. The hybrid ABC-SSA approach tries to improve the exploitation proficiency of the ABC algorithm 

and that by introducing the bad solutions Sni which have not been improved (extracted using greedy selection 

between 𝑥𝑖 and 𝑣𝑖 in the employed and onlooker bee phases) in SSA. In such manner, these solutions are 

more exploited using the local search process by SSA in order to improve the solution quality of the 

optimization problem. The best global solution achieved by the ABC algorithm is stored as food source Fj in 

the SSA. To support all these stages, the hybrid ABC-SSA steps are described below: 

Step 1: Firstly, set the ABC algorithm parameters (N, D and maxCycle) and accomplishing ABC method 

steps (from step 2 until step 3). 

Step 2: Start Cycle =1. 

Step 3: Begin by step 4 until step 8 in the ABC steps (employed bees phase and onlooker bees phase). 

Step 4: Extracting the population of solutions Sni which has not been improved during ABC method and 

memorizing the best global solution achieved so far by ABC algorithm as best food source F_ABC. 

Step 5: Starting with SSA and evaluate the population of solutions Sni using (24). 

Step 6: Complete the same steps mentioned in the SSA method (from step 5 until step 9), and memorize the 

best food source as F_SSA. 

Step 7: Compare between F_ABC and F_SSA and extract the best food source among them.  

Step 8: Check if Cycle<maxCycle, if Yes do Cycle =Cycel+1 and then go to step 3, else extract the best food 

source and exit from the program. 
 

 

6. SIMULATION RESULTS AND DISCUSSIONS 

To investigate the enhancement of the proposed ABC-SSA approach in solving the ORPD problem, 

two standard test systems are considered which are IEEE-(30buses), and IEEE-(300buses). The  

mono-objective optimization issue is stated by minimizing the total active power losses (Ploss), voltage 

stability index (L-index) or total voltage deviation (TVD). Table 1 presents the characteristics of the test 

systems. The population size (N), the maximum number of iterations (Max_iteration) and penalty factors 𝜆𝑉, 

Step 1: Set SSA parameters like as D, Np, ub, lb, L and initialize l=1. 

Step 2: Create a random population of solutions by initializing the positions of salps. 

Step 3: Evaluate the population for the objective function and find the best global solution F (food 

source). 

Step 4: Dividing the salp population in two sub-populations of leaders and flowers. 

Step 5: Updating iteration number l=l+1. 

Step 6: Calculate the constant c1 based (25), while c2 and c3 are generated randomly. 

Step 7: Update leader and follower positions using (24) and (26), respectively.  

Step 8: Amending salp positions referring to lower and upper limits of variables.   

Step 9: Update the food source F. 

Step 10: Verifying if l<L go to step5, else extract the best global solution F and exit from the algorithm 

execution.  
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𝜆𝑄 in (16) for each test power system are given in Table 2. The optimal solution achieved by the developed 

algorithm (ABC-SSA) is selected for the best solution over thirty runs independently executed. 
 

 

Table 1. Description of test power systems 
Description IEEE-(30buses) IEEE-(300buses) 

Number of control variables 19 190 

Number of Generators 6 69 

Number of Taps 4 107 

Number of Q-shunt 9 14 

Equality constraints 60 530 

Inequality constraints 125 706 

Discrete variables 6 107 

Ploss (MW) 5.81 408.316 

TVD (pu) 0.5821 5.4286 

 

 

Table 2. Control parameter settings of ABC, SSA, and ABC-SSA algorithms for test power systems 
Algorithm ABC, SSA, and ABC-SSA 

Parameters 𝝀𝑽 𝝀𝑸 N Max_iteration or maxCycle  

IEEE-30 bus 0 0 80 150 

IEEE-300 bus 102 10-6 500 500 

 

 

6.1.   IEEE-(30 buses) system 

The first test system implemented in the ORPD problem is that of IEEE-(30buses). it contains 19 

control variables including 6 for generator voltage magnitude outputs located in buses 1; 2; 5; 8; 11 and 13, 4 

for tap setting transformers connected between buses (6–9, 6–10, 4–12 and 28–27), and 9 for reactive power 

output from shunt capacitors in buses 10; 12; 15; 17; 20; 21; 23; 24 and 29. The data base for this network is 

mentioned in [29], the total real power demand is 2.834 (pu) at 100 MVA Base. The limit of the control 

variables is shown in [29]. 
 

6.1.1. Active power losses minimization for IEEE-(30buses) system 

In this case, Ploss is selected as an objective function to minimize and the best control variables 

resulting from ABC-SSA computing code running are shown in Table 3, the results established are compared 

with those of other available methods in literature as PSO [29], comprehensive learning particle swarm 

optimization (CLPSO) [29], WOA [12] and improved gravitational search algorithm by conditional selection 

strategies IGSA_CS [30], as well as the implementation of the developed approaches in this paper  

ABC-SSA. The minimum obtained Ploss from the ABC-SSA algorithm is 4.5578 MW and it is less by 

0.1152 MW (2.53%) than SSA, which gives 4.6730 MW. The convergence curves for ABC, SSA, and  

ABC-SSA methods are illustrated in Figure 2, which demonstrates that the new hybrid approach does not 

have any stagnations for the global best solution evolution as it does for SSA and ABC methods. This 

characteristic shows better performances of ABC-SSA in tackling the premature convergence.  
 

 

 
 

Figure 2. Convergence curves for Ploss minimization, IEEE-(30buses) 
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Table 3. Simulation results using ABC-SSA and other optimization techniques for Ploss minimization-IEEE-

(30buses) 
control variables ABC-SSA ABC SSA PSO [29] CLPSO [29] WOA [12] IGSA_CS [30] 

Generator voltage 

V1 1.1000 1.0578 1.1000 1.1000 1.1000 1.1000 1.081281 

V2 1.0942 1.5050 1.0945 1.1000 1.1000 1.0963 1.072177 

V5 1.0738 1.0635 1.0749 1.0867 1.0795 1.0789 1.050142 

V8 1.0762 1.5715 1.0768 1.1000 1.1000 1.0774 1.050234 

V11 1.1000 1.5265 1.0707 1.1000 1.1000 1.0955 1.100000 

V13 1.1000 1.5565 1.0814 1.1000 1.1000 1.0929 1.068826 

Transformer tap ratio 

T6-9 1.0684 1.0380 1.0147 0.9587 0.9154 0.9936 1.080 

T6-10 0.9000 1.0289 1.0036 1.0543 0.9000 0.9867 0.902 

T4-12 0.9998 1.0755 1.0593 1.0024 0.9000 1.0214 0.990 

T28-27 0.9760 1.0396 1.0040 0.9755 0.9397 0.9867 0.976 

Capacitor banks 

QC-10     5.0000 2.7614 4.3881 4.2803 4.9265 3.1695 0.00 

QC-12     5.0000 2.0468 4.3416 5.00 5.0000 2.0477 0.00 

QC-15     5.0000 0.9966 2.6818 3.0265 5.0000 4.2956 0.0380 

QC-17     5.0000 2.7687 1.6046 4.0365 5.0000 2.6782 0.0490 

QC-20     5.0000 4.5165 1.4919 2.6697 5.0000 4.8116 0.0395 

QC-21     5.0000 3.3702 2.7040 3.8894 5.0000 4.8163 0.0500 

QC-23     3.8635 3.5046 2.7881 0.0000 5.0000 3.5739 0.0275 

QC-24     5.0000 2.4227 4.3374 3.5879 5.0000 4.1953 0.0500 

QC-29     3.1172 3.8632 2.4971 2.8415 5.0000 2.0009 0.0240 

Ploss MW 4.5578 4.7157 4.6730 4.6282 4.5615 4.5943 4.76601 

TVD (pu) 1.8117 0.4789 1.0592 1.0883 0.4773 - - 

L-index (pu) 0.1169 0.1452 0.1277 0.1423 0.1230 - - 

 

 

6.1.2. TVD minimization for IEEE-(30buses) system   

In this case, TVD is the objective function to be minimized for the same IEEE-(30buses) test 

network. Table 4 presents the results deduced from the simulation stage, which includes the best optimum 

(TVD) with the proposed ABC-SSA algorithm and the two implemented approaches ABC and SSA. A 

comparison is made with other optimization methods provided in literature, like, hybrid firefly algorithm 

(HFA) [31], PSO [29], and CLPSO [29]. Therefore, as shown in Table 4, there is a TVD improvement of 

5.15% than the best result obtained by HFA [31] that gives 0.098 pu. Figure 3 illustrates the convergence 

characteristics of each method confirming the fastest convergence rate of ABC-SSA in reaching the best 

global optimum. 

 

 

Table 4. Comparison of simulation results for IEEE-(30buses) with TVD minimization objective 
Algorithms ABC-SSA CNC SSC HFA [31] PSO [29] CLPSO [29] 

Ploss MW 6.0744 6.0945 5.7451 5.75 4.7075 4.6969 

TVD (pu) 0.0932 0.1097 0.1053 0.098 0.2577 0.2450 

L-index(pu) 0.1369 0.1374 0.1367 - 0.1273 0.1247 

 

 

 
 

Figure 3. Convergence curves for TVD minimization of IEEE-(30buses) power system 
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6.1.3. VSI improvement for IEEE-(30buses) system 

In order to enhance the margin stability of IEEE-(30buses) system, the VSI given by max (L-index) 

is minimized by applying the ABC-SSA. The simulation results are listed in Table 5 and compared with those 

of ABC, SSA, GSA [11], and opposition-based gravitational search algorithm OGSA [32]. The optimal value 

of VSI using ABC-SSA is better than that of the OGSA method in the literature signalling a remarkable 

reduction (important improvement) equal to 9.82%. 

 

 

Table 5. Comparison of simulation results for IEEE-(30buses) test power system with improvement of VSI 
Algorithms ABC-SSA CNC SSC OGSA [32] GSA [11] 

Ploss MW 4.7173 5.4268 4.6581 5.9198 4.975298 

TVD (pu) 2.1341 1.8551 2.0349 1.9887 0.215793 

L-index(pu) 0.1120 0.1138 0.1139 0.1230 0.136844 

 

 

6.2.   IEEE-(300 buses) system 

To test and prove the applicability of the SSA algorithm in more practical, complicated and large test 

systems, IEEE-(300buses) is proposed which consists of large-scale dimensions of control variables 

containing 190 control variables where their types are demonstrated in Table 6. The total load data are 

235.258pu and 77.8797 pu for active and reactive power, respectively [33], [34]. The control variables 

restrictions are indicated in [35].  

For the first case of this test system application, the total active losses (Ploss) are minimized using 

ABC-SSA algorithm. Table 1 reports the best results found by the ABC-SSA method and other optimization 

approaches as ABC, SSA, specialized genetic algorithm (SGA), and ALO methods. The optimal solution of 

the objective function (Ploss) was obtained with an improvement equal to 3.05 % when it is compared to that 

of the SGA method. The search mechanism for the optimal solution was clarified by a convergence curve in 

Figure 4 related to the ABC-SSA, ABC, SSA. It is clearly remarked that the convergence profile using  

ABC-SSA is the promising one. Figure 5 exhibits the voltage profile when the optimal solution is achieved 

for the present test system, noting that the voltage magnitude at all buses is in its permissible range without 

any violations beyond the permissible limits. 

 

 

Table 6. Comparison of simulation results for IEEE 300-Bus with ploss minimization 
Results ABC-SSA ABC SSA SGA [35] ALO [36] 

Ploss MW   343.4272  364.347  353.886 357.10 384.922 

TVD (pu)    20.3408    1.5292  18.2697 15.744 - 

L-index (pu)     0.9003    0.8879    0.8340 - 0.3663 

 

 

 
 

Figure 4. Convergence curves for Ploss minimization IEEE-(300buses) 
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Figure 5. Bus voltage profile for IEEE-(300buses) power system 
 

 

7. CONCLUSION 

In this paper, a new hybrid bio-inspired optimization approach combining artificial bee colony 

(ABC) and Salp Swarm (SSA) algorithms named (ABC-SSA) was developed and successfully employed for 

solving different problems of optimal reactive power dispatch (ORPD) with several types of complexities. 

The presented approach was examined and evaluated regarding different objective functions. The 

effectiveness and robustness of the novel ABC-SSA are investigated using two standard test systems IEEE. A 

comparison report of ABC-SSA with the original ABC and SSA algorithms is made based on convergence 

curves. A smooth convergence curve is devoted to ABC-SSA approach when it is compared to that of basic 

ABC and SSA algorithms, which proves the capacity of the proposed approach to escape from the stagnation 

in local minima and to converge in faster manner towards the global optimal solution. Another comparison 

survey of the ABC-SSA with different optimization techniques in the same literature is provided. The results 

of the simulation report prove that the ABC-SSA offers better performances than other comparison methods, 

indicating the robustness and the superiority of the ABC-SSA, which shows a remarkable exploitation 

capability by using the best solution (food source of SSA) at each iteration to achieve promising solutions. 

Thus, the ABC-SSA algorithm can be recommended as a promising optimization algorithm in solving other 

more complex optimization problems for engineering area, particularly in electrical power systems.  
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