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 An Arabic sign language recognition using two concatenated deep 

convolution neural network models DenseNet121 & VGG16 is presented. 

The pre-trained models are fed with images, and then the system can 

automatically recognize the Arabic sign language. To evaluate the 

performance of concatenated two models in the Arabic sign language 

recognition, the red-green-blue (RGB) images for various static signs are 

collected in a dataset. The dataset comprises 220,000 images for 44 

categories: 32 letters, 11 numbers (0:10), and 1 for none. For each of the 

static signs, there are 5000 images collected from different volunteers. The 

pre-trained models were used and trained on prepared Arabic sign language 

data. These models were used after some modification. Also, an attempt has 

been made to adopt two models from the previously trained models, where 

they are trained in parallel deep feature extractions. Then they are combined 

and prepared for the classification stage. The results demonstrate the 

comparison between the performance of the single model and multi-model. It 

appears that most of the multi-model is better in feature extraction and 

classification than the single models. And also show that when depending on 

the total number of incorrect recognize sign image in training, validation and 

testing dataset, the best convolutional neural networks (CNN) model in 

feature extraction and classification Arabic sign language is the DenseNet121 

for a single model using and DenseNet121 & VGG16 for multi-model using. 
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1. INTRODUCTION 

Sign language is thought to be the only means for normal people, hearing-impaired, and deaf to 

communicate. People use non-verbal speech in the form of sign language signals to express their thoughts 

and feelings. In sign language, there are two types of gestures: static and dynamic. [1]. Arabic Sign Language 

ArSL has many nation varieties and dialects. It varies from one nation to another, even often inside the same 

country. Despite this, the alphabet and numbers in the Arabic language are standardized in sign language [2]. 

Sign languages need an intelligent device that can convert them from one sign language to another using 

natural language. Without an interpreter, it’s difficult for most people who aren't interested in sign language 

to communicate. These problems necessitate the use of automatic sign language translation programs. 

Non-manual and manual signs are the two major components that make up sign languages. Body 

motion and facial expressions are represented by the non-manual. Hand location, orientation, shape, and 

trajectory are the manual signals. Most works, however, concentrate on manual signs because they provide 
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the most important information, non-manual signs, on the other hand, assist signers in explaining and 

emphasizing the value of manual signs [3], [4]. In this work, the manual sign is investigated. 

Sign language detection is achieved in two approaches: the first approach depends on vision-based, 

while the second approach is based on sensor-based [5], [6]. The vision-based approach captures the hand 

gesture with the camera in the form of static or sequential images without the use of gloves or sensors. This 

approach is most appropriate for the real daily life of the deaf and mute, although there are many obstacles 

such as lighting conditions, skin colour, background differences, in addition to the properties and settings of 

the camera [5]. The sensor-based approach involves wearing gloves, which contain sensors intended to 

express sign language. These gloves have the characteristic of being unaffected by the obstacles that the 

vision-based approach faces. However, it is not appropriate to wear it most of the time [5]. 

The main goal of the presented research is to prepare data related to the Arabic sign language, 

amounting to 220 thousand colour images. Then, using pre-trained models fed with images, set up a system 

that can automatically recognize the Arabic sign language, which includes 44 categories: 32 letters, numbers 

from 0 to 10, and one for none. Also, an attempt to evaluate the performance of concatenating two models in 

the Arabic sign language recognition is presented. 

 

 

2. RELATED WORKS 

Deep learning is widely used in many areas. Convolutional neural networks are a form of deep 

neural network that is widely used for image analysis. There are various architectures available for 

convolutional neural networks (CNNs). CNNs are giving the best and most accurate results when solving 

real-world problems. One of its applications is image classification, which is the process of capturing an 

image as an input and producing the image’s class. A critically important good prediction can be obtained 

through CNNs role in reducing images to a form that is easy to process without losing features. 

Many researchers have used different methods to identify sign language in general or Arabic, and 

some of them will be presented. In [7], a method for recognizing ArSL numbers and letters is suggested. 

With a real dataset of 5839 images of 28 characters and 2030 images of numbers (from 0 to 10), this system 

is based on CNN. The proposed system has a recognition rate of 90.02%. 

Using a fine-tuned VGG19 model, Crepso et al. [8] proposes an red-green-blue (RGB) and RGB-D 

static gesture recognition system. The fine-tuned VGG19 model uses a feature concatenate layer of RGB and 

RGB-D images to increase the neural network's accuracy. The proposed model tested an American sign 

language (ASL) Recognition dataset achieved a 94.8% recognition rate. 

Dadashzadeh et al. [9] suggested a two-stage fusion network based on CNN architecture for hand 

gesture recognition. In the first stage of the network, they proposed hand segmentation architecture. When 

there is a similarity between skin colour and background colour, the hand segmentation model performed 

well in difficult conditions, according to their data. They designed a two-stream CNN for the network's 

second level until classification, it can learn to merge feature representations from both the RGB image and 

its segmentation map. Their system runs at a frame rate of 23 ms per frame.  

A deep learning-based method for ArSL recognition was suggested in [10]. Deep features are 

selected by processing input images with various layers. Finally, the SoftMax function is used to divide target 

classes into categories and compute a normalized probability score for each. With a score of 99.52%, the 

suggested system based on residual network ResNet101 obtained the greatest accuracy. Elsayed and  

Fathy [11] trained and tested Deep CNN architecture on an Arabic sign language dataset. Their experimental 

results show that the training set's classification accuracy was 98.6%, while the testing sets was 94.31%, 

according to the collected dataset. 

Althagafi et al. [12] used a CNN model by taking grayscale images as input to a system that 

automatically recognizes 28 letters for Arabic Sign Language recognition, they achieved 92.9% of 

recognition accuracy on 10810 tested images. Latif et al. [13] suggested a system that recognizes the Arabic 

alphabet's signs in real-time. A database of more than 50000 images was used to train and test the Deep CNN 

architectures. Several trials are carried out to determine the highest recognition rates by changing CNN 

architectural design parameters. Three convolutional layers, three pooling layers, and a fully connected layer 

make up the proposed deep CNN architecture. The accuracy of the experimental results is 97.6%. 

The accuracy of recognizing 32 hand gestures from the Arabic sign language is improved using 

transfer learning and fine-tuning deep convolutional neural networks (VGG16, ResNet152) [14]. The 

implementation of the presented model was accomplished by reducing the size of the training dataset while 

increasing accuracy. The networks were fed by images of various Arabic Sign Language data and were able 

to achieve an accuracy of approximately 99%. The convolutional neural network (CNN) and a dataset of 

20,000 sign images of 10 static digits were used in research [15] to build the BSL digits recognition system. 

The proposed CNN model was compared to a number of other sign language models. The proposed CNN 
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model's architecture was close to that of the VGGNet, but it only had six convolutional layers instead of the 

VGGNet's minimum of 13. The training accuracy of the proposed system is 97.62%. 

The system is a re-training VGG system [16] for real-time ASL fingerspelling recognition with 

CNNs networks to classify a total of 26 alphabets, as well as two classes for space and delete. The system 

had a training set accuracy of 98.53% and a validation set accuracy of 98.84%. CNN used the proposed 

system [17] to recognize Arabic hand sign-based letters and translate them into Arabic speech. This system 

has a 90% accuracy rate in recognizing Arabic sign letters. Tasmere et al. [18] introduced a system to 

recognize hand gestures in real-time. Hand segmentation in the YCbCr colour space was used for gesture 

identification, followed by the suggested CNN model. Three convolution layers, two max-pooling layers, and 

two fully connected layers represent the proposed CNN model. For 11 gestures from depth images, this 

proposed technique provided an accuracy of 94.61%. A dataset containing 1320 sample images was used. In 

the current study, there are several attempts to develop both the single model and the multi-models to 

increase the performance and accuracy of the Arabic sign language recognition. In addition, this study was 

distinguished by the following: 

 A large-sized colored dataset was prepared for the Arabic sign language due to the inability to access such 

data, by many researchers who deal with Arabic sign language recognition. 

 According to the previous researches and using the multi-model’s method, there are different input data 

for each model as colour and depth images. While in this study, the same input colour images were used 

for each model. 

The CNN models generate different lengths of feature maps with different ranges of values. When 

using multiple models, before merging the two models features, we normalized the values of these feature 

maps in the same range. 

 

 

3. EXPERIMENTAL METHODOLOGY 

3.1.   Dataset  

The three-channel RGB images are received from the camera. The RGB images for various static 

signs are collected in this dataset. The dataset comprises 220,000 images for 44 categories: 32 letters as 

shown in Figure 1 to express all the Arabic sign language (ArSL) vocabulary, 11 numbers (0:10), and 1 for 

none. For each of the static signs, there are 5000 images collected from 10 different volunteers. The dataset 

divided into three groups training, validation, and testing, where 80% (176,000 images) of the data were used 

for training, 10% (22,000 images) of the data were used for validation, and 10% (22,000 images) of the data 

were used for testing. The dataset also included several cases of diverse lighting conditions and backgrounds; 

it included changing the distance between a user and the camera, as shown in Figure 2.  

 

 

 
 

Figure 1. Arabic alphabet signs are type of static gestures and are performed using a single hand 
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Figure 2. A set of images of the letter Ba from the dataset 

 

 

3.2.   Data preprocessing 

Sign images were preprocessed by resizing and normalizing the image. The image is then resized to 

100x100. This size is chosen as a tradeoff between accuracy and execution time. These images are then 

normalized to change the range of pixel intensity values, resulting in a mean value of 0 and a variance of 1. 
 

3.3.   Data augmentation 

Usually, for these very powerful deep neural networks, deep learning is associated with millions of 

images. The disadvantage of the limited training image set is that the neural network may remember our 

training data and can predict the performance of the training set well, but the verification accuracy is poor. 

For solving the dataset problem, data augmentation was applied to prevent overfitting and improve model 

generalization ability [19]. The study uses online data augmentation. There are various data augmentation 

techniques used for static sign language to prevent model overfitting and enhance learning capability: 

Normalization image, brightness range (0.4-1.2), zoom range (1.0, 1.2), height shift range (10%), width shift 

range (10%), rotation range (±10°). The augmentation of data for the dynamic sign was done by applying 

rotation ± (5°-10°), translation transformation ± (4-8%) and change the brightness ± (8-28%) and sharpen the 

image, added noise salt and paper and blurring images with filters gaussian, median, averaging and 

morphological operation erosion and dilation of the dataset. We also flipped the images horizontally to 

include left or right-handed sign language. The training set is increased about 48 times through these 

operations. Inside the mini-batch fed into the model, all of these operations are applied at random. 
 

3.4.   Pre-train models 

To take advantage of Transfer learning by using pre-trained models. ImageNet is a research project 

that aims to create a massive image database. Models such as the DenseNet121 [20], VGG16 [21], 

NasnetMobile [22], Xception [23], MobileNetV2 [24], EfficientB0 [25], InceptionV3 [26] and ResNet50 [27] 

were trained on various classes of images. These models were created from scratch and trained on millions of 

images containing thousands of objects using high-quality GPUs. The model has learned a good 

representation of low-level features such as spatial, edges, rotation, illumination, and shapes since it was 

trained on a large dataset. These features may be exchanged to facilitate transfer learning and extract features 

from new images across several computer vision problems. The previously tested model should also be able 

to extract specific features from these new images based on the concepts of transfer learning, even though the 

new images are from entirely different groups than the source dataset. This is to benefit from these models in 

extracting features and classifying images, which are different from what they were trained on. Therefore, 

this requires changing the last layers responsible for classification from these models with different other 

layers to match the number of objects to be classified. Then training on the new image data until the desired 

precision in recognition is obtained. This method is considered the best one in obtaining the required 

accuracy in recognizing from adopting untrained models. 

 

3.5.   Proposed method 

3.5.1. Single model 

Pre-trained models with trained weights are used on the ImageNet. These models (DenseNet121, 

VGG16, RESNet50, MobileNetV2, Xception, Efficient B0, NASNet Mobile, and InceptionV3) were used 

with some modifications. Each of these models includes two parts, the first for extracting features and the 
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second for classification. The second part has been removed, and we have kept the feature extraction part. 

Then, a layer of global average pooling was added after the last layer in the feature extraction part. The 

global average pooling layer (GAP) is added to reduce the size of the feature map by converting it into a one-

dimensional matrix while keeping vital information, where the size of a feature map with dimensions h×w×d 

is reduced to dimensions size to 1×1×d. GAP layers use the average of all h×w values to reduce each hw 

feature map to a single number. Attempts have also been made to add different layers for optimum 

classification. The best accuracy was when adding one layer of the dropout rate of 20% reduction in existing 

connections to prevent overfitting, in which the connections between the layers are randomly eliminated, the 

dropout layer is disabled in testing and validation mode. Then followed by a fully connected output layer 

(FC) of size 44, its unit’s number equal to class’s number, with a softmax activation function for 

classification. The following models were developed according to what was mentioned above: DenseNet121, 

VGG16, RESNet50, MobileNetV2, Xception, Efficient B0, NASNetMobile, and InceptionV3. Then each of 

them was trained on an Arabic sign language dataset to recognize Arabic sign language. And Figure 3 shows 

the general layout of architecture for each of these models. 

 

3.5.2. Multi-model 

An attempt has been made to adopt two models from the previously trained models referred to 

above, where they are trained in parallel deep feature extractors. Then they are combined and prepared for 

the classification stage. Figure 4 shows the architecture of a multi-model network, which consists of two 

branches. Each branch is a CNN model. DenseNet121 model and VGG16 model are used in the case shown 

in Figure 4. In this multi-model, our dataset's pre-processed input colour images size is 100x100 pixels, 

which represent the input image for two multi-model branches. From the input image, DenseNet produces a 

3x3x1024 feature map on its last feature extractor layer, while VGG16 generates a 3x3x512 feature map on 

its last feature extractor layer. To reduce the size of the last layer feature map, we applied Global Average 

Pooling by taking the average of each feature map and extract important features. Since the networks of both 

models generate different feature maps with different range values, then we normalized the values of these 

feature maps in the same range by using the lambda layer. After the normalization, we combine these values 

of the features maps by concatenating layers to improve the quality of the created semantic features. 

For both single model and multi-model during the training process, the data augmentation is one of 

the most popular methods for reducing overfitting. When the model is trained on the GPU, the data 

augmentation is performed in real-time on the CPU. Experiments are run on a single computer with an Intel 

Core i7-9750H Hexa-core CPU, 16GB SDRAM, and an NVIDIA GeForce RTX 2060 GPU with 6GB of 

memory. Python modules are used to implement the neural network models.  
 

 

 

 

 

 

 

 

 

 

 
Figure 3. The architecture of the single model 

network 

Figure 4. The architecture of the concatenated network 
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3.6.   Evaluation of proposed method 

To evaluate the performance of the best models proposed in this study by comparing them with 

other studies working on a standard data set. Since the proposed models were trained on the Arabic sign 

language data which we prepared, so the models proposed in this study were retrained on the American sign 

language (ASL) standard data, which Kaggle challenge developed. The ASL data includes 87,000 images 

divided into 29 categories: 26 letters for all ASL vocabulary and three letters for space, delete, and empty. 

The ASL data set was divided into three sets for training, validation and testing, 80% (69600 images) of the 

data were used for training, 10% (8700 images) of the data were used for validation, and 10% (8700 images) 

of the data used for testing. Thus, the model's performance in this study can be compared with previous 

studies that used the same ASL dataset. 

 

3.7.   General Workflow of the proposed method 

The open-source Google MediaPipe technology is using to detect the hands. This platform allows 

using real-time computer vision technology, including hand detection, hand tracking. It was released in 2020. 

The Google MediaPipe technology provides detailed real-time finger tracking with multiple hands. The 

accuracy of the palm detection is 95%. MediaPipe uses two convolutional neural network models to detect the 

hand: palm detection and finger detection from a picture or video clip. This was used to define the hand region 

that would be extracted [28]. The sequence of frames captured by the camera is passed through a mediapipe 

framework hand detector to find the hand boundary. After that, the hand region is extracted and passed into the 

preprocessing stage to resize and normalise the hand region image. Then the hand region image passed into 

single or multi-CNN models for sign language recognition by feature extraction and classification. Figure 5 

shows the overall architecture of the system for hand detection and sign language recognition. 

 

 

 
 

Figure 5. The general workflow of the proposed method for hand detection and gesture recognition 

 

 

4. RESULTS AND DISCUSSION 

The performance evaluation of our proposal has been carried out with the following metrics [29], 

widely used for this kind of task: Accuracy, Precision, Recall and F1-score. They are defined as follows: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (2) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
 (3) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 

 

False negative is a result under which the model forecasts the negative class wrongly. False positive 

is a result under which the model forecasts the positive class wrongly. True negative is a result under which 

the model forecasts the negative class accurately. True positive is a result under which the model forecasts 

the positive class accurately. 

Table 1 compares the validation accuracy and test accuracy of a single model and multi-model with 

epochs equal to 5. Accuracy: is the ratio of the number of correct classifications to the total number of 

classifications. Incorrect recognize training, validation, and testing: are the number of misclassified images 

for training, validation, and testing respectively. The table revealed that both the validation accuracy and the 

test accuracy were at least 97% in most single or multimodal models. The accuracy ratio is high despite 
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several incorrect recognize sign images, whether in testing or validation due to the large size of the data, 

where 22,000 images of the data were used for each of testing and validation. The table also shows the 

comparison between the performance of the single model and multi-model. It appears that the multi-model is 

better in feature extraction and classification than the single.  
 

 

Table 1. Comparison of the validation accuracy and test accuracy for single and multi-models with Epochs=5 

Model 
Incorrect Recognize 

Training 

Incorrect Recognize 

Validation 

Validation 

Accuracy % 

Incorrect 

Recognize Test 

Test 

Accuracy % 

DenseNet121 12 3 99.99 1 100 

VGG16 9 6 99.97 5 99.98 

DenseNet121 & VGG16 1 1 100 1 100 

RESNet50 34 10 99.95 6 99.97 

MobileNetV2 45 3 99.99 6 99.97 

RESNet50 & MobileNetV2 23 5 99.98 5 99.98 

Xception 110 15 99.93 15 99.93 

Efficient B0 267 53 99.85 38 99.83 

Xception&Efficient B0 106 16 99.93 17 99.92 

NASNetMobile 2334 328 98.51 320 98.55 

InceptionV3 3883 508 97.69 491 97.77 

NASNetMobile & 

InceptionV3 

3304 415 98.11 417 98.10 

DenseNet121 & 

MobileNetV2 

7 2 99.99 1 100 

DenseNet121&RESNet50 11 2 99.99 2 99.99 

 

 

Table 2 shows total parameters, FPS, training time, size of feature maps and total incorrect 

recognize sign image out of 220 thousand for different models. Total parameters: The parameters selected by 

the network during the training process are considered the network parameters. Their number determines the 

complexity of the network and the possibility of better learning, but this needs more images to train the 

network. Training Time: The time is taken to train the network. Size of feature maps: the size of last feature 

extraction layer. The frame per second (FPS) is the most common unit of time used in object detection. It 

indicates the maximum number of frames that the network will process in a second. total incorrect recognize: 

the number of misclassified images. 

The top three best in feature extraction and classification models are the multi-models, DenseNet121 

& VGG16, DenseNet121 & MobileNetV2, and DenseNet121 & RESNet50. It is based on the total number of 

Incorrect Recognize sign images in the training, validation and testing dataset. It is clear from the table that 

the training time for the multi-model is greater than the training time for the single models that compose it 

and less than the training time for both single models. It also shows that the FPS in the multi-model case is 

less than the single model and ranges between 66-96% of the FPS of single models. It also revealed that 

when the total parameters are increased, the FPS decreases. These are evident in the multi-model in which 

the total parameters are greater than that of the single model. 

 

 

Table 2. Total parameters, FPS and total incorrect recognize for different deep CNN models 

Model 
Total 

Parameters*106 

Training Time 

(hour) 

Size of Feature 

Maps 

FPS For 

Inference 

Total Incorrect 

Recognize 

DenseNet121 7.08 2.13 3*3*1024 24 16 

VGG16 14.73 1.52 3*3*512 32 20 

DenseNet121 & VGG1 21.81 3.17 1536 22 3 

RESNet50 23.67 1.58 4*4*2048 28 50 

MobileNetV2 2.31 1.17 4*4*1280 32 54 

RESNet50 & 

MobileNetV2 

25.99 2.28 3328 24 33 

Xception 20.95 2.00 3*3*2048 28 140 

Efficient B0 4.10 2.23 4*4*1280 24 358 

Xception & Efficient B0 25.05 3.55 3328 19 139 

NASNetMobile 4.31 3.68 4*4*1056 21 2692 

InceptionV3 21.89 2.18 1*1*2048 23 4882 

NASNetMobile & 

InceptionV3 

26.3 4.77 3104 16 4136 

DenseNet121 & 

RESNet50 

30.76 3.22 3072 23 15 

DenseNet121 

&MobileNetV2 

9.39 3.12 2304 21 10 
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Several single and multi models have been trained and tested. DenseNet121 and VGG16 network 

extracting deep features is better than other networks based on the method described above. Compared to the 

concatenation of DenseNet121 and VGG16 neural networks with other neural networks. The higher accuracy 

is obtained with the concatenated network. We were able to help the network learn the representation of both 

by concatenating the feature vectors of both networks, which accurately represented the image and produced 

a better accuracy of prediction.  

The single models used in the proposed method were arranged on Tables 1 and 2 according to 

accuracy that depends on the total Incorrect Recognize. After that, the multi-models were used for every two 

single models in the sequence, meaning four multi-models. Then other options were added using the best 

single model with other single models outside the sequence. Figure 6 shows the training and validation 

accuracy in addition to the training and validation loss of multi-model DenseNet121 and VGG16. The 

accuracy continues to increase, and the loss rate decreases during the training and validation phases. 
 

 

  
 

Figure 6. The training and validation accuracy in addition to the training and validation loss of multi-model 

DenseNet121 & VGG16 
 

 

Table of 44-class confusion matrix the model is used for data augmentation techniques in ArSL 

image classification. Columns represent the true classes, and the classifier's predictions are represented by 

rows. All correction classifications are arranged in the diagonal of a square matrix. The results of the multi-

model neural network evaluation of DenseNet121 and VGG16 are illustrated for the training and testing 

networks in the confusion matrix shown in Figures 7 and 8. Figure 9 show tabulation of precision, recall, f1-

score, and support for each class of training network to recognize Arabic sign language with the task of the 

44 class by multi-model DenseNet121 & VGG16. 

 

 

  
  

Figure 7. Training confusion matrix of multi-model 

DenseNet121 & VGG16 

Figure 8. Testing confusion matrix of multi-model 

DenseNet121 & VGG16 
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Figure 9. Tabulation of precision, recall, f1-score, and support for each class for testing & training network of 

multi-model DenseNet121 & VGG16 

 

 

Table 3 compares the validation accuracy and test accuracy of a single model and multi-model with 

epochs equal to 5 for the ASL dataset. The table shows the comparison between the performances of the 

single model and multi-model. It appears that the multi-model is better in feature extraction and classification 

than the single models. In addition, 100% accuracy was obtained in each of the training, validation and 

testing of the multi-model if the training was increased at epochs equal 7. 

Table 4 shows the comparison between this work and previous works for the ASL dataset. From 

Table 4, it is clear that the proposed method, whether using a single model or a multi-model, is better than the 

models presented in the previous studies referred to in the table. 

 

 

Table 3. Comparison of the validation accuracy and test accuracy for single and multi-models with Epochs=5 

for ASL dataset 

Model 
Incorrect Recognize 

Training 
Incorrect Recognize 

Validation 
Validation 

Accuracy% 
Incorrect 

Recognize Test 
Test 

Accuracy% 
DenseNet121 10 1 99.99 0 100 
VGG16 38 6 99.93 3 99.97 
DenseNet121&VGG16 2 0 100 0 100 
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Table 4. Comparison this work and previous works for ASL dataset 
Authors Description Accuracy 

Lum et al., 2020 [30] Transfer learning using MobileNetV2 on 29 classes 98.67% 

Sinha et al., 2019 [31] Custom CNN model with fully connected layer on 29 classes 96.03% 

Kadhim et al., 2020 [32] Transfer learning using VGG1 on 28 classes 98.65% 

Paul et al. 2020 [33] Custom CNN model with fully connected layer on 24 classes 99.02% 

Mahmud et al., 2018 [34] HOG feature extraction & KNN classifier on 26 classes 94.23% 

Prasad 2018 [35] Image magnitude gradient for feature extraction on 24 classes 95.40% 

Phong &Ribeiro 2019 [36] Transfer learning on multiple architecture, etc on 29 classes 99.00% 

Ashiquzzaman et al., 2020 [37] Transfer learning using VGG16 on 29 classes 94.00% 

This work single model Transfer learning using DenseNet121on 29 classes 100.00% 

This work single model Transfer learning using VGG16 on 29 classes 99.97% 

This work multi-model Transfer learning using multi-model DenseNet12 & VGG16 on 29 classes 100.00% 

 

 

5. CONCLUSION 

Through analysis and discussion of the results of the proposed method, and under the limitations 

adopted by the research, the following was concluded: The research prepared about 220 thousand colour 

image datasets, as there is no public colour dataset for Arabic sign language recognition. When comparing 

the performance of single models and multi-models, it appears that most multi-models are better in feature 

extraction than single models. The DenseNet121 is the best CNN model for extracting features and 

classifying the Arabic sign language by depending on the total number of incorrectly recognized sign images 

in training, validation and testing datasets. Furthermore, based on the total number of incorrectly recognized 

sign images in training, validation, and testing datasets, the DenseNet121 & VGG16 multi-model CNN is the 

best for extracting features and classifying Arabic sign language. The multi-model is better for the feature 

extraction and classification of ASL than the single models by using the proposed method. And the accuracy 

of the proposed method, whether using a single model or a multi-model, is better than the models presented 

in the previous studies in extracting features and classifying ASL. In future researches, the work will be 

extended to develop a mobile-based application to recognize Arabic sign language in real-time. And also, the 

system will be extended to use dynamic gesture recognition for Arabic sign language, which requires 

preparing a video-based dataset. 
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