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 The bandwidth of the wireless communication has increased due to the 

various applications of the wireless devices. A radio frequency power 

amplifier (RFPA) is one of the crucial components of the transceiver. So, to 

meet the requirement of the bandwidth, wideband RFPA is needed. The 

RFPA not only requires a wideband matching network but importantly the 

biasing network. For the next-generation communication system, a wideband 

biasing network is needed to operate in the wide GHz bandwidth range. In 

this paper, a wideband biasing network for the power amplifier is designed 

using a quarter-wave transmission line and a butterfly stub for the frequency 

band of 3.3 GHz to 4.3 GHz. Roger’s RO3006 is used as the substrate for the 

design of the biasing network. The designed network performed well in the 

required frequency range. The performances of the biasing network have 

shown 9 dB to 19 dB return loss, the radio frequency (RF) isolation has more 

than 35 dB, and 0 dB to 1.5 dB insertion loss. This wideband biasing network 

can be used for the next generation communication system. 
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1. INTRODUCTION  

The use of wireless communication systems is increasing day by day in many applications such as 

cellular phones, wireless local area networks (WLAN), broadcasting, and wireless computer peripherals to be part 

of our daily lives. Radio frequency power amplifiers (RFPA) are the essential components of the wireless 

communication system. RFPA consumes dendritic cells (DC) power to boost up the input signal to deliver with 

maximum output power at RF frequency. The RFPAs are the most costly component at the front end [1]. So, high 

efficiency is a key requirement of RFPA design. A high efficient RFPA leads to low power consumption, smaller 

battery size, and lessen the cooling requirement [2]. The RFPA consist of mainly four components. These 

components are the biasing network, stability network, input matching network (IMN), and output matching 

network (OMN). Due to the large bandwidth requirement, the wideband power amplifier is needed for the next-

generation communication (5G) system with good performances. To increase the performances of RFPA, 

scientists all over the world are working on the different parts of the RFPA. The design of the biasing network is 

one of them. Various configuration and techniques have been developed and explored for the biasing network. The 

function of the biasing network is to offer high impedance at the RF frequency signal while offering minimum 

resistance to DC. 

https://creativecommons.org/licenses/by-sa/4.0/
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Different types of biasing networks have been designed to meet the requirement of the frequency 

band. At the low-frequency band, resistors and inductors are used as a biasing network [3], [4], but at the 

high frequency, the biasing network is designed using a large inductor and the quarter-wave microstrip line 

(QWML) [5], [6]. In some cases, QWML is combined with the quarter-wave open circuit stub (QWOS) or 

radial stub [7], [8]. The frequency of operation of RFPA is different for different applications. The upcoming 

5G communication system will operate mainly in two frequencies region, namely low-frequency (below 6 

GHz) and high-frequency (above 6 GHz) [9]. In the low-frequency region, many countries will operate at a 

different frequency band below 6 GHz. Some countries will operate in the frequency band ranges from 3.3 

GHz to 4.2 GHz [10], [11]. 

In this paper, a wideband biasing network is presented for 1 GHz bandwidth RFPA for the 

frequency range of 3.3 GHz to 4.3 GHz. The proposed biasing network is designed using the QWML and the 

butterfly stub. This paper is organized as follows; section 2 briefly describes the latest work related to the 

biasing network. Section 3 presents the design methodology of the wideband biasing network for the RFPA. 

The performances of the RFPA are described in section 4. Finally, the conclusion is drawn in section 5. 
 

 

2. LITERATURE REVIEW 

The RFPAs are used in every communication system, and so their characteristics are crucial for the 

efficiency of the communication system. The basic components of the RFPA are shown in Figure 1. The 

procedure of biasing the active device can be divided into two steps; selection of the biasing operating 

(quiescent) point and the biasing network design. Firstly, the biasing point is selected based on the type of 

power amplifier and the targeted performance such as the efficiency and the output power. The second step is 

to select the biasing scheme by considering the cost, bandwidth, and distortion. The structure of the biasing 

network depends on the frequency of operation. At a very low frequency, the biasing voltage can be applied 

directly to or through a resistor at the biasing point, but at the high frequency, the biasing is more complex 

and cannot be applied directly [3]. The commonly used methods of transistor biasing at low frequency are; 

the base resistor method, the collector to base bias method, the biasing with the collector feedback resistor, 

and the voltage-divider bias method [12]. At high frequency, to improve the performances of the RFPA, two 

types of biasing network are used; fixed biasing and dynamic biasing [13]. In terms of efficiency, the 

dynamic biasing performs better. 
 
 

 
 

Figure 1. Block diagram of the RFPA 
 

 

The structure of the biasing network is a tradeoff among stability, linearity, and complexity. A 

conventional biasing network at low and medium frequency consists of a resistor at the gate and an inductor 

at the drain [4], but at the high frequency, the QWML is preferable [6]. The biasing resistors and inductors 

are shorted for the RF signal at the DC biasing point through the bypass capacitors, as shown in Figure 2(a). 

As an example, 4310LC wideband bias chokes are selected for the PA design to block RF signal at the 

biasing [14], [15]. The gate and drain biasing structure are the same except that sometimes a resistor is added 

to the gate to increase the stability. At the biasing tee, the different valued capacitors are also added as bypass 

capacitors. Yang et al. [6] showed that the λ/4 transmission line could be used as a biasing network both at 

the drain and the gate. This biasing network is used for the frequency range of 1.15 GHz to 2.2 GHz. At the 

end of the quarter-wave transmission line, the microstrip line of an arbitrary width is added for soldering the 

bypass capacitors and the biasing voltage source, as shown in Figure 2(b), it is assumed that the QWML is 

perfectly short-circuited at the end of the line through the capacitor. But practically, the capacitor that has 

low resistance will not perfectly short the RF signal. As a result, the QWML is not perfectly open at the RF 

signal at the biasing tee. To overcome this problem, the biasing network is designed using the QWML and 
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the radial stub at the end of the QWML [5], [7], [16]. The radial stub will create short circuit at the connected 

point. The QWML will transfer short to open circuit at the biasing tee. 

Ultra-wideband biasing network is designed using the distributed high pass and bandpass network [17]. It 

is seen that the biasing tee consists of a high pass circuit that performs better compared to the bandpass network. 

This circuit works well for the ultra-wideband but it is more complex and can cause more insertion loss. 

The bandstop filter can also be used as a biasing network to block the RF signal while maintaining 

the perfect transmission for the DC. The order of the bandstop filter depends on the frequency and bandwidth 

of the RF signal [18]. But due to the complex structure, the bandstop filter cannot be used as a biasing choke 

because it will affect the performances of the RFPA. Therefore, a simple bandstop filter is designed using the 

quarter-wave microstrip line, and a radial stub as a biasing choke [7], [19] is shown in Figure 2(c). The radial 

stub and the QWML can be cascaded to achieve sufficient frequency bandwidth [18], [20]. Two radial stubs 

biasing network with QWML is shown in Figure 2(d). The disadvantage of this technique is in the 

tremendous increase of the size of the circuit as compared to the increase of the bandwidth. Research has 

shown that with only a single radial stub biasing network, both broad bandwidth and compact circuit size can 

be also be achieved. The advantage of a single radial stub biasing network is that the reduction of the circuit 

dimension is 50% as compared to the cascaded double radial stub resonator. 

Xuan et al. [21] have designed the concurrent multiband biasing network with the quarter-wave 

transmission line and quarter-wave open circuit stub (QWOS) shown in Figure 2(e). For the first band 

corresponding to the centre frequency of 𝑓1, the QWOS will create a short at point 1 on the main transmission 

line. The main transmission line with a length 𝑙1, equivalent to the λ/4 at the centre frequency, will convert 

the short circuit into an open circuit. The same argument is applied to the other frequency band. For the 2nd 

band, the quarter wavelength line corresponding to the centre frequency is calculated and then adjusted step 

by step in the same manner. Here, the convention 𝑓1 > 𝑓2 … . . > 𝑓𝑛 is used. Multiband biasing network works 

better at the certain frequency band but in the middle of the bands, the performances are very poor. For this 

reason, the multiband biasing network cannot be used for wideband RFPA. The new biasing network which 

is suitable for the wideband RFPA is described in the following research methodology section.  
 

 

 
  

  

(a) (b) (c) (d) (e) 
 

Figure 2. Different types of biasing network: (a) using a wideband biasing choke,  

(b) using a quarter-wave transmission line, (c) using a quarter-wave transmission line and radial stub,  

(d) cascading the quarter-wave transmission line and radial stub and (e) connecting the multiple frequencies 

open circuit stub and quarter wave transmission line 
 

 

3. DESIGN OF THE BIASING NETWORK 

The ideal biasing network works as an open circuit at the desired RF bandwidth and short circuit at 

DC. But in practice, it is not possible to maintain perfect isolation from the DC voltage for the whole 

bandwidth. Therefore, the biasing network is designed in such a way that it maintains standard isolation 

(minimum 30dB) from the DC sources. For ease, the biasing network is designed considering the centre 

frequency of the band. The frequency band for this research is from 3.3 to 4.3 GHz, and the centre frequency 

is 3.8 GHz. To achieve a wider band stop, the width of the QWML should be as narrow as possible. In other 

words, the characteristic impedances of the QWML line should be as high as possible. In practice, the 

possible line width is limited by the fabrication tolerance and the DC current handling capacity of the 

laminate [20]. The fabrication tolerance of the computer numerical control (CNC) machine is 0.2mm, but in 

reality, it is not feasible. Therefore, the minimum width of the microstrip line is chosen 0.3mm. The input 

impedance of the transmission line is given by the (1) [22]. 

 

𝑍𝑖(𝑙) = 𝑍0
𝑍𝐿+𝑗𝑍0 tan 𝛽𝑙

𝑍0+𝑗𝑍𝐿 tan 𝛽𝑙
 (1) 
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Where, 𝑍𝐿 and 𝑍𝑜 are the load impedance and the characteristic impedance of the transmission line, 

respectively. 𝛽𝑙 is the electrical length of the transmission line. If 𝑍𝐿 = 0, i.e. the load is short-circuited at the 

load point, then the input impedance of the transmission line is given by the 𝑍𝑖𝑛
𝑆 = 𝑗𝑍0 tan 𝛽𝑙. On the other 

hand, if 𝑍𝐿 = ∞ , i.e. open-circuited at the load point, then the input impedance of the transmission line is 

given by 𝑍𝑖𝑛
𝑂 = −𝑗𝑍0 cot 𝛽𝑙. If the transmission line is precisely quarter-wave, then the (4) reduces to  

𝑍𝑖 =
𝑍0

2

𝑍𝐿
. This means the input impedance is inversely proportional to the load impedance. Therefore, the 

quarter-wave transmission line transforms a short-circuit into an open-circuit and vice versa. 

First of all, the biasing network is simulated using the Keysight Advanced Design System (ADS) at 

the schematic window. The basic biasing network is designed using the QWOS and the quarter-wave 

transmission line (QWTL) at the centre frequency, as shown in Figure 3(a) and corresponding input 

impedance response is shown in Figure 3(b). The QWOS converts the open to the short-circuit, and the 

QWTL converts the short to the open at the drain. In practice, the open circuit stub transfers an infinite 

impedance to a low complex impedance, and the low complex impedance is converted into a high complex 

impedance. But the high complex impedance is converted to a medium complex impedance. For this reason, 

at the frequency of the second harmonic (7.6 GHz), it shows a high impedance value instead of a zero 

impedance at the drain. Then, the ideal transmission line is converted to a microstrip line using the RO3006C 

substrate. The properties of the substrate are given in Table 1.  
 

 

Table 1. Rogers RO3006 substrate characteristics 
Parameters Value 

Relative dielectric constant 6.15 

Substrate thickness 1.27 mm 
Conductor thickness 17.5 𝜇m 

Dielectric loss tangent 0.002 

 

 

 
 

(a) (b) 
 

Figure 3. (a) Biasing network using the ideal transmission line and (b) The input impedance response 
 

 

The converted biasing network with the microstrip line is shown in Figure 4(a) and the input 

impedance response is shown in Figure 4(b). From the Figure 4(b), it is seen that at the centre frequency, it 

offers a high impedance buffer but at the side of the band, it offers a low impedance buffer. Therefore, this 

arrangement is not suitable for the wideband power amplifier. To improve the performances, point A must be 

short-circuited through QWOS for the wideband, as shown in Figure 4(a). To achieve low impedance at point 

A, the characteristic impedance of the QWOS must be decreased which results in an increase in the width of 

the line. At point B, to get a high impedance buffer, the characteristic impedance of QWML must be as high 

as possible which reduces the width of the line. The QWML and the shunt of QWOS must be connected 

through a microstrip T-junction (MTEE). For the MTEE, the ratio of the largest width to the smallest width 

must be less than 5. Otherwise, the schematic and momentum simulation performance will not be the same. 

Another problem of a straight stub is that at the high frequency, the width of the low characteristic impedance 

microstrip line will be a fraction of the wavelength which in turn causes an excitation of the unwanted signal 

mode [18]. These two problems can be solved by replacing an open-circuit stub with a radial stub. A radial 

stub offers a better short circuit for a wide frequency band as compared to a straight stub. Better 

performances can be achieved due to the fringing capacitance effect at the end of the radial stub [23], and it 

does not suffer a large width tee junction that a constant-width low-impedance stub would. 
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(a) (b) 
 

Figure 4. (a) Biasing network with microstrip line and (b) The input impedance response 
 

 

The performances of the butterfly stub are somewhat better as compared to the radial stub. It provides 

virtual ground for wideband than radial stub [24], [25]. For this reason, a butterfly stub is used for the design of the 

biasing network. The parameter of the butterfly stub is calculated based on the centre frequency of 3.8 GHz of the 

band. The outer radius 𝑟𝑜 determines the attenuation pole frequency whereas the angle determines the attenuation 

bandwidth [20]. It is clear that a larger radius results in a lower attenuation pole frequency. It is also seen that if the 

angle of the radial stub is increased then the reactance slope of the input reactance of the radial stub is decreased 

and, as a result, the bandwidth of attenuation is increased. The input width 𝑤𝑖  of the port has the small effect on 

both attenuation pole and frequency bandwidth. The input width should be small compared to the guided 

wavelength. Generally, the input width should be the same as the connective inductive width length.  

A wideband RF bypass at the drain bias is essential to boost up the performance of the biasing 

network [4]. The broadband RF bypass includes a combination of the different valued capacitor. Generally, 

picofarad, nanofarad, and microfarad capacitor are connected at the drain bias. The picofarad capacitor 

provides low impedance at high frequency at the same time the other two capacitors provide low impedance 

at medium and low frequency. So, to provide the soldering space for the capacitor and the DC supply, 

another wide microstrip line is needed which will not affect the performances of the biasing network. 

Therefore, another microstrip line is added to the biasing circuit. The complete schematic circuit diagram is 

shown in Figure 5(a). After that, the layout is created from the schematic design, as shown in Figure 5(b), 

and the microwave momentum simulation is performed. The final values of the dimension are shown in 

Table 2. After the biasing network is fabricated, as shown in Figure 6, the S-parameter of the biasing network 

is measured as shown in Figure 7 using the Rohde & Schwarz VNA, model ZNB8. 

 

 

 
(a) 

 
(b) 

 

Figure 5. Complete biasing network (a) schematic simulation and (b) momentum simulation 
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Table 2. Calculated parameters of the biasing network and after the optimization 
Name Calculated (mm) Optimized (mm) 

Width of feed line w 0.40 0.4 

Outer radius 𝑅𝑜 8.21 9  

Angle 85 85 

Insertion depth D 0.2 0.2  
TL29 W=0.4, L= 10.48 W=0.4, L= 10.2 

TL33 W=1.86, L= 10 W=1.86, L=10 

TL34 W=1.8, L= 10 W=1.86, L=10 
Biasing Capacitors 10 pF, 22 nF, 4.7 uF 10 pF, 22 nF, 4.7 uF 

 

 

 
 (a) (b) 

 

Figure 6. Fabricated biasing network (a) without bypass capacitor and (b) with bypass capacitor 
 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7. Measurement of (a) 𝑆21, (b) 𝑆31 and (c) 𝑆11 

 

 

4. RESULTS AND ANALYSIS 

The performances of the biasing network are determined in terms of three critical parameters: the 

transmission gain 𝑆21, the return loss 𝑆11 and the RF isolation S31. Low transmission gain and high return loss 

could reduce the RF power dissipation in the biasing circuit. The RF isolation to the DC input port should be 

as high as possible but must reach a minimum of 30 dB. It can prevent the oscillation of the PA. The 

simulation and fabricated performances are shown in Figure 8(a), 8(b) and 8(c). The performance of the 

biasing network in term of the transmission gain, 𝑆21 is very good over the whole frequency band, as shown 

in Figure 8(a). In the simulation, the values of 𝑆21 is in the range of 0 to 0.2 dB, but for the fabricated circuit, 

it is in the range of 0.0 dB to 1.5 dB for which it is very low as compared to the other type of biasing 

network. From Figure 8(b), it is seen that the return loss 𝑆11 of the fabricated circuit is in the range between 9 

dB and 19 dB and maximum at the frequency of 3.9 GHz while in simulation, the value is from 25 dB to 50 

dB. The measured performances vary substantially from the simulation due to the accuracy of the fabrication. 

For the narrow transmission line, it is very difficult to maintain the consistency with the etching procedure.  

Figure 8(c) shows the RF isolation to DC connection, 𝑆31 simulated and measured results of the biasing 

network. The simulated result is in the range between 37 dB to 65 dB while for the fabricated biasing network, it is 

in the range of 35 to 45 dB after connecting the bypass capacitor. The RF isolation performance is improved a little 

bit after connecting the capacitor. The schematic and measured performances of 𝑆31 is comparable with acceptable 

accuracy. The RF isolation depends on the value of the capacitor. For this design, the capacitor 10 pF, 22 nF and 

4.7 uF for the low, medium and high-frequency bypass. The designed biasing network is compared to the state-of-
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the-art biasing network as shown in Table 3. From the table, it is seen that the designed biasing network provides 

the highest RF isolation to the DC while it is comparable for the other parameters.  
 
 

  
(a) (b) 

 

 
(c) 

 

Figure 8. Performances of biasing network in simulation and fabricated circuit (a) transmission gain  𝑆21  

(b) return loss 𝑆11 and (c) RF isolation 𝑆31 without and without bypass capacitor 
 

 

Table 3. Comparison with the state-of-the-art 
Ref Frequency (GHz) 𝑆11  (dB) 𝑆21(dB) 𝑆31(dB) Result type 

[8] 7-9 < 20 <  0.4 < 30 Fabricated 

[17] 3.1-10 25-35 <0.3 n/m Simulation 

[19] 7-8 n/m <0.5 n/m Simulation 
[24] 3.1-4.8 12-45 <0.4 n/m Simulation 

This work 3.3-4.3 9-19 <1.5 35-45 Fabricated 

n/m: not mentioned 

 

 

5. CONCLUSION 

The efficient communication system requires highly efficient RFPA. The wideband biasing network 

is mandatory for high efficiency RFPA. So, a wideband biasing is presented in this paper which can be 

implemented for the 5G frequency band of 3.3 GHz to 4.3 GHz. Not only for this band but also for any 

frequency band, this technique of designing biasing can be applied. The fabricated biasing network provides 

9 to 19 dB return loss, 35 to 45 dB RF isolation, and 0.5 to 1.5 dB insertion loss. In future, the RFPA power 

amplifier will be designed for the mentioned frequency band using this biasing technique, and it is expected 

that it will perform better for the 5G communication system. 
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