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 In brief, a dual-band doherty power amplifier employing reactance 

compensation with gallium nitride high-electron-mobility transistor 

technology is discussed. This design is developed for long-term evolution 

(LTE) frequency operation, particularly for the application of two-way radio 

to improve the efficiency at the back-off point from saturation output power 

for selected dual frequencies in the LTE bandwidth. Measurements show that 

the prototype board has enhanced performance at the desired frequencies, 

namely a saturation output power of 40.5 dBm, and 6 dB back-off 

efficiencies of 43% and 47%, which exhibit a gain of approximately 10 dB at 

0.8 GHz and 2.1 GHz, respectively. 
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1. INTRODUCTION 

To obtain decent output power from a power amplifier (PA), several techniques have been studied to 

improve the efficiency [1]-[8] and bandwidth [9]-[15]. In the past 20 years, doherty PAs (DPAs) have been 

studied considerably to enhance their bandwidth efficiency [16]-[19]. However, the majority of the published 

DPAs were designed to cater for single band but not multiband requirements. On the bright side, there have 

been several successful implementations of either dual-band PAs [20]-[22] or dual-band DPAs [23]-[25]. Zheng 

et al. [23] used simplified phase offset-lines to show that the dual-band DPA design can achieve efficiencies of 

51.2% and 39.9% at the 6.5 dB back-off point from saturation power at frequencies of 0.90 GHz and 2.14 GHz, 

respectively. Liu et al. [24] proposed a feasible dual-band DPA with a modified π-network to obtain drain 

efficiencies exceeding 49% and 47% at the 6 dB back-off point from saturated power across the frequency 

bandwidths of 2.05-2.30 GHz and 3.2-3.62 GHz, respectively. The dual-band DPA presented by [25] applied 

frequency-dependent input of power division and obtained power-added efficiencies of 45% and 41% at the 6 

dB back-off point from saturation for frequencies of 0.85 GHz and 2.33 GHz, respectively. 

In the research on DPAs, especially dual-band DPAs, there are still rooms for improvement.  

The design of dual-band matching network to cater for two separate matching simultaneously is challenging and 

not easy to accomplish. As a matter of fact, the design involves higher complexity which resulted in the loss of 

performance, e.g., saturated efficiency and back-off saturated efficiency; a substantial degradation of the 

bandwidth in at least one of the intended frequency bands, which affects the frequency spacing of the dual-band.  
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Herein, we introduce an improvement that enhances the dual-band back-off efficiency of the 

designed matching network for a DPA across a particular frequency bandwidth. The proposed design 

encompasses the dual-band frequencies of 0.8 GHz and 2.1 GHz as required in dual-band radio applications, 

and it is implemented in practice on a printed circuit board (PCB). The inductors are converted to distributed 

elements known as microstrips to improve the design by reducing the size to achieve small form factors.  

The presented prototype achieves decent 6 dB back-off efficiencies at both bands with little trade-off in 

saturated efficiency and supports wide frequency spacing between the dual-band. Moreover, the performance 

shows that the approach is acceptable for two-way radio communication applications. The remainder of the 

paper is arranged as follows. Section 2 shows the suggested dual-band DPA approach. The measurement 

findings and discussion are presented in Section 3, and the conclusion is presented in Section 4. 

 

 

2. DESIGN METHODOLOGY 

We present a novel approach in which we apply a mixed configuration of two different techniques 

namely the reactance compensation technique (RCT) and third-harmonic tuning in a DPA to improve the 

output matching network (OMN) for dual-band applications. Generally, the broadband matching network is 

designed by using the RCT. However, for dual-band DPA purposes, only the two specified bands need be 

enhanced; the unused bands must be attenuated to reduce the losses. Therefore, the RCT is improved to 

match the desired dual-band frequencies precisely. Figure 1, shows a design schematic for the RCT with a 

third-harmonic resonant circuit. For the output matching design, especially at the fundamental frequency for 

the carrier and peaking amplifier, the third-harmonic resonant circuit Lt1Ct1 and Lt2Ct2 are applied to ensure 

that the circuit is in the open-circuit condition. For this design, only the third harmonic is tuned, this has 

taken into consideration the factor in reducing the complexity of the matching network. Additionally, the 

presence of series Lt1Ct1 and Lt2Ct2 filters for the third-harmonic is effective for a narrow bandwidth, mainly 

only for an upper band of 2.1 GHz. 

 

 

 
 

Figure 1. Reactance compensation technique (RCT) with third-harmonic resonant circuit 

 

 

For the resonant circuits shown in Figure 2, both are connected to a load resistance RL, which is 

tuned to match the fundamental frequency. Typically, the reactance for circuits in the series shunt 

configuration is affected by changes in the frequency. This can be explained by considering the situation in 

which the frequency rises and the reactance of the parallel resonant circuit is reduced. Moreover, this also 

increases the reactance of the series resonant circuit. Therefore, the compensation of the reactance near the 

selected dual resonant frequency is tuned predominantly to generate a constant load angle, and consequently 

developing a total variation of the reactance, which is equal to zero. 

Furthermore, the value of the output impedance of the matching components introduced via this 

technique is tuned based on the optimal impedances obtained from the load-pull measurement to enhance the 

efficiency. With the aid of the advanced design system simulation software, the circuit is optimized to 

improve the dual-band matching requirement. The dual-band gallium nitride high-electron-mobility transistor 

(GaN HEMT) DPA is shown schematically in Figure 2 and comprises two 10 W CREE CGH40010F devices 

integrating with Vdd=28 V. For the input matching of the dual-band DPA, the lossy matching circuits of a 

shunt RL circuit and a series RC circuit are selected to provide minimal insertion loss for dual-band input 
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matching. Based on Figure 2, (comprising a 12 pF capacitor in parallel with a 10 Ω resistor and in series 

with a 1000 pF capacitor), the presence of the resistor on the input side of the matching network improves the 

stability of the network at lower frequencies. 

 

 

 
 

Figure 2. Simulated circuit schematic of dual-band gallium nitride high-electron-mobility transistor  

(GaN HEMT) Doherty power amplifier (DPA) 

 

 

The improvement in the power gain happens at higher frequencies when the resistor is 

circumvented. The RCT is applied to compensate individually for the reactance at the lower and upper bands. 

The OMN incorporated the RCT with the approach of optimizing the former to match two arbitrary complex 

impedances seen by the devices for two different frequencies of 0.8 GHz and 2.1 GHz to 50 Ω load when the 

devices operate at 6 dB back-off from saturated power. Therefore, the load-pull of the output impedances is 

extracted at 6 dB back-off from the device saturation region. Table 1 gives the optimal output impedance 

obtained for each frequency. The concept of the third-harmonic resonant circuit is optimized and 

implemented together with the RCT at the OMN. Thus, decent tuning or optimization (with mixed lumped 

elements) is achievable throughout the matching networks. 

 

 

Table 1. Optimal output impedances for dual-band DPA 
Frequency (GHz) Optimal output impedance (Ω) 

0.8 21.384+j17.354 

2.1 61.330-j3.610 

 

 

3. MEASUREMENT RESULTS AND DISCUSSION 

To validate experimentally the results of the simulation for the proposed high-efficiency dual-band 

DPA, which incorporated the RCT and third-harmonic tuning, a prototype board was designed by integrating 

the CGH40010F GaN HEMT transistor from CREE. Figure 3, shows a photograph of the developed 

prototype board of the dual-band DPA. The board is connected to an external radio-frequency (RF) coaxial 

Wilkinson splitter (380-2500 MHz). The board has both input and output RF ports with matching networks 

and a four voltage supply feed for the gate and drain and the overall board dimensions are 125 x 150 mm. 

The matching networks are made up of lumped inductors that have been converted to microstrips. The 

implementation of this approach enhances the efficiency of fabricating the prototype, and the designed 

device’s performance can be improved. The prototype is developed using a Rogers PCB, which has two 

layers; the substrate is 0.508 mm thick and the dielectric constant r is 3.66. Nevertheless, an adequate area 
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occupied by the dual-band DPA is much smaller at 73 x 75 mm. To provide a secure connection between the 

PCB and the heat sink, a total of eight screws are used to mount the PCB test board on the heat sink. Thus, to 

avoid board damage and to provide good heat dissipation, the solution is developed by reducing the heat from 

a high-power GaN HEMT, thereby maintaining good performance for longer. In particular, the voltage for 

the drain is set to 28 V, while the current is adjusted to a quiescent state of 40-90 mA for both carrier PA and 

peaking PA. As for the gate, biases of -3 V and -4.7 V are applied for the carrier and peaking PAs, 

respectively. To minimize the coupling, the RF and direct-current (DC) signals are routed cautiously. For the 

DC routing, the width is chosen carefully to provide functional DC carrying capacity. The open grounding 

area for the board is well designed with isolation and an adequate number of via-holes. The latter are 

distributed evenly to enhance the grounding and to ensure decent performance of the dual-band DPA. 

 

 

 
 

Figure 3. Actual prototype of dual-band DPA design board 

 

 

Figure 4 and Figure 5, compare the simulated and measured performances of the proposed design. 

Figure 4, presents the simulation and measurement results for the gain and drain efficiency of the prototype 

board for 0.8 GHz and 2.1 GHz, respectively. The measurements show efficiencies of 43% and 47% at 0.8 

GHz and 2.1 GHz, respectively, for the 6 dB back-off point from saturation power. The gain measured is 

approximately 10 dB for 0.8 GHz and 2.1 GHz, respectively. Specifically, the measured gains are 11.1 dB 

and 9.2 dB at 0.8 GHz and 2.1 GHz, respectively. 

 

 

 
 

Figure 4. The gain and drain efficiency of the prototype board when simulated and measured at a 6 dB back-

off from saturated power 

 

 

This work has achieved a good result in simulation. However, there is a slight deviation between the 

measurements and the simulation results because the dual-band DPA was simulated under ideal conditions. 

This means that in a real-life experiment, the DPA’s performance is affected by the non-ideal device 

characteristics. In fact, the variations in fabrication could also affect the performance of the prototype, and 

isolating the variability of the sources is challenging as it might be ascribed to the materials and equipment as 

well as due to the performance of humans in some circumstances. From the perspective of efficiency, the real 
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transistor’s knee region limits the available voltage swing, reducing the efficiency by approximately 10% 

compared to the ideal value at 0.8 GHz and 2.1 GHz. Moreover, the changes in the conduction angle of the 

current relative to the power cause delays in turn-on of the Class-C biased peaking amplifier, resulting in a 

power loss at 6 dB back-off power from saturation. In a balanced power range mode, i.e., reactance 

compensation and third-harmonic resonant circuits are applied equally on the OMN of the carrier and 

peaking amplifier, both bands achieved characteristic impedances close to 50 Ω. Nevertheless, the operation 

power over the bandwidth is acceptable. 

 

 

 
 

Figure. 5. Simulated and measured output power of prototype board 

 

 

Figure 5, compares the output power between the simulation and the measurements in the frequency 

range of 0.5–2.5 GHz. For the desired frequency bandwidth, the saturation output power of 40.5 dBm is 

attained. The measurements and the simulation results agree well and exhibit a decent dual-band 

performance. Table 2 compares recent studies of the performances of GaN dual-band DPAs. 

 

 

Table 2. Comparison of performances of different dual-band DPAs 
Work Topology Device `Frequency 

(GHz) 

Frequency 

Ratio (FR) 

Saturated 

Efficiency 

(%) 

Efficiency 

(%) 

Saturated 

Power 

(dBm) 

Saturated 

Gain (dB) 

f1/f2 f2/f1 f1/f2 f1/f2 f1/f2 f1/f2 

[23] Simplified 

phase offset-

lines 

GaN 0.9/2.14 2.38 67/57.3 51.2/39.9 @ 

6.5 dB OBO 

43.7/43.9 9.3/8.9 

[24] Modified Π-

network 

GaN 2.15/3.4 1.58 41.5/43.4 52/51 @ 6 dB 

OBO 

47.3/47 7.5-9.5/9-

11 

[25] Frequency 

dependent 

input power 

division 

GaN 0.85/2.33 2.74 47.5/45 45/41 @ 6 dB 

OBO 

44/42.5 10/8 

This 

paper 

RCT + third-

harmonic 

resonant 

circuit 

GaN 0.80/2.10 2.63 54/60 43/47 @ 6 dB 

OBO 

39.5/40.5 10/10.2 

 

 

Liu et al. [24] demonstrated high efficiency at 6 dB back-off from saturation for dual-band 

purposes. However, their frequency ratio (FR) was 1.58, which is considered narrow for frequency spacing. 

In the present study, an FR of 2.63 is attained to cater for the situation in which wide frequency spacing is 

required. Although the FR of the present study is not the highest, it is still comparable to [25] and fulfills the 

need for wide frequency spacing between dual-band. Interestingly, the present study obtained considerably 

higher saturation efficiency compared to other studies [24], [25], with 60% at 2.1 GHz and maintaining a 

decent saturated efficiency of 54% at 0.8 GHz, while also showing comparable results to [23], particularly at 

higher frequencies. Moreover, the present study shows decent efficiency at 6 dB back-off from saturation 

without sacrificing the saturated efficiency. The gains are within the bandwidth of interest. 
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4. CONCLUSION 

Herein, a DPA employing the RCT with GaN HEMT technology for dual-band selection is 

discussed. The measurements show satisfactory achievement for obtaining efficiencies of 43% at 0.8 GHz 

and 47% at 2.1 GHz for a 6 dB back-off point from power saturation without much trade-off in saturated 

efficiency. The performance of the gain measured for the frequencies of 0.8 GHz and 2.1 GHz is 

approximately 10 dB, which is considered to be a decent achievement. The prototype demonstrates ~40 dBm 

of output power at saturation for the desired frequency bandwidth. Therefore, the present approach is 

acceptable for two-way radio applications, particularly within the long-term evolution (LTE) frequency band. 
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