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 In recent years it has been observed that insulation failure in electrical motors 

is caused by adjustable speed drives fed by power electronic converters. 

These converters produce impulse waveforms having a high slew rate 

generated by the high switching frequency of IGBTs. This paper focuses on 

high switching frequency stress in low voltage electrical motors for 

adjustable speeds. To examine the motor winding insulation under such 

stress twisted-pair samples were developed from enameled wires. A single-

coated polyester of enamel with a thickness of 40 microns is used for this 

work. High-frequencies, high voltages of Square, and Square-rising, Square-

spike waveforms of 10-30 kHz are used here. The test results show that the 

insulation fails earlier for the Square waveform compared to the Square-

spike and Square-rising waveforms. In a nutshell, there is an analysis of PD 

formation in the insulation system at a higher switching frequency is 

analyzed. Electric field distributions between twisted pairs with various air 

gaps of the insulation system stressed by the Square and Square-rising 

waveforms up to 30 kHz are modeled using COMSOL software. 
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1. INTRODUCTION 

In industrial drives, the control of speed is accomplished by using power electronic converters, using 

the PWM technique. This technology brought new developments in the speed control of industrial motors 

[1]. However, these converters generate high switching impulses at every instant of switching, which is of 

very high slew rate and high repetitive frequency produced by IGBT’s. Due to this, the enamel insulation of 

the coil is subjected to repeated surge voltages with short rise times in the order of nanoseconds. These 

surges induce reliability problems in low and medium ratings of the motor insulation system [2]. As this 

waveform travels from the inverter to the motor end, the spike gets enhanced in magnitude due to the 

mismatch of impedance between the inverter, motor, and cable. The phenomenon of resonance and reflection 

can induce twice the supply voltage at the turn-to-turn insulation of stator winding [3], [4], which is the major 

reason for the unexpected failure of winding of insulation. Furthermore, the distribution of electrical potential 

is non-uniform across the windings [5], [6]. Hence, abnormal electrical stress is experienced by phase to 

phase winding of motor insulation, more stress than sine waveform [7], at the first turns of the insulation 

system [8], in particular. Owing to an overshoot in voltage peaks, the partial discharge takes place in winding 

because of which the lifetime of organic enameled insulation is remarkably short [9], [10].  
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Investigation of low-frequency stress is reported in the literature. However, as the enamel insulation 

may experience higher frequency, this work presents higher frequency stress of 10-30 kHz of Square, 

Square-rising, and Square-spike waveforms. Testing with Square waveforms produces highest dv/dt that can 

cause high stress on the insulation when compared with other waveforms. The reason for choosing high 

frequency for the test is because of the growing demand for variable speed applications and the increasing 

number of low voltage motors [11]. The purpose of employing the high frequency switching in the present 

work is to examine the electric stress produced by the high-frequency pulses with the sharp rate of rise of 

voltage surge on the motor winding insulation. 

The aging of enamel insulated wires was investigated using five different waveforms of a 

fundamental frequency of 300 Hz in the presence of PDs and reported that the life of enamel insulation is 

affected by the shape of the waveform [12]. The effect of short unipolar repetitive impulsive voltages with 

200 ns voltage duration on PD statistics and insulation lifetime of enameled wires was studied [13]. It is 

reported that PD magnitude under unipolar short impulsive voltages with different rise times increase 

significantly with decreasing rise times. The life of two kinds of enamel wires of organic resin and nano-

filled resin were studied and modeling of a lifetime was predicted [14]. I F Radzi et al. [15] argued that there 

is an improvement of degradation at long term by PD in a drastic way when the applied voltage is 6.5 kV to 

8.5 kV. Breakdown studies with a step of 50V/s for AC and a step of 100 V/s for DC on thin-film insulation 

with a thickness of 100 μm were done [16]. It is also reported that the breakdown strength of composites is 

lower compared to unfilled polypropylene. Researchers reported that the failure of twisted pair insulation is 

due to high repetition frequency initiating the partial discharge [17]. It is also reported that through the 

simulations the PD arises in the micro gap between the twists using the COMSOL software. 

Though there are works done at a lower frequency up to 600 Hz and at 3 kHz, the life of insulation 

subjected to higher frequency pulses due to MOSFET or IGBT switching of up to 20-40 kHz are needed to 

be known. The stator winding insulation is subjected to such high frequency stress which is a more realistic 

one. As observed by researchers that one cannot assume a theoretical deduction that low-frequency test data 

can be used to predict life with increasing frequency for all insulation systems, the test was done at 10 kHz 

[18] but the objective was to save the power loss rather than to know the life of the insulation. Hence an 

attempt is made in this work to test the twisted pair insulation with the higher frequency of 10-30 kHz to 

investigate the life of twisted pair enamel insulation. In the present study, the twisted-pair sample of polyester 

enamel is stressed by Square, Square-rising, and Square-spike waveforms over the range of frequencies from 

10-30 kHz. The tests are performed to show that early failure of twisted pair insulation could be associated 

with PD phenomena attributed to higher switching frequencies. Field distribution at different air-gap lengths 

between twists with enamel thickness of 40 µm at different switching frequencies in the range of 10-30 kHz 

is numerically modeled using COMSOL. The simulations carried out showed that the electric field 

distribution depends on the air-gap length between the wires and insulation thickness. 

The rest of the paper is organized as follows: Section 2 describes the experimental setup for 

breakdown tests, sample preparation, and test procedure. Section 3 discusses the experimental results and 

analyzed the influence of high switching frequency on twisted pair samples by modeling the electric field 

distribution with applied voltage and reduced breakdown voltage. Finally, section 4 concludes with the 

findings on breakdown voltage and rate of deterioration of the insulation system for Square waveform, 

Square-rising waveform, and Square-spike waveforms. 

 

 

2. EXPERIMENTAL PROCEDURE 

2.1.  Sample preparation 

The twisted-pair specimens are made of two enameled magnet wires twisted like a plait as per the 

ASTM D 1676-03 standards. A singly coated polyester enamel insulation with 40 µm thickness is employed 

for testing. The twisted-pair length is maintained (12±6) cm as per standards. The number of twists is 6, 

depending on the diameter of the wire. 

 

2.2.  Test setup 

Figure 1 shows the experimental setup for Square, Square-rising, and Square-spike waveforms with 

high-frequency, the high voltage used for testing the twisted pair samples. All the waveforms used here are 

bipolar in nature. The 230V, 50Hz source is fed to the EMI line filter and the output is connected to the 

frequency and duty cycle controller. The output of the inverter is stepped up by employing a nanocrystalline 

core transformer for high frequency operation where the twisted pair sample is stressed. A digital 

oscilloscope measures the peak voltage through a 1000:1 capacitance voltage divider. The laboratory setup 

used for conducting the breakdown and withstand tests is shown in Figure 2. 
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Figure 1. Experimental setup 

 

 

 
 

Figure 2. Laboratory setup used for breakdown tests 
 

 

2.3.   Test procedure 
Breakdown tests were carried out on the twisted-pair specimens with the edge of one wire is fed 

with test voltage and edge another wire is grounded thus the layers of the enamel of both wires comes under 

high voltage stress. The breakdown test is performed by the application of a high voltage at the twisted-pair 

specimen until the sample insulation breakdowns. The withstand test was conducted to estimate the time up 

to which the insulation withstands without breakdown even under the application of various voltage levels. In 

this study, the breakdown voltage of the twisted-pair specimen is observed by enhancing the voltage at a rate 

of 500 Volt/sec up to breakdown. The breakdown experiments were done on insulation with enamel at room 

temperature under the application of a high-frequency high voltage of Square, Square-rising, and Square-

spike waveforms and a frequency in the range of 10-30 kHz. Breakdown voltage is taken as the average of 

five breakdown values. It is noticed that, while performing the experiments at high-frequency, the ionization 

impact between the twisted-pair gaps is manifested in the form of a hazy violet glow. Reduced breakdown 

voltage is applied to the sample until the breakdown of the sample for the Withstand-test. For a certain 

frequency, the reduced voltage applied is 75%, 60%, and 50% of the breakdown voltage of that particular 

frequency. Table 1 shows the parameters of the test setup used for breakdown tests.  
 

 

Table 1. Test setup details 
Frequency Duty cycle Waveforms Test operating voltage 
10-30 kHz 0-50% Sine, Square, Square-rising, and Square-spike  0-15 kV peak 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Experimental results 

The variation in breakdown voltages over the frequency with waveforms is depicted in Figure 3. 

From the graph, it is evident that the Square, Square-rising and Square-spike waveforms exhibit two straight 

lines with varying slopes as in [19], with a rise in the frequency from 10-30 kHz. It is observed from the 

graphs the breakdown voltage of Square-rising waveform is more than that of Square-spike and Square 
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waveforms. Therefore, it is described that the deterioration rate of the insulation system of twisted pair using 

Square waveform is quicker as compared to Square-spike and Square-rising waveforms, similar to the 

published results for PWM like and PWM peak waveforms reported in [20]. An attempt is made to compare 

the results obtained for Square spike with that of published results of PWM peak waveform. It could be that 

the Square wave has a steep rising and trailing edge that corresponds to high frequency components due to 

the shape of the waveform. There are quite different polarizing and relaxing effects on dipoles for a complete 

Square wave period [21]. It is because of this reason that there will be no possibility of more dipoles 

following the rapid reversal of the polarity. It is also observed that reduction in breakdown voltage is 27% in 

the Square waveform whereas 32% in Square-spike waveform and 41% in Square-rising waveform when the 

frequency is varied from 10-30 kHz. Figure 4 shows the aging test results stressed with a Square-rising 

waveform with various levels in frequency up to 30 kHz at reduced voltages. It can be seen that the decrease 

in breakdown time follows a higher slope when the applied test voltage is changed from 75% to 60% and a 

lower slope when changed from 60% to 50% for all three frequencies though the change in slope is very less 

at 10 kHz. It is interesting to note that results in Figure 4(a) for Square-spike waveform point to a similar 

trend to that of published results for PWM-peak waveform reported in [12], for all three frequencies, though 

the results of Figure 4(b) is in contrast. This may be due to higher test voltages in Square-rising waveforms. 

 

 

 
 

Figure 3. Variation in breakdown voltages of square, square-rising, and square-spike waveforms from 10-30 

kHz 

 

 

  
(a) (b) 

  

Figure 4. Aging test results at reduced voltage up to 30 kHz stressed with (a) square-spike waveform (b) 

square-rising waveform 

 

 

Figure 5(a)-(c) shows the aging test results when the twisted pair sample is stressed with Square-

rising and Square-spike waveforms with frequency levels of 10 kHz, 20 kHz, and 30 kHz respectively with a 

reduced voltage of 75%, 60%, and 50%. When there is an enhancement in frequency from 10-30 kHz, 

Square-rising and Square-spike waveforms show the two straight-line slopes, whereas authors of [13], [22]-

[24], reported uniform slopes of characteristics with various enamels for frequencies up to 8 kHz. The 
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characteristics of the Square-spike waveform are observed to cross over the characteristics of the Square-

rising waveform only for 10 kHz in Figure 5(a). The breakdown occurs early for the Square-rising waveform 

than the Square-spike waveform due to the higher applied voltage in all the frequencies. The reason for lower 

breakdown voltage is that at higher switching frequency the ions getting trapped between the electrodes and 

rapid polarity changes, resulting in the distorted electrostatic field. Due to this space charge no longer follow 

the field due to the effect of polarization. PD may be influenced by surface charging caused pre-ionization of 

electric field strength. 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 5. Aging test characteristics of square-rising and square-spike waveforms at frequencies of (a) 10 kHz, 

(b) 20 kHz, and (c) 30 kHz 

 

 

Figure 6 shows the breakdown time when stressed with a reduced voltage of Square-rising and 

Square-spike waveforms up to 30 kHz. From Figure 6 (a) it is seen that breakdown time doesn’t show any 

change when the frequency is enhanced from 10-30 kHz when stressed with Square-rising waveform at a 

reduced voltage of 75% (4.23 kV). However, under the reduced voltage stress of 60% (3.39 kV), the 

breakdown time is decreased by 64% when the frequency is enhanced from 10-20 kHz and by 24% from 20-

30 kHz. Similarly, at 50% (2.82 kV) breakdown time is decreased by 52% when the frequency is enhanced 

from 10-20 kHz and decreased by 47% when the frequency is enhanced from 20-30 kHz. This shows the 

effect of frequency at 10 kHz and 20 kHz compared to 30 kHz at reduced voltages. It is seen from Figure 6 

(b) that breakdown time decreased with a higher slope when the frequency is enhanced from 10-20 kHz and a 

lower slope from 20-30 kHz when the reduced voltage of 75% (3.3kV) for Square-spike waveform. 

However, when the voltage of 60% (2.64 kV), the breakdown time is decreased by 31% when the frequency 

is enhanced from 10-30 kHz. Similarly, at 50% (2.2 kV) breakdown time is decreased by 30% when the 

frequency is enhanced from10-30 kHz. The significance of the finding is that the twisted pair enamel 

insulation undergoes severe electrical stress at high frequencies. At 10 kHz, the breakdown strength is 1.15 to 

4.4 kV times higher, 1.12 to 3.4 kV times higher at 20 kHz, and at 30 kHz 1.25 to 2.1 kV times higher for 

Square, Square-rising, and Square-spike waveforms compared to results reported in [12], [23], in the 

literature from 2.4 kHz to 8 kHz. 
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(a) (b) 

 

Figure 6. The change in time with the change in different frequency levels up 30 kHz (a) square-rising 

waveform b) square-spike waveform 

 

 

3.2.   Numerical modeling of electric field distribution in twisted pair sample 

In geometrically simplified, a parallel configuration of winding wires without twists, three cases are 

analyzed; case 1: Two conductors are in direct contact with each other (g=0 mm), case 2: Two conductors are 

separated by a micro gap between them (g=0.05mm) and case 3: Two conductors are separated by a gap 

(g=0.1mm). The electric fields of two neighboring wires were numerically modeled using the COMSOL 

program. For modeling, the polyester enamel thickness was considered to be 40 µm, and the dielectric 

constant was assumed as €r =3.3. The applied voltage is the breakdown voltage of the Square-rising and 

Square waveforms at various levels in frequency in the range of 10-30 kHz observed in the experiment. The 

electric field distribution of the 2D model of two parallel conductors for all the 3 cases (g=0 mm, g=0.05 mm 

& g=0.1 mm) is stressed by the Square-rising waveform at a frequency of 10 kHz. The electric field 

distribution of the 2D model stressed by the Square waveform at a frequency of 10 kHz is similar to the 2D 

model designed with a Square-rising waveform. Figure 7 shows the electric field distribution of the 2D 

model for case 1 (g =0 mm) of the Square-rising waveform. 

 

 

 
 

Figure 7. The electric field distribution of square-rising waveform at 10 kHz for case 1 

 

 

It is noted that for all the 3 cases, the maximum strength of the electric field is on the surface of the 

wire insulation near the contact location of the wires. In case 2, the reason for reduced electric field strength 

is because of the narrow air gap with that of the direct contact case. In case 3, it is noted that the reason for 

more reduction of field strength is due to the air gap between the wires compared to case 1 and case 2. 

However, the electric field on the surface of the wire insulation between the wires is still sufficient to initiate 

PD for both the waveforms because ionization is surrounding the air gap along with surface potential decay 

[25]. A similar trend of results reported in [18]. For the increased voltage of 5.65 kV, the field value obtained 

is 46.6 kV/mm. If instead of 1kV test voltage, 5.65 kV is applied the field would have been 39.55 kV/mm for 

the same 0.1 mm gap. However, the field obtained by [18], is 7 kV/mm for the test voltage of 1kV. Hence, 
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the higher field obtained in this work is due to the high frequency of 10 kHz compared to power frequency 

and Square-rising wave compared to Sine wave. Besides this, the €r value of the material used by [18], is 3.8-

4.2 compared to the polyester material used in this work for which the €r value used is 3.3. The same is 

observed for 20 kHz and 30 kHz. This shows the effect of high frequency and waveforms on the distribution 

of field in the air gap between the wires and also on its surface. This can ionize the air in the gap causing 

spark leading to a thermal runaway as well. So besides, the PD initiated by high frequency stress, ionization 

may lead to spark in the gap thus triggering the breakdown of enamel insulation. There is a need for the 

development of a new insulation system for low voltage motors that can withstand higher PD resistance. 

Figure 8 shows that there is a variation in the distribution of electric field over the frequency of 

Square-rising and Square waveforms in all three cases. For cases 1, 2 and 3 the electric field strength is high 

at 10 kHz, and a gradual decrease in electric field strength values at 20 kHz and 30 kHz for both Square-

rising and Square waveforms. Further, it is noticed that for all three cases, the electric field strength of the 

Square-rising waveform is higher than that of the Square waveform for all frequencies. 

 

 

 
 

Figure 8. Variation in electric field distribution of Square-rising and square waveforms from 10 kHz to 30 

kHz for case 1, case 2, and case 3 

 

 

3.3.   Numerical modeling of electric field distribution of reduced voltages in twisted pair sample 

A numerical model for reduced voltage of 75%, 60%, and 50% of the breakdown voltage of the 

Square-rising waveform is considered. The variation in the electric field distribution over the frequency of 

reduced voltages is shown in Figure 9. However, the electric field observed is high enough to initiate PD for 

75%, 60%, and 50% of reduced voltage. 

 

 

 
 

Figure 9. Variation in electric field distribution of Square-rising waveform under reduced voltage from 10 

kHz to 30 kHz for case1, case, and case 3 
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4. CONCLUSION  

The high switching frequency is a predominant factor that causes reliability problems in insulation 

and can be associated with PD activity that accelerates insulation deterioration of the motor winding. After 

investigating the experimental results it is revealed that for Square-rising waveform the breakdown voltage is 

high when compared to Square-spike and Square waveforms. It is also observed that while using Square 

waveform the rate of deterioration of the insulation system is expeditious when compared with Square-spike 

and Square-rising waveforms. Furthermore, it is also noticed that when the test voltage frequency is 

enhanced from 10-30 kHz, the lifetime of Square-rising and Square-spike waveforms are two straight lines 

with higher slope followed by lower slope for all frequencies. From the simulation, it is observed that the 

electric field values are highest in the gap between the wires including at the surface of wires, and decreasing 

on the other regions. This implies that the possibility of PD initiating within the enamel. From the simulation 

results, it is analyzed that the impact of PD on enamel insulation at higher switching frequencies is so high 

that the twisted-pair sample fails prematurely. Hence, there is a need for further investigation of designing 

magnetic wires to withstand high PD resistance in low voltage motors. The important statistical parameter 

such as PDIV, PRPD pattern stressed by Square waveform needs to be investigated.  
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