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Abstract 
This paper addresses the LQG control problem for unmanned aerial vehicles (UAV) with time 

delays. In particular, the case with data-rate limitations is considered. It is shown in our results that the 
data rate of the communication channel has important effects on the control performances. It is derived 
that there exists a tradeoff between the data rate and the LQG cost.  A quantization, coding, and control 
scheme is proposed to stabilize the unstable plant. Simulation results show the validity of the proposed 
scheme. 
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1. Introduction  

In the past few years, unmanned aerial vehicles (UAV) have attracted recurring 
interests due to their wide applications in industrial automation, intelligent transportation, and 
national defense. Such systems are often viewed as networked control systems (NCS) where 
the sensors, the controllers, and the plant are connected via a digital, wireless communication 
network [1-5]. 

Networked control has received a lot of attention in recent years. This raises many new 
challenges to control schemes for unmanned aerial vehicles. Related study of networked control 
may be traced back to [6-9]. 

Borkar and Mitter [10] introduced the problem of LQG control under communication 
constraints. Furthermore, Tatikonda, Sahai, and Mitter [11] examined the LQG performance 
over both noisy and noiseless channels. Liu [12] addressed the stabilization problem for 
unmanned air vehicles over digital and wireless communication channels with time delay.  

In this paper, we consider a class of networked control problems for unmanned aerial 
vehicles, and address the LQG control under data-rate limitations. In particular, we design the 
quantizer, encoder, decoder, and controller to satisfy some given control performances of the 
unstable plant. Furthermore, we also consider the case with time delays, and present the 
bounds on the optimal LQG cost. It states that there exists a tradeoff between the data rate of 
the channel and the control performances.  

 
 

2. Problem Formulation 
We consider a class of networked control problems which arise in the coordinated 

motion control of unmanned aerial vehicles. The unmanned aerial vehicle (UAV) evolves in 
discrete-time according to: 

 
                                             DW(k)  GU(k)  FX(k)  1) X(k                                          (1) 

 
Where X(k)

 

nR  is the plant state process, U(k)

 

mR  is the control input, and W(k) lR  is the 
process disturbance. F, G, and D are known constant matrices with appropriate dimensions. 
Furthermore, we make the following assumptions: 

1N : The states of the UAV are reachable and observable; 
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2N : Notice that the stable part in the UAV does not play any key role on the condition 

for stabilization. Thus, we assume that all the eigenvalues of the system matrix F  have 
magnitudes 1 ; 

3N : In the UAV, the sensors and the controller are geographically separated and 

connected by a wireless, digital communication network with the channel propagation delay d ; 

4N : The initial condition X(0) and the disturbance W(k) are unknown random variables. 

W(0), ,W(k) are viewed as independent and identically distributed Gaussian random 

variables. Furthermore, we assume that  XXE 2
)0(  and  WkWE 2

)(  hold. 

For the UAV, our main task here is to present a quantization scheme, a coding strategy, 
and a control policy which can stabilize the unstable plant in the mean square sense. 

 


2

)(suplim kXEk
                                                                                        (2) 

 
Furthermore, an optimal LQG cost under communication constraints can be obtained in 

the same time. The LQG cost is give by  
 

 )()(')()('
1

suplim
1

0
kSUkUkQXkXE

T
J

T

kT  

                                                    (3) 

 
Where nnR Q  and 

mmR S  are symmetric positive definite. 
We examine the inherent tradeoffs between the LQG cost and the date rate of the 

communication channel, and discuss the effect that the date rate has on the control 
performances of the UAV. 

 
 

3. Quantization, Coding, and Control Schemes 
Our task is to design the quantizer, encoder, decoder, and controller to satisfy some 

given control objectives. In particular, we will derive bounds on the achievable LQG cost in the 
following section. In this section, we discuss the structure of quantization, coding, and control 
schemes for linear discrete-time plants. 

Notice that the matrix FF '  is real symmetric matrix. Thus, we may find a real 

orthogonal matrix nnRN   which can diagonalize FF ' . Namely, we have NNFF 2''   
with  ndiag  ,,: 1  . Here, let 

i  denote the ith singular value of the system matrix 

),,1( niF  . Then we may define the transformed state as:  

 
)(:)( kNXkX  . 

 
Let )(ˆ kX  denote the estimate of the plant state )( kX . We may also define the 

transformed value of )(ˆ kX  as: 

 

)(ˆ:)(
~

kXNkX  . 

 
Since both the encoder and the decoder have access to the control signals, we may 

define the prediction value of the plant state )(kX


 as: 
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Let )(kX  denote the centroid of the uncertain region of the plant state. Then, we may 

implement a quantized state feedback control law of the form: 
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).()( kXKkU


                                                                                                            (4) 
 

Thus, we have: 
 

)1()1(ˆ:)(  kXGKkXFkX


 ， )(:)( kXNkX 


 . 

 
Then, we define the differential value as: 

 

)()(:)( kXkXkY


 . 

 
Here, )(kY  is unknown to the decoder. We will quantize it, encode it, and transmit it over a 

digital, wireless communication channel. The decoder may compute the estimate value of the 
plant state once the decoder receives the information of )(kY . 

Let )(ˆ kY  and )(kC  denote the quantization value and the quantization error, 

respectively. Clearly, we have 
 

)()(ˆ)( kCkYkY  . 

 
We consider a memoryless channel, and construct a more general encoder by solving 

an optimization problem [13]. 
 

))(ˆ),((sup ))(( kYkYIC kYP
                                                                                      (5) 

 

 
Where the maximization is over the probability distribution of )(kY . Here, ))(ˆ),(( kYkYI  

represents the mutual information [13]. Then, we may compute code alphabet according to C . 
                

 
4. LQG Control under Data-Rate Constraints 

In this section, we discuss the classical LQG control problem under communication 
constraints, and present the optimal LQG cost. It is well known that, more information available 
at the decoder will lead to better LQG cost. However, there exists the inherent tradeoff between 
the data rate and the LQG cost. Now, we derive the lower bound on the data rate for the 
achievable performance. 

First, we give the following lemma which comes from [13]. 
Lemma 1: Let Rz  denote a random variable and z


 denote an estimate of z. Define 

R(D) as the information rate distortion function between z


 and z. The expected distortion 

constraint is defined as  Rd . Given  2
D E z z   , there must exist a quantization and 

coding scheme if the data rate R satisfies the following condition: 
 

2

2

1 ( )
( ) lo g

2

z
R R D

D


      (bits/sample)                                                                (6) 

 

Where  22 ( )z E z Ez   . 

Proof: See [13]. 
Then, we have the following results.  
Theorem 2: Consider the closed-loop system (1) with the time delay d. Let R denote 

the data rate of the channel. Then, the optimal state control law is given by the certainty 
equivalent control gain. 

 
PFGSPGGK ')'( 1                                                                                  (7) 
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Where P is available by solving the following equation: 
 

QFPGSPGGPGPFP   )')'((' 1 .                                                       (8) 

 
The optimal LQG cost is given by: 
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Proof: For the closed-loop system (1), we may obtain 
 

).()1()('

)()]()(ˆ[))(ˆ)((

)()()()1(

kDWkXkCFN
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This means that: 

 

).'()()()1(
)1()(

22

WkXkC DDtrtrtrkXE    

 
For a given )1,0( , we design a coding scheme under the data-rate limitation such 

that: 
 

)()()(
)1()(

22


kXkC trtrkXE                                                                    (10) 

 
Holds. Then, we have: 
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Thus, it follows that: 
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Furthermore, we set: 
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Then, it follows from Lemma 1 that: 
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Namely, we have: 
 

.
2 R

F
                                                                                                                       (11) 

 
Notice that: 
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Then, we have: 

 

).1(ˆ')()()1(  dkYNFkGUkXFkX d


 

 
As stated in [11], the optimal steady state control law is a linear gain of the form: 

 
)()( kXKkU


  

 
Where: 

 
.')'( 1 PFGSPGGK   

 
Here, P  is available by solving the following equation: 

 
.)')'((' 1 QFPGSPGGPGPFP    

 
The optimal LQG cost is obtained by: 
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With: 
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Notice that: 
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Substitute (12) into the equation above, and obtain: 
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Then, it follows from (11) that: 
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Remark 3:  
(1) Theorem 2 states that, the data rates have important effects on the LQG cost of the 

unstable plant. Clearly, there exists the tradeoff between the data rate and the control 
performance. Namely, more data rates will lead to better control performances.  

(2) It is shown in our results that, the time delays have important effects on the LQG 
cost of the plant too. Notice that the more time delays will lead to worse control performances. 

 
 

5. Numerical Example 
In this section, we consider a class of networked control problems for unmanned air 

vehicles (UAVs). Here we present a numerical example to illustrate the proposed quantization, 
coding and control scheme. Here, we consider an open-loop unstable system as follows: 
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Let ]'1000,-4000 [4000,  X(0)   and 002 W  . A quantized feedback control policy of 

the form: 
 

)()( kXKkU


  

 
is employed. We compute the controller gain 1.843] 2.453,  [2.374, K  . In order to illustrate 

the effects of the data rate and time delay on the LQG cost, we first set bits/s 60  R   and the 
time delay d=5. A corresponding simulation is given in Figure 1. 

 

 
 

Figure 1. The Responses of System States when bits/s 60  R   
Clearly, there exists no quantization, coding and control scheme to stabilize the system 
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if the data rate is smaller than the lower bound given in Theorem 2. In order to stabilize the 
unstable plant, we increase the data rate of the channel, and set bits/s 240  R  . A corresponding 
simulation is given in Figure 2. It is shown that the quantization, coding and control scheme can 
stabilize the unstable system if the data rate R is greater than the lower bound. 

 

 
 

Figure 2. The Responses of System States when bits/s 240  R   
 

 
6. Conclusion 

In this paper, we considered the LQG control under data-rate limitation. This problem 
arises when the controller and the plant are connected via a digital, wireless communication 
channel with data-rate limitations. It was shown in our results that there exists a tradeoff 
between the data rate, the time delays, and the control performance. The simulation results 
have illustrated the effectiveness of the proposed scheme. 
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