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ABSTRACT

This paper studies the containment control problem of the leader-follower configu-
ration in a multi-agents system included with a type of nonlinearity such as Lips-
chitz concerning continuous-time and directed spanning forest communication net-
work topology. A state feedback containment controller is designed and proposed
with control theory and the Laplacian network structure, where it utilizes the relative
information of each agent. The controller designed ensures that the followers are con-
tained by the leaders that form the convex hull formation. For containment action, a
minimum of one leader must have a direct communication trajectory to the followers.
Lyapunov stability theory is used to provide stability conditions after analyzing the
network structure. Finally, it has been shown from the simulation that the followers
are contained successfully with the proposed controller.
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1. INTRODUCTION
Consensus control originates from computer science [1] and has been widely accepted in the control

system research community. In short, this type of control action is applied in a system with several agents or
the multi-agents system, which forces each agent to come out with one outcome or consensus output. For the
system to have a single outcome, it must have the Laplacian structure. With graph and control theory, this type
of structure can be carefully understood, and the analysis of the system’s stability can be provided. Through
this knowledge, many research publications for consensus control have been reported for sensor network ap-
plications, automated highway systems, area surveillance, and other activities in the form of formation control,
attitude alignment, swarming, flocking, task and role assignment, payload transport, air traffic control and co-
operative search (See [2]-[7] and their references). In all publications, the consensus outcome relies heavily
on the information transfer between agents, generally grouped into three types: mainly linear systems such as
first-order systems [3], [4], [8], second-order systems, higher-order systems and general linear system nodes
[9]-[14]. There are also works on the nonlinear systems published with Lipschitz and time delay [15]-[18].
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Many works in consensus control employ leaderless configurations, which means there is no leader
agent in the system. There is also another configuration known as leader-follower with a single leader that
guarantees the consensus outcome. The extension to this configuration with the single leader, the containment
control, is employed into the system, where multiple leaders will surround or contain the followers while in
the movement. In other words, the leaders, either stationary or dynamic, form a convex hull to contain the
followers in the multi-agents system. Works on containment control has been reported by looking at solving
the containment problem (see [19], [20]).

The majority of the containment control publications are with linear multi-agents systems. As far as
this author knows, the publications with systems with nonlinearity are small in number (see [21]-[26]). There-
fore, motivated by Ding [15], Li et al. [21] and Wen et al. [22] for containment control of the multi-agents
system, a containment controller with state feedback is proposed for a multi-agents system with Lipschitz non-
linearity. The agents are configured with the multiple leader-followers configuration. This configuration makes
it possible to get a containment outcome even when there are no zero elements exist in the left eigenvector of
the Laplacian matric’s eigenvalues.

Readers can refer to the papers mentioned for the basic structure of the controller. There are three
critical features that can be considered as the main contributions for this paper:

(i) The subsystem dynamics are influenced by nonlinearity in the form of Lipschitz.

(ii) A containment controller with state feedback is proposed that depends on the relative information of
follower subsystems.

(iii) The type of containment controller proposed has never been looked at for a multi-agents system with (i)
and (ii), as far as this author knows.

With the knowledge of the connection topology and control system tools, sufficient conditions are provided. A
simulation examples are provided to validate the outcome.

The paper is structured as follows. Section 2 describes the problem statement, and provides funda-
mental graph theory notations. The proposed state feedback containment controller is designed in section 3.
Then, the main results in this paper are given in section 4. Simulations to verify the theoretical approach are
included in section 5. Finally, the conclusion for the paper is in section 6.

2. PROBLEM STATEMENT
N + 1 nonlinear subsystems which are identical; described by:

ẋi = Axi + φ(xi) +Bui (1)
yi = Cxi (2)

where xi ∈ Rn is the state vector of the subsystem for i = 0, . . . , N , the input of the ith subsystem is ui ∈ Rp,
and the measured output vector is yi ∈ Rq . Matrices A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rq×n represents the
appropriate matrices. The function φ : Rn → Rn represents Lipschitz nonlinearity with γ as the Lipschitz
constant. For any x, y ∈ Rn, we have:

‖φ(x)− φ(y)‖ ≤ γ‖x− y‖ (3)

with x, y are two constant vectors.

The subsytems connections are specified by a directed graph G. A set of vertices V represents the
subsystems and connections represented by the set of edges E are included in this graph. The adjacency matrix
A is associated with graph G. In G, if subsystem j that is connected to i, we have aij = 1. Otherwise aij = 0.
Next, we obtain the Laplacian matrix L = {lij} from the adjacency matrix with:

lij = −aij , if j 6= i

lii =

N∑
j=1,j 6=i

aij
(4)
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where the arrangement for Laplacian matrix L is shown as:

L =

[
L1 L2

0(N−M)×M 0(N−M)×(N−M)

]
(5)

with L1 ∈ RM×M and L2 ∈ RM×(N−M).
Before proceeding to the remaining of the paper, it is necessary to have the following assumptions,

definitions, and lemmas.

Assumption 1 A and B matrices are controllable.

Assumption 2 System dynamics (1) is stable.

Assumption 3 Every single leader subsystem is fixed.

Assumption 4 The communication network G of the multi-agents system contains a directed spanning forest
with any of the leaders has a path to the system.

Definition 1 It is assumed that the multiple leaders nonlinear subsystems are with M followers and N < M
and N −M leaders. A subsystem that has a minimum of one neighbour subsystem is known as the follower
and indexed by 1, . . . ,M , while a subsystem with no neighbours is the leader, indexed by M + 1, . . . , N with
zero control input. No information is transferred to the leader. The leader and the follower sets are denoted by
R , {M + 1, . . . , N} and F , {1, . . . ,M}.

Definition 2 [20] Let C be a set i in a real vector space V ⊆ Rp. The set C is called convex if, for any x and y
in C, the point (1 − z)x + zy in C for any z ∈ [0, 1]. The convex hull for a set of points X = {x1, . . . , xq} in
V is minimal convex set containing all points in X , and defined as Co{xj , j ∈ R}.

Lemma 1 [21] From Assumption 1, matrics L1 contains all positive real parts, where L−11 L2 entries are all
non-negative, and the sum of each row for L−11 L2 is equal to 1.

Lemma 2 Algebraic Riccati Equation (ARE) provides the solution for the stability matrix P [27]: To any ARE

ATP + PA+ PRP + S = 0 (6)

with the Hamiltonian matrix:

H =

[
A R
−S −AT

]
(7)

If H eigenvalues are not on the imaginary axis, a solution of P = PT > 0 is available if the pair (A,R) is
stabilizable, and R is sign-definite (i.e semi-definite positive or semi-definite negative).

This work aims to solve the containment problem for a multi-agents system by ensuring the followers asymptot-
ically converge to the convex hull formed by the multiple leaders by obeying definition 2. Hence this objective
can be materialized by designing a containment controller with state feedback.

3. STATE-FEEDBACK CONTAINMENT CONTROLLER
The state-feedback containment controller is proposed as:

ui = −Kc

∑
j∈F∪R

lij(xi − xj) (8)

where the constant control gain matrix Kc ∈ Rp×n is to be designed in the later section. The containment con-
trol problem is said to be solved if all followers always converge to the stationary convex hull Co{xj , j ∈ R}
as t→∞.

Indonesian J Elec Eng & Comp Sci, Vol. 23, No. 3, September 2021 : 1398 – 1409



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 r 1401

For the network dynamics, we have:

ẋ = (IN ⊗A− L⊗BKc)x+ Φ(x) (9)

where L is defined at (4) and (5), ⊗ is the Kronecker product, x = [xf xl]
T where xf = [xT1 , . . . , x

T
M ]T and

xl = [xTM+1, . . . , x
T
N ]T together with Φ(x) = [Φ(xf ) Φ(xl)]

T where Φ(xf ) = [φ(x1)T , . . . , φ(xM )T ]T and
Φ(xl) = [φ(xM+1)T , . . . , φ(xN )T ]T . Hence, we obtain a value for xf that satisfies the following dynamics:

ẋf = (IM ⊗A− L1 ⊗BKc)xf

− (L2 ⊗BKc)xl + Φ(xf )
(10)

Let ξi =
∑
j∈F

⋃
R lij(xi − xj), i ∈ F and we have:

ξf = (L1 ⊗ Im)xf + (L2 ⊗ Im)xl (11)

Remark 1 Equation (11) is derived from:
ξ = (L ⊗ In)x (12)

or [
ξf
ξl

]
=

[
L1 ⊗ Im L2 ⊗ Im

0(N−M)×M 0(N−M)×(N−M)

] [
xf
xl

]
(13)

From (9) we can also have:

ξ̇ = (IN ⊗A− L⊗BKc) ξ + (L ⊗ In) Φ(x) (14)

Consider the structure of L in (5), we can see from (9) and (10), with ξf that satisfies the following
dynamics:

ξ̇f = (L1 ⊗ Im) (IM ⊗A− L1 ⊗BKc)xf

− (L1 ⊗ Im)(L2 ⊗BKc)xl + (L1 ⊗ Im)Φ(xf )

+ (L2 ⊗ Im)(IN−M ⊗A)xl + (L2 ⊗ Im)Φ(xl)

=
(
IM ⊗A− L2

1 ⊗BKc

)
xf − (L1L2 ⊗BKc)xl

+ (L1 ⊗ Im)Φ(xf ) + (L2 ⊗A)xl + (L2 ⊗ Im)Φ(xl)

=
(
IM ⊗A− L2

1 ⊗BKc

)
×[

(L−11 ⊗ Im)ξf − (L−11 L2 ⊗ Im)xl
]

− (L1L2 ⊗BKc)xl + (L1 ⊗ Im)Φ(xf )

+ (L2 ⊗A)xl + (L ⊗ Im)Φ(xl)

= (IM ⊗A− L1 ⊗BKc)ξf + (L1 ⊗ Im)Φ(xf )

+ (L2 ⊗ Im)Φ(xl)

Hence, we have:

ξ̇f = (IM ⊗A− L1 ⊗BKc)ξf + (L1 ⊗ Im)Φ(xf )

+ (L2 ⊗ Im)Φ(xl)
(15)

Remark 2 Based on Theorem 3.1 in [20], without the nonlinearity term Φ(xf ) in (10), and if the topology is
directed, the final positions of the followers are given by −(L−11 L2 ⊗ Ip)xl. This is related to the property of
L−11 L2, where each row of L−11 L2 has a sum equal to 1, which is stated in Lemma 1. Hence, incorporating
nonlinear terms in (15), we can use the Lyapunov method to analyse its stability, and to find a suitable matrix
K for the control design. This can only be achieved by transforming (15) into a diagonally-dominant matrix.

State feedback containment control of multi-agents system with lipschitz... (Siti Nurfarihah Sheikh Hanis)



1402 r ISSN: 2502-4752

Let’s reintroduce T ∈ RN×N and T−1 ∈ RN×N as the nonsingular matrices such that:

T−1LT = J (16)

with J as a Jordan form block-diagonal matrix with:

J1
J2

. . .
Jp

Jp+1

. . .
Jq


(17)

where the Jordan blocks for real eigenvalues λk > 0 are represented by Jk ∈ Rnk for k = 1, . . . , p with the
multiplicity nk is shown as:

Jk =


λk 1

λk 1
. . . . . .

λk 1
λk


and Jk ∈ R2nk for k = p + 1, . . . , q are the Jordan blocks for conjugate eigenvalues αk ± jβk, αk > 0 and
βk > 0, with multiplicity nk is shown as:

Jk =


µ(αk, βk) I2

µ(αk, βk) I2
. . . . . .

µ(αk, βk) I2
µ(αk, βk)


with I2 the identity matrix in R2×2 and:

µ(αk, βk) =

[
αk βk
−βk αk

]
∈ R2×2 (18)

Remark 3 In order to analyze the stability of system (10), (15) needs to be transformed by manipulating the
structure of L. However, there is no direct transformation of (15). Therefore the required transformation is
taken from (14).

Next, from (14), we obtained:[
ξ̇f
ξ̇l

]
=

[
IM ⊗A 0

0 IN−M ⊗A

] [
ξf
ξl

]
−
[

L1 ⊗BKc L2 ⊗BKc

0(N−M)×M ⊗ 0M×M 0(N−M)×(N−M) ⊗ 0M×M

]
×
[
ξf
ξl

]
+

[
L1 ⊗ Im L2 ⊗ Im

0(N−M)×M ⊗ Im 0(N−M)×(N−M) ⊗ Im

]
×
[
Φ(xf )
Φ(xl)

] (19)

where from (19), we obtain:

ξ̇f = (IM ⊗A− L1 ⊗BKc)ξf − (L2 ⊗BKc)ξl

+ (L1 ⊗ Im) Φ(xf ) + (L2 ⊗ Im) Φ(xl)
(20)

and
ξ̇l = (IN−M ⊗A)ξl (21)
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Hence, we introduce transformations:
η = (T−1 ⊗ In)ξ (22)

and
Ψ(x) = (T−1 ⊗ In)(L ⊗ In)Φ(x) (23)

where η = [ηf ηl]
T and Ψ(x) = [Ψ(xf ) Ψ(xl)]

T . We then obtain:[
η̇f
η̇l

]
=

[
IM ⊗A 0

0 IN−M ⊗A

] [
ηf
ηl

]
−
[
Jf ⊗BK 0

0 0(N−M)×(N−M) ⊗ 0M×M

] [
ηf
ηl

]
+

[
Ψ(xf )
Ψ(xl)

] (24)

where: [
Ψ(xf )
Ψ(xl)

]
= (T−1 ⊗ In)×[

L1 ⊗ Im L2 ⊗ Im
0(N−M)×M ⊗ Im 0(N−M)×(N−M) ⊗ Im

]
×
[
Φ(xf )
Φ(xl)

] (25)

and (
T−1 ⊗ In

)
=

[
U−1 ⊗ Im 0

0 0(N−M)×(N−M) ⊗ Im

]
(26)

From (24) we obtain:

η̇f = (IM ⊗A− Jf ⊗BKc) ηf + Ψ(xf ) (27)

and
η̇l = (IN−M ⊗A) ηl (28)

Remark 4 The dynamics (10) becomes (27), which is utilized in the stability analysis.

From Assumption 4 and Lemma 1, we observe that all the eigenvalues of L1 have positive real parts.
Let U ∈ RM×M be a nonsingular matrix such that U−1L1U = Jf , with λi = 1, . . . ,M as its diagonal entries.
Hence, in order to further manipulate the special characteristic of L1, (22) and (23) with respect to ηf and
Ψ(xf ) are derived as:

ηf = (U−1 ⊗ Im)ξf (29)

and
Ψ(xf ) = (U−1 ⊗ Im)(L1 ⊗ Im)Φ(xf ) (30)

(29) and (30) are used for the design procedure.

4. STABILITY ANALYSIS
For stability analysis, we introduce the following lemma to provide a bound that is needed for the

transformed function ηf .

Lemma 3 A bound in terms of the state ηf can be established for nonlinear element ψi(xf ) from the nonlinear
term Ψ(xf ) in the closed loop network dynamics (27) transformed, as shown by:

‖ψi(xf )‖ ≤ %0√
N
ηf (31)

with
%0 = γλσ(U−1)λσ(L1)λσ(L−11 )λσ(U)

√
N (32)

where the matrix’s maximum singular value is represented by λσ(·).

State feedback containment control of multi-agents system with lipschitz... (Siti Nurfarihah Sheikh Hanis)



1404 r ISSN: 2502-4752

Proof 1 From (30) we have:

‖ψi(xf )‖ ≤ ‖oi ⊗ In‖‖lij ⊗ In‖‖Φ(xf )‖
≤ λσ(U−1)λσ(L1)γ‖xf‖
≤ λσ(U−1)λσ(L1)γ‖L−11 ⊗ Im‖‖ξf‖
≤ λσ(U−1)λσ(L1)γλσ(L−11 )‖ξf‖

where oi denotes the ith row of U−1 and lij denotes the ith row of L1. From (29) we have:

‖ξf‖ ≤ ‖ ∧i ⊗In‖‖ηf‖ ≤ λσ(U)‖ηf‖

where ∧i is the ith row of U . Then,

‖ψi(xf )‖ ≤ γλσ(U−1)λσ(L1)λσ(L−11 )λσ(U)
√
N√

N
‖ηf‖ ≤

%0√
N
‖ηf‖

Note that in Proof 1 and Lemma 3, ‖ · ‖ denotes the Euclidean norm for vectors x ∈ Rn, defined by
‖x‖ =

√
xTx, and the induced norm corresponding to the vector Euclidean norm for matrices A ∈ Rm×n, de-

fined by ‖A‖ = supx 6=0
‖Ax‖
‖x‖ . With the induced norm, the inequality ‖ψi(x, x0)‖ ≤ ‖ti ⊗ In‖ ‖Φ(x)− Φ(x0)‖

holds. Then we arrive at the following theorem that utilizes the bound in Lemma 3.

Theorem 1 If there exist a solution of P = PT > 0 for the nonlinear system (1), the distributed controller (8)
with Kc = BTP solves the containment control problem with the communication topology G, when Lemma 1
and Assumption 1 to Assumption 4 are satisfied, specified by either these two cases:

1. For matrix L1 with distinct eigenvalues, i.e., nk = 1 for k = 1, . . . , q, if the matrix P satisfies:

ATP + PA− 2αPBBTP + κPP +
%20
κ
In < 0 (33)

where κ > 0 and α = min{λ1, . . . , λp, αp+1,...,αq
}.

2. For matrix L1 with multiple eigenvalues, i.e. nk > 1 for any k ∈ {1, . . . , q}, if the matrix P satisfies:

ATP + PA− 2(α− 1)PBBTP + κPP +
%20
κ
In (34)

with κ > 0.

Proof 2 Notice that each Jordan block Jf takes the form of (17), where within each real Jordan block Jk, for
k ≤ p, we have i = Nk−1 + 1, . . . , Nk − 1,

η̇fi = (A− λiBKc)ηfi −BKcηfi+1
+ ψi(xf ) (35)

and
η̇fi = (A− λiBKc)ηfi + ψi(xf ) (36)

for i = Nk.
The dynamics of the state variables that is related to the Jordan blocks Jk for k > p are considered in

pairs for complex eigenvalues. Let:

i1(j) = Nk−1 + 2j − 1

i2(j) = Nk−1 + 2j

for j = 1, . . . , nk/2. The dynamics of ηfi1 and ηfi2 for j = 1, . . . , nk/2− 1 are represented as:

η̇fi1 = (A− αkBKc)ηfi1 − βkBKcηfi2 −BKcηfi1+2
+ ψi1(xf )

η̇fi2 = (A− αkBKc)ηfi2 + βkBKcηfi1 −BKcηfi2+2
+ ψi2(xf )
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and

η̇fi1 = (A− αkBKc)ηfi1 − βkBKcηfi2 + ψi1(xf )

η̇fi2 = (A− αkBKc)ηfi2 + βkBKcηfi1 + ψi2(xf )

for j = nk/2.

Let Wi = ηTfiPηfi . Choose Vk =
∑nk

j=1 σ
2(j−1)Wj+Nk−1

for k = 1, . . . , p and Vk =
∑nk/2
j=1 σ2(j−1)

(Wi1(j) +Wi2(j)) for k = p+ 1, . . . , q, where σ > 0.

Next, by having the Lyapunov function V =
∑q
i=1 Vk and the controller gain Kc = BTP , we can

obtain the following:

Case 1. We can obtain the folowing for the distinct eigenvalues,

V̇ ≤
M∑
i=1

ηTfi

(
ATP + PA− 2αPBBTP + κPP +

%20
κ
In

)
ηfi (37)

with V̇ < 0 is guaranteed from condition (33).

Case 2. We can obtain the following for multiple eigenvalues,

V̇ ≤
M∑
i=1

ηTfi

[
ATP + PA− 2

(
α− 1

σ

)
PBBTP + κPP +

%20
κ
In

]
ηfi .

≤
M∑
i=1

ηTfi

[
ATP + PA− 2(α− 1)PBBTP + κPP +

%20
κ
In

]
ηfi

(38)

with σ = 1. By having Lemma 1 and Assumption 4, the condition (34) guarantees V̇ < 0 with ηfi → 0 as
t→∞, ∀i = 1, . . . , N as t→∞. Thus containment is achieved and the proof is completed.

5. SIMULATION
In order to verify the theoretical approach of this paper, a simulation example is given with a system

that contains three leader and six follower subsystems, described as:

ẋi = Axi + φ(xi) +Bui (39)

with:

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
(40)

where the nonlinear term is:

φ(xi) =

[
0.05 cos(Cxi)

0

]
(41)

Without the nonlinearity, the result is similar to [28]. In this paper, Lipschitz nonlinearity is included in the
system dynamics as shown in (39). The connection between leaders and the followers is shown in Figure 1.

State feedback containment control of multi-agents system with lipschitz... (Siti Nurfarihah Sheikh Hanis)
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Figure 1. The containment configuration where the connections between the leaders and the followers are
represented by the dotted lines

Clearly we have satisfied Assumption 4 by looking at Figure 1. Hence, the Laplacian matrix is:

L =



3 0 0 −1 −1 −1 0 0 0
−1 1 0 0 0 0 0 0 0
−1 −1 2 0 0 0 0 0 0
−1 0 0 2 0 0 0 0 −1
0 0 0 −1 2 0 0 −1 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


where:

L1 =


3 0 0 −1 −1 −1
−1 1 0 0 0 0
−1 −1 2 0 0 0
−1 0 0 2 0 0
0 0 0 −1 2 0
0 0 0 0 −1 2


Please note that (A,B) is controllable and verified. We can easily obtain the eigenvalues of L1 as

{0.8213, 1, 2, 2.3329 ± 0.6708j, 3.5129}. By observation, the eigenvalues obtained are distinct and satisfy
Lemma 1.

From the transformation (16), the Jordan matrix J is:

J =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0.8213 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 2.3329 0.6708 0
0 0 0 0 0 0 −0.6708 2.3329 0
0 0 0 0 0 0 0 0 3.5129


where:

Jf =


0.8213 0 0 0 0 0

0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 2.3329 0.6708 0
0 0 0 −0.6708 2.3329 0
0 0 0 0 0 3.5129


Indonesian J Elec Eng & Comp Sci, Vol. 23, No. 3, September 2021 : 1398 – 1409
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Note that 0.05 sin(Cxi), is nonlinear function chosen for the system and it is globally Lipschitz. The followers
are initiated with the values of:

x1 = [0.15;−0.15], x2 = [0.25;−0.25], x3 = [0.35;−0.35], x4 = [0.45;−0.45],

x5 = [0.55;−0.55], x6 = [0.65;−0.65]

The leader values are set as:

x7 = [0.7;−0.7], x8 = [0.8;−0.8], x9 = [0.9;−0.9]x9 = [0.9;−0.9]

From L1, α = 0.8213 is obtained. Then, based on (41),

φ(xi) =

[
γ sin(Cxi)

0N−1

]
where γ = 0.05 is set, and the bound in Lemma 3 can be obtained as %0 = 7.5545 × 10−7 with κ set at 10.
Next, Algebraic Riccati Equation (ARE) is utilized to get the solution for P , with:

P =

[
0.0999 0.0054
0.0054 0.1201

]
Thus, we can easily obtain Kc = BTP , which is the controller gain as:

Kc =
[
0.0054 0.1201

]
Previously, we have shown that matrices (A,B) are controllable. In addition, the solution of P has

satisfied Lemma 2. The Hamiltonian matrix is then obtained as:

H =


0 1.0000 −10.0000 0
0 0 0 −8.3574

−1.0000 0 0 0
0 −1.0000 −1.0000 0


with −3.0632 + 0.4524i, −3.0632 − 0.4524i, 3.0632 + 0.4524i, and 3.0632 − 0.4524i as the eigenvalues of
H . Clearly, these eigenvalues are not located on the imaginary axis and satisfies Lemma 2.

The plots for the multiple leaders-followers system is shown in Figure 2, and Figure 3 with γ = 0.05
with the applicaition of controller (8). Without the nonlinearity element φ(xi), the controller is proved to be
stable, and we obtain:

eig(A− λiBKc) =

[
−0.2122 + 0.4472i
−0.2122− 0.4472i

]
(42)

where λi = 0.8231 is the minimum eigenvalue of Laplacian matrix L, with the location on the plane for all its
eigenvalues is LHS and Hurwitz-stable.
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Figure 2. The containment plot the system that contains multiple leaders (dotted lines) and followers system
(normal lines) with γ = 0.05 which represents the Lipschitz nonlinearity for substates 1

.
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Figure 3. The containment plot the system that contains multiple leaders (dotted lines) and followers system
(normal lines) with γ = 0.05 which represents the Lipschitz nonlinearity for substates 2

Remark 5 The constant γ range implemented in the experiment is between 0.01 and 1.05. This value range is
when the followers are able to be contained by the containment controller designed.

The control gain can provide the containment action with conditions (33) and (34) when the nonlinear-
ities exist in the system. Bear in mind, the conditions provided are conservative when we look at the Lipschitz
nonlinear function is included in the steps when designing of the controller. Similar to when γ = 0.05, when
the nonlinearity is increased to γ = 0.07, the containment controller could still achieve containment for the first
substates of the followers. However, containment was not achieved for the second substates of the followers
where the signal went slightly above the bound set by the leaders. For γ = 0.2, containment has not been
realized for substates 2 of each subsystem, but it remained stable and oscillated within the bound of the leaders
as t→∞.

6. CONCLUSION
The containment controller with state feedback proposed has successfully enabled the leaders’ sub-

systems to contain the follower subsystems in the system with Lipschitz nonlinearity and directed spanning
forest topology network. A specific measure of nonlinearity was included, deemed conservative, but still en-
able the containment outcome to be obtained. With careful evaluation of the Laplacian structure and Lyapunov
stability analysis, stability conditions for the system have been provided. The conditions are verified with sim-
ulations which shows the successful containment action. Since not all states are measurable for real systems,
an observer may be considered for the unmeasurable states in the multi-agent systems for future work.
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