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 Steganalysis aids in the detection of steganographic data without the need to 

know the embedding algorithm or the "cover" image. The researcher's major 

goal was to develop a Steganalysis technique that might improve recognition 

accuracy while utilizing a minimal feature vector dimension. A number of 

Steganalysis techniques have been developed to detect steganography in 

images. However, the steganalysis technique's performance is still limited 

due to their large feature vector dimension, which takes a long time to 

compute. The variations of texture and properties of an embedded image are 

clearly seen. Therefore, in this paper, we proposed Steganalysis recognition 

based on one of the texture features, such as gray level co-occurrence matrix 

(GLCM). As a classifier, Ada-Boost and Gaussian discriminant analysis 

(GDA) are used. In order to evaluate the performance of the proposed 

method, we use a public database in our proposed and applied it using 

IStego100K datasets. The results of the experiment show that the proposed 

can improve accuracy greatly. It also indicates that in terms of accuracy, the 

Ada-Boost classifier surpassed the GDA. The comparative findings show 

that the proposed method outperforms other current techniques especially in 

terms of feature size and recognition accuracy. 
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1. INTRODUCTION  

Due to the rapid growth of social networking sites, we may see or receive a large number of 

photographs, but we have no way of knowing whether these images are original or encrypted. Steganography 

[1] is a method of hiding private information in media such as text, audio, image, and video without leaving 

any trace that they are encrypted as shown in Figure 1. Therefore, we urgently require methods to distinguish 

photos containing an encrypted object. The goal of blind Steganalysis is to detect steganographic data 

without knowing the embedding algorithm or the ‘cover' image.  

Figure 2 depicts a general taxonomy of Steganalysis techniques, which is separated under 

multimedia data types and domains. Steganalysis approaches are classified into two types, signature 

steganalysis and statistical steganalysis, according to Steganalysis detection methods in literature review [3]. 

Statistical steganalysis is the process of seeking to find such statistical traces. When compared to signature 

steganalysis, statistical steganalysis is a more powerful tool since mathematical procedures are more sensitive 

than visual perception [2]-[4]. 

The majority of steganalysis approaches rely on image statistical calculations such as first and 

second order statistics. Statistical and signature steganalysis can be divided into two categories: specific and 

universal. Specific steganalysis is created for a particular steganographic embedding algorithm, such as least 
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significant bit (LSB) embedding, LSB matching, spread spectrum, bit-plane complexity segmentation 

(BPCS), joint photographic experts group (JPEG) compression, and other transform domains [5], [6], 

whereas universal steganalysis is a general class steganalytic technique that can be used with any 

steganographic embedding algorithm, including unknown algorithms [7], [8]. 

 

 

 
 

Figure 1. General architecture of steganography [2] 

 

 

 
 

Figure 2. General taxonomy of steganalysis 

 

 

Various methods for detecting the hidden image have been developed in the literature. However, 

most of Steganalysis recognition methods [9]–[13] rely on handcrafted features. Jyoth et al. [9], proposed a 

steg analysis recognition based on gray level co-occurrence matrix (GLCM), discrete wavelet transform 

(DWT) and contourlet transform (CT) and as well as an Adaboost classifier. Song et al. [12] proposed a 

steganalysis recognition based on the Shannon entropy of 2D Gabor wavelets and as well as an ensemble 

classifier. Karimi et al. [13] proposed a steganalysis recognition based on discrete cosine transform (DCT) 

coefficients and as well as an ensemble classifier. Gui et al. [14] proposed a steganalysis recognition method 

based on local binary pattern (LBP). In summary, smooth pixels are used to extract multi-scaled rotation 

invariant LBPs as distinguishing features. After that, linear support vector machine (SVM) is used to train 

and classify features. Zhang and Ping [15] presented a steganalysis recognition method relied on statistical 

analyses of differential image histograms. Lin et al. [16] presented a steganalysis recognition method relied 

on local ternary pattern (LTP) and path integral (pi-LBP) features combined. Liu et al. [17] proposed a 

steganalysis of LSB matching steganography based on generalized Gaussian distribution (GGD) in the 

wavelet domain. Chhikara and Bansal [18] proposed a steganalysis recognition based on GLCM as well as 

J48, sequential minimal optimization (SMO) and Naïve Baye’s classifier. 

Although the preceding studies have many benefits, it also has certain limitations, including a high 

feature dimension and a long computation time. Because of these constraints, we concentrate our efforts on 

an efficient few feature that, at the same time, help the classifier perform better. Therefore, in this research, 
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we proposed Steganalysis recognition based on one of texture features such as GLCM. As a classifier, Ada-

Boost and Gaussian discriminant analysis (GDA) are utilized. 

The remainder of this paper is organized as shown in section 2 discusses the GLCM features. In 

section 3, suggested methods are described. Section 4 discusses the findings and analysis. Finally, 

conclusions can be formed in Section 5. 

 

 

2. GLCM FEATURE 

Texture analysis is crucial in a variety of applications. Steganalysis is one of the most significant 

[19], [20]. The reason for this is that the information hidden in the images is very difficult to discover or 

distinguish with human eye, therefore texture analysis is used to uncover information that the human eye 

cannot see it [21]. For example, when any image embedding the secret data in an image”, the texture and 

characteristics in an image deviated. Therefore, texture analysis may easily uncover these buried details.  

GLCM descriptors are typical texture features that are used to extract texture features. The GLCM 

descriptors [22] are based on statistical moments and are obtained from a co-occurrence matrix. In order to 

know the process of GLCM calculation, Figure 3 [23] illustrates an example of GLCM calculation. For more 

details, see [22]–[24]. 

 

 

 
 

Figure 3. A GLCM computation procedure [60B] 

 

 

3. THE PROPOSED METHODS 

Any steganalysis recognition technique aims to recognize steganography in images from data sets 

that comprise both the cover image and the hidden image. Figure 4 depicts the three phases of the suggested 

technique. The following are the steps and algorithms: 

 

 

 
 

Figure 4. Proposed method block diagram 

 

 

3.1.  Preprocessing  

The majority of previously proposed approaches relied on a crucial step known as preprocessing. 

This step is important to minimize the overall computational complexity. The operation is done by producing 

a grayscale image from RGB image [25]. 
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3.2.  Feature extraction 

There are two primary considerations to think about when choosing appropriate features: reducing 

dimensionality and avoiding redundancy. For each gray scale image, GLCM features are extracted. The 

dimension of obtained GLCM feature vector is 1×14. 

 

3.3.  Classification  

Image steganalysis recognition is a two-class problem in this case, with cover and stego being the 

two classes. Therefore, we must devise ways for classifying those images. As a classifier, the adaptive 

boosting method (Ada-Boost) is applied. Adaptive boosting is a well-known supervised-learning method that 

employs many sequential learners, each with a different weight [26]. Furthermore, the Gaussian discriminant 

analysis (GDA) [27], [28] is a well-known generative model used to execute the classification task [29]. 

 

 

4. RESULTS AND ANALYSIS  

The results and analysis section discusses the experimental findings and evaluates the proposed 

method's performance. The proposed method has also been compared to others. We used the public database 

IStego100K (Large-scale Image Steganalysis Dataset) [30] as the data set for the proposed approach, which 

contains 8,104 images with cover/stego sizes of 1,024*1,024. There are 4,052 images that are covered and 

another 4,052 that are stego. 

As shown in (1) was utilized to calculate the accuracy of our proposed recognition approach [31]. 

 

𝐴𝑐𝑐𝑢𝑟𝑐𝑦 =  
(𝐶𝑜𝑣𝑒𝑟−𝑆𝑡𝑒𝑔𝑜 𝑖𝑚𝑎𝑔𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 )

(𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑣𝑒𝑟−𝑆𝑡𝑒𝑔𝑜 𝑖𝑚𝑎𝑔𝑒𝑠)
 × 100 % (1) 

 

The accuracy can be determined using (1) by computing the proportion of covered and stego images properly 

detected in the IStego100K dataset. 

We use the Ada-Boost and GDA classifiers to classify the GLCM feature vector since different 

classifiers have varying classification performance. We performed 10-fold cross-validation in order to get 

accurate results. The recognition accuracy of GLCM feature extraction, Ada-Boost and GDA classifier over 

the IStego100K database is shown in Table 1.  

 

 

Table 1. Recognition accuracy of two classifiers across IStego100K database 

Feature 
Classifier 

Ada-Boost GDA 

GLCM 97.36% 69.48% 

 

 

Despite the fact that all classifiers use the same feature vector, they yield different outputs. This is 

due to the fact that each classifier has its own range of attributes. Figure 5 shows that the Ada-Boost classifier 

has a 97 percent accuracy. As a result, it's reasonable to believe that the Ada-Boost classifier outperforms the 

GDA. The Ada-Boost classifier, according to the results, is the best of our proposed method. 

 

 

 
 

Figure 5. Recognition accuracy of Ada-Boost and GDA classifiers across IStego100K database 
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Table 2 compares the performance of our proposed method to that of prior methods [9], [10], [32] in 

the term of recognition accuracy and feature vector dimension. According to recognition accuracy and small 

feature vector dimension, the presented method surpasses other existing techniques, as shown by the results. 

The presented method has fewer feature vector dimensions than other previous techniques, as seen in Figure 

6. It simplifies the techniques in terms of computing. Both techniques [9] and [32] produced positive 

outcomes. However, they both use 416 and 22,130 feature vectors. The high feature dimension necessitates a 

significant amount of computation. Finally, as shown in Table 2, our proposed method can reduce the 

number of features needed in image Steganalysis while maintaining classification accuracy. 

 

 

Table 2. Performance comparison with previous methods 
Methods Jyoth et al. [9] Farshid and Ghaemmaghami [10] Qin et al. [32] Proposed 

Feature Vector Dim 416 128 22,130 14 

Features kind GLCM+DWT+CT Clouds-Min-Sum and Local- 

Entropies-Sum 

GLCM GLCM 

Recognition Accuracy (%) 93.87 78 83 97.36 

 

 

 
 

Figure 6. Current methods' performance across different types of feature vector dimensions 

 

 

5. CONCLUSION 

The researcher's major goal was to develop a Steganalysis technique that might improve recognition 

accuracy while utilizing a minimal feature vector dimension. In this paper, we proposed Steganalysis 

recognition based on one of the texture features, such as GLCM. As a classifier, Ada-Boost is used. The 

recognition accuracy of the proposed method using GLCM and Ada-Boost over the IStego100K database is 

found to be 97 percent. The proposed method outperforms other current methods in terms of recognition 

accuracy and a small feature vector dimension, as shown by the results. The presented method has fewer 

feature vector dimensions than other previous techniques. It simplifies the techniques in terms of computing. 

Finally, our proposed method can minimize the feature dimension needed in image Steganalysis while 

maintaining classification accuracy. 
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