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 The objective of this study is to analyze and discuss the metrics of the 

predictive model using the K-nearest neighbor (K-NN) learning algorithm, 

which will be applied to the data on the perception of engineering students 

on the quality of the virtual administrative service, such as part of the 

methodology was analyzed the indicators of accuracy, precision, sensitivity 

and specificity, from the obtaining of the confusion matrix and the receiver 

operational characteristic (ROC) curve. The collected data were validated 

through Cronbach's Alpha, finding consistency values higher than 0.9, which 

allows to continue with the analysis. Through the predictive model through 

the Matlab R2021a software, it was concluded that the average metrics for 

all classes are optimal, presenting a precision of 92.77%, sensitivity 86.62%, 

and specificity 94.7%; with a total accuracy of 85.5%. In turn, the highest 

level of the area under the curve (AUC) is 0.98, which is why it is 

considered an optimal predictive model. Having carried out this study, it is 

possible to contribute significantly to the decision-making of the higher 

institution in relation to the improvement of the quality of the virtual 

administrative service. 
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1. INTRODUCTION  

Today it is essential that the various organizations have the tools to capture, analyze and adapt to 

changes; even more so in this environment of high competition in institutions, the culture of organizational 

learning is considered key for decision-making based on the achievement of goals, to cement permanence in 

the market and to transcend it [1], [2]. In the virtual context in which we find ourselves, educational 

institutions apply techniques to understand the modeling of their users' perception of the quality of the 

service they provide, be it academic, pedagogical or administrative [3], [4]. The modeling of user behavior is 

one of the techniques most used by organizations, with the development of personalized content according to 

the level of user-platform interaction as its main motivation [5], [6]. 

In this educational field, the objective is to facilitate learning activities for the user, access to 

information in an agile way and the management of the required resources [7]. Improving the levels of 

https://creativecommons.org/licenses/by-sa/4.0/
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personalization of the content associated with an information system generates a positive perception for the 

user, making the performance of the services provided more efficient [8], [9]. At present, the development of 

information technologies allows to store and manage large amounts of data, this applied in virtual education 

environments generates the possibility of personalizing the content presented to users, through classification 

models [10], [11]. 

The classification models are supported by the definition of a priori groups so that through a machine 

learning model and with known information inputs, the unit of study can be classified into a specific group, in 

this technique dependent variables are defined and independent [12], [13]. Automatic learning or machine 

learning, belongs to a branch of artificial intelligence that is based on algorithms that allow modifying the 

behavior of data based on experience or knowledge acquired autonomously, in order to facilitate the extraction 

of users. of relevant information [14], [15]. This technique groups together a wide range of algorithms focused 

on solving various problems, such as: selection of characteristics, classification, grouping or imputation of data, 

among others [16], [17]. Likewise, the chosen algorithm depends on the type of information analyzed, this 

allows obtaining higher quality information and improving processing times [18], [19]. 

Among the algorithms most used in automatic learning for classification models, is the K-nearest 

neighbors (K-NN), given its simplicity and efficiency to detect and classify elements in categories [20], [21]. 

This supervised learning algorithm is made up of several descriptive attributes and a single objective attribute 

(also called class) [22]. The parameter k in K-NN refers to the number of neighbors with which the belonging 

to a category is defined, this parameter is usually determined empirically, depending on the problem it is 

tested with different values of K, choosing the parameter with the best performance in precision [23], [24]. 

Given what has been described, the present study aims to analyze and discuss the metrics of the predictive 

model obtained through the supervised learning algorithm K-NN, also known as medium K-NN, applied to 

the data of the perception of the quality of the virtual administrative service by engineering students, for 

which the indicators of accuracy, precision, sensitivity and specificity will be analyzed, based on obtaining 

the confusion matrix and the receiver operational characteristic (ROC) curve, the purpose of this analysis is 

to provide information quality and relevant to university managers to improve decision-making. 

 

 

2. RESEARCH METHOD 

The level of research, according to the degree of measurement and analysis of the information is 

descriptive, it is based on analyzing and discussing the metrics of the predictive model obtained through the 

medium K-NN supervised learning algorithm, applied to the data of the perception of the quality of the 

virtual administrative service by engineering students. Thus, the methodology is based on the construction of 

a predictive model through the execution of MATLAB software. Figure 1 shows the proposed methodology 

according to the supervised learning algorithm medium K-NN. 
 

 

 
 

Figure 1. Methodology of the proposed medium K-NN algorithm 
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The data referring to the perception of the quality of the virtual administrative service were collected 

by means of the survey technique, and the collection instrument is the questionnaire, with responses on a 

Likert scale ranging from 1 to 4, which represent the levels from dissatisfied to very satisfied, these levels of 

satisfaction in the analysis will be represented as the classes of the model. The survey was carried out 

virtually due to the context of the health emergency declared by Covid-19, and was applied to all 651 

students from the seventh to the tenth cycle, belonging to professional engineering schools, this criterion is 

part of a regulation established and approved by the university. As part of the methodology, the data 

collected is validated through Cronbach's Alpha coefficient using the SPSS software; once this analysis has 

been carried out, it is observed in Table 1 that the values obtained show a high homogeneity and equivalence 

of the response of all the indicators, since "values greater than 0.9 indicate a great consistency of the 

elements of the scale" [25]. Likewise, Table 1 shows the indicators called predictors of the quality of the 

administrative service. Based on these results, the analysis can be continued. 
 
 

Table 1. Value of Alpha Cronbach’s 
Code Indicators Alpha Cronbach’s 

I1 Efficient work 0.944 

I2 Timely attention 0.941 

I3 Relevant information provided 0.942 

O1 Quality care 0.935 

 
 

3. RESULTS AND DISCUSSION  

3.1.  Determination of the predictive model  

This is the training stage, where a classification algorithm builds a model by analyzing or learning 

from a set of training data. Thus, for the determination of the predictive model, the data collected based on 

the first 3 indicators shown was used. In Table 1, which are called predictors, while the indicator that 

represents the quality of the virtual administrative service is represented by 01. Thus, through the MATLAB 

software and through the Classification Learner tool and Statistics and Machine Learning Toolbox 12.1, the 

best type of predictive model determined by the validation of the accuracy is identified. The results generated 

by the Matlab R2021a software are shown in Table 2. 

According to Table 2, of all the learning algorithms, the best type of classification model was 

granted by the supervised learning algorithm K-NN or medium K-NN, with a validation of 85.5%. Regarding 

the validation percentage in [21] it is pointed out that, by obtaining 77.85% precision, it can be stated that the 

K-NN algorithm is capable of classifying well the unbalanced data with the most optimal values. As 

indicated in [26], the results of the classification and forecasting process show good results in terms of 

precision when using the medium K-NN algorithm, representing benefits in the ease of interpretation and 

comparability of the results, in this case with 91% accuracy exceeds 7.1% linear and quadratic classifier 

performance. Contextualizing this result in the university environment, for the educational institution it is 

important to know the different ways in which the student relates to the educational process and much better 

if it can take actions to facilitate learning and student satisfaction, re-conceptualizing the management virtual 

environments of the educational service. 
 
 

Table 2. Results of classification learner 
Algorithm Accuracy (validation) 

Medium K-NN 85.5% 

Bilayered neural network 85.4% 
Bagged trees 85.3% 

 

 

3.2.  Results of the predictive model metrics  

The confusion matrix is a useful tool to analyze how well a classification model can correctly predict 

outcomes in a large number of classes [27]. As indicated in [28] the K-NN algorithm requires knowing in 

advance the value of k to determine the K closest neighbors, the confusion matrix being a common procedure 

to evaluate different K-NN configurations. Described in the previous paragraph, Figure 2 shows the confusion 

matrix according to the number of observations, this matrix contains information about the predictions made 

by the classification system and reports the number of false negatives (FNR) and true positives (TPR), which 

shows the closeness between the levels of satisfaction predicted (predicted class) by the model with respect to 

its true value (true class). Rajagopal et al. in [19] it is indicated that the TPR defines the number of positive 

samples correctly classified as positive and the FNR is the number of positive examples incorrectly classified 

as negative, these 2 configurations plus the positive values predicted (PPV) and false obtained rate (FDR), 

shown in Figure 3, will define the performance metrics of the predictive model. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 521-528 

524 

In Figure 2, it is highlighted that of the 4 classes on which the predictive model acted, class 1 shows 

the highest percentage of sensitivity, this means that the predictive model has the ability to discriminate 

between a true positive (TP) of a false negative (FN) in this class (satisfaction level: dissatisfied), in this case 

it is 89.7%; in other words, the model was only 10.3% confused, a considerably low rate. Although all the 

levels are high, we can say that the lowest level of sensitivity of the predictive model is shown in class 2 

(level of satisfaction: not very satisfied), whose value is 82.2%. Likewise, in Figure 2, it is highlighted that to 

the right of the confusion matrix the rate of TPR and the rate of FNR are shown for each class. Regarding the 

validation of true positives and false negatives, Mhaske-Dhamdhere and Vanjale in [29], the medium 

algorithm K-NN, allowed to know that out of 160 emails from computer engineering students there are true 

positives of 67% and 80%, these values are very high, they are due according to users to the quality of the 

service in terms of email, such as technical parameters and structure. 

In Figure 3, a second confusion matrix is shown in which its main diagonal values indicate the 

precision of the predictive model for each class. Figure 3 shows that the predictive model for class 3 

(satisfaction level: satisfied) shows the best sensitivity rate, with a precision rate of 89.9%, thus being the 

highest among the other classes. While the lowest level of sensitivity of the predictive model is shown in 

class 3 (level of satisfaction: very satisfied), whose value is 80.2%. Although the predictive model for class 3 

(satisfaction level: satisfied) shows a sensitivity rate of 85.6% (Figure 2), in this case it shows a precision rate 

of 89.9%, which indicates that the level of dispersion of the data used is very low; answering that if the 

dispersion is low the precision is high. Likewise, one aspect to highlight is that in the lower part of the 

confusion matrix of Figure 3, it should be noted that the PPV and the FDR are shown for each class. 
 

 

 
 

Figure 2. Confusion matrix based on PPV and FDR rates 
 

 

 
 

Figure 3. Confusion matrix based on PPV and FDR rates 
 
 

As noted, the four ranking possibilities of any intrusion detection study determine meaningful 

performance metrics, such as accuracy (A), precision (P), sensitivity (S), and specificity (R). Table 3 shows 

the metrics of the predictive model, for each class, which shows that the four metrics show relatively high 

values in the 4 classes. In general, the accuracy of the predictive model is 85.5%. 
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In relation to the sensitivity indicator of the predictive model using the supervised learning 

algorithm K-NN, Figure 4 shows the response that Matlab provides for each class under study with its 

corresponding ROC graph, for each class; ROC validation represents the relationship between the sensitivity 

and specificity indicators; in this case the ROC of class 1 (unsatisfied) is displayed. In Figure 4, the 

discrimination threshold is shown, which is 0.90 for the rate of true positives and 0.02 for the rate of false 

positives, showing an AUC of 0.98, being a value almost optimal, very close to one. In the same way, the 

ROC of class 4 is shown (very satisfied), in Figure 5 the discrimination threshold is shown, which is 0.89 for 

the rate of true positives and 0.03 for the rate of false positives, evidencing an AUC of 0.96, as indicated, the 

closest value is 1, the model is much more optimal. 

 

 

Table 3. Results of classification learner 

Class 
Metrics 

Sensitivity Sensitivity Accuracy Precision 

1 89.66% 98.07% 97.11% 85.71% 

2 82.19% 92.44% 89.49% 81.45% 

3 85.63% 91.63% 88.83% 89.94% 
4 89.00% 96.67% 95.66% 80.18% 

 

 

  
  

Figure 4. Validation ROC Curve for class 1 Figure 5. Validation ROC Curve for class 4 

 

 

Regarding ROC validation, Susheelamma and Ravikuma in [22] it is indicated that there is an 

improvement in ROC performance, thus reflecting that the proposed learning model improves the score of 

measure F by 24.45%, 26.65%, and 18. 96% on the existing learning model; with this validation an average 

improvement of 23.35% of the existing model is achieved. Finally, after validating the collected data, and 

proceeding with obtaining the predictive model through the Matlab R2021a software, it was concluded that 

the average metrics for all its classes were optimal, presenting an accuracy of 92.77%, sensitivity of 86.62% 

and specificity of 94.7%; with an overall accuracy of 85.5%. In turn, the highest level of AUC is 0.98, thus 

being considered an optimal predictive model. 

Regarding what was obtained in [1] it is highlighted that, from the perspective of innovation, the 

results of these studies achieve great changes, they also allow delegating functions, promoting skills, and 

encouraging continuous updating; all this from the visionary leadership approach. Likewise, what was 

obtained in [22] indicates that the proposed model accurately predicts even for the early day (that is, during 0 

and 1 days), it also efficiently predicts the days after the end of the course and achieves better results than 

training with legacy data. As indicated in [30] there is a strong tendency to predict student performance in 

college. For what research about predicting the behavior of students in the academic environment, it is very 

interesting, because within an organization the quality of service is essential, since user satisfaction depends 

on it. The results Ghouch et al. in [31] indicate that the integration of the K-NN algorithm in the educational 

environment allows searching for students with similar behaviors, which will offer, on the one hand, a 

learning path adapted to the student's profile, and based on the experiences of others. students with similar 

behaviors by observing and analyzing their learning footprints, and, on the other hand, overcomes the 

limitations of the K-NN algorithm in terms of computational time and memory. 
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4. CONCLUSION  

In relation to the results obtained, an optimal predictive model is evidenced, with an accuracy of 

85.5% making use of the supervised learning algorithm K-NN, likewise, the application of the cross-

validation procedure shows optimal results in the experimentation of the K-algorithm. NN finding all the 

model metrics (sensitivity, specificity, accuracy, and precision) in the 4 classes with relatively high values, 

said this, the results will allow to establish the grouping of engineering students who can reach a level of 

satisfaction based on the indicators called predictors, by means of which the authorities will be able to make 

timely decisions to improve the percentage of satisfied students and reduce the percentage of dissatisfied 

students in relation to the quality of the virtual administrative service, also these classification techniques 

allow to extract relevant information from interested parties, from higher quality and even less time. The 

research also provides added value, since it provides the scientific and academic community with a 

methodology to classify participating students in virtual environments, identifying the relationship between 

the predictive elements and the results of the satisfaction of the quality of the administrative service, which is 

provides in this context virtually. 
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