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A modified mixed Gaussian plus impulse image denoising algorithm based on
weighted encoding with image sparsity and nonlocal self-similarity priors regulariza-
tion is proposed in this paper. The encoding weights and the priors imposed on the im-
ages are incorporated into a variational framework to treat more complex mixed noise
distribution. Such noise is characterized by heavy tails caused by impulse noise which
needs to be eliminated through proper weighting of encoding residual. The outliers
caused by the impulse noise has a significant effect on the encoding weights. Hence a
more accurate residual encoding error initialization plays the important role in overall
denoising performance, especially at high impulse noise rates. In this paper, outliers
free initialization image, and an easier to implement a parameter-free procedure for
updating encoding weights have been proposed. Experimental results demonstrate the
capability of the proposed strategy to recover images highly corrupted by mixed Gaus-
sian plus impulse noise as compared with the state of art denoising algorithm. The

achieved results motivate us to implement the proposed algorithm in practice.
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1. INTRODUCTION

In various image applications, an image is inevitably polluted by noise of different types. Mixed noise
could occur when an image that has already been contaminated by Gaussian noise in the procedure of image
acquisition with faulty equipment suffers impulsive corruption during its transmission over noisy channels
successively [1]. The main objective of any denoising algorithm is to remove noise as totally as possible and
to preserve image edges as completely as possible. In a view of relevant studies, several denoising algorithms
have been implemented for denoising a corrupted images by either impulse noise or Gaussian noise [2]-[6].
While, few relevant works have been proposed in order to remove mixed noise efficaciously due to the distinct
characteristics of both kinds of degradation processes. Generally, enhanced Gaussian denoising algorithms are
considered to be insufficient for suppressing the impulse noise due to the noisy pixels are translated as an edges
and should be preserved. Meanwhile, the strategies for impulse noise elimination detect the impulse pixels
and replace them with estimated values while leaving the remaining pixels unchanged. Along these lines, most
Gaussian noise in the restored images will be kept leading to grainy and unsatisfactory visual results. Thus, a
specific algorithm needs to be designed for standing against mixed Gaussian plus impulse noise [7], [8].

The sparse representation (SR) has proved its effectiveness in dealing with various image processing
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fields [9]-[11]. The algorithms based on SR, benefit from the sparse nature of the images which can be well
restricted by a linear combination of only few atoms of transformed domain called dictionary. The main weak-
ness of SR model based denoising algorithms is its incapability in dealing with mixed noise due to complicated
properties of mixed noise distribution. To overcome SR model limitations, a dedicated algorithm need to be
carefully designed to deal with heavy tails of mixed noise caused by impulse noise. Integrating the SR into total
variation framework with proper encoding residual weighting, open the door for appearing algorithms capable
of eliminating mixed noise efficiently. A weighted encoding with sparse nonlocal regularization model named
(WESNR) was successfully applied in [9].

The main goal of this paper is to enhance the performance of WESNR algorithm firstly by initializing
the algorithm with a more accurate image to ensure proper residual encoding error initialization and secondly by
suggesting simpler weight updating procedure that ensures proper weighting of encoding residual to guarantee
cancelling the heavy tails of mixed noise distribution induced by impulse noise. The achieved results show
that the proposed algorithm exhibits improved performance in dealing with images highly corrupted by mixed
Gaussian plus impulse noise as well as facilitating the practical implementation conditions.

The rest of the paper is organized as follows. Related work is introduced in Section 2. Section 3
describes the mixed Gaussian plus impulse noise model used in this paper. Section 4 briefly reviews the core
of sparse denoising model. The proposed image denoising algorithm is explained In Section 5. In section 6,
the results of the proposed denoising algorithm is compared with WESNR [9]. Finally, the concluding remarks
are given in section 7.

2.  RELATED WORK

A general adaptive framework for detection and elimination different types of noise, involving Gaus-
sian noise, impulse noise and more importantly their mixtures has been proposed in [12]. The method is
implemented based on maximum likelihood estimation (MLE) approach as well as sparse representations over
a trained dictionary. A patch-based approach for removing mixed noise based on sparse representation has been
presented in [13]. An optimization problem is formulated based on ¢;-norm and /y-quasiy-norm penalties. The
sparse representation in a dictionary and sparsity of residual is enforced by ¢y-¢; penalties respectively. The
dictionary is learned using independent component analysis (ICA). The image is denoised iteratively using a
combination of soft and hard thresholding. Results show that the proposed method gave good results in terms
of SSIM quantitative measure for images rich with fine details. However, the performance of the proposed
algorithm is not verified under heavily mixed noise degradation. A weighted encoding with sparse nonlocal
regularization (WESNR) that can deal with images corrupted by mixed noise has been implemented in [9].
Weighted encoding is utilized in order to handle the impulse and Gaussian noise jointly. The prior image
sparsity as well as prior nonlocal self-similarity have been consolidated by means of a regularization term and
inserted into the variational encoding mechanism. The major drawbacks of this algorithm is its incapability of
dealing with highly corrupted images.

A nonparametric Bayesian model to solve sparse outlier has been proposed in [14], [15]. This strategy
proves its effectiveness in treating mixed Gaussian plus impulse (salt and pepper) noise. The noisy image
is considered to be composed of three terms namely clean image, Gaussian noise image, and sparse impulse
noise image. The model employs spike-slob sparse prior to recognize sparse coefficients of the real data term
and outlier noise. An algorithm for jointly denoising hyperspectral images corrupted by mixed Gaussian plus
impulse noise has ben proposed in [16]-[18]. The proposed algorithm avails the inherent spatial and spectral
correlation of such images. The denoising problem is formulated based on synthesis prior (SP) and solved
using Split-Bregman algorithm.

A new statistical regularization term called joint adaptive statistical prior (JASP) has been presented
in [19]. The proposed strategy is incorporated into variational scheme. Moreover, the proposed variational
model is solved using Split-Bregman iterative algorithm to recover images corrupted by mixed Gaussian plus
impulse noise. A weighted joint sparse representation model called WISR to recover images corrupted by
mixed noise has been presented in [10]. The model group similar image patches and solved for global optimal
solution using weighted simultaneous orthogonal matching pursuit (W-SOMP). The weights are included to
stands against impulse noise which abolishes image patch similarities. The WISR is integrated, with the global
and sparse error priors, into variational framework to efficiently deal with mixed noise corruption. The major
drawback of this algorithm is its computation complexity due to the usage of greedy algorithm W-SOMP.
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An iterative non-convex low rank matrix approximation (NonLRMA) model for denoising hyper-
spectral image (HIS) corrupted by mixed noise has been proposed in [20]-[22]. NonLRMA decomposes the
degraded HSI image into a low rank component and a sparse term. Results prove the capability of the proposed
algorithm to preserve large-scale image structures and small-scale details over a wide range of image bands
degradations. An adaptive Median based Non-local Low Rank Approximation (AMNLRA) approach for de-
noising images polluted by mixed gaussian plus impulse noise has been proposed in [23]. The proposed method
is based on eliminating the effect of impulsive noise on the mixed noise probability distribution to recover the
Gaussian probability distribution. To locate the position of pixels contaminated by impulse noise, an adaptive
median filter AMF [24] was used. According to data redundancy, these identified pixels are then processed
using non-local mean filtering (NLM) to convert the residual noise into a Gaussian noise distribution. Finally,
the pre-processed image has been processed using reduced rank optimization to obtain the denoised image.

3.  PROBLEM FORMULATION

In a view of image denoising process, the elimination of mixed noise is more complicated than the
standardized single noise. As a rule, this noise is sampled from various distributions. In this paper, the proposed
strategy gives more attention for image denoising of mixed noise which specified by a combination of Gaussian
and impulse noise. Obviously, it is a considerable problem that can be modeled as (1):

y=IMP(x+n) (1)

where, x, y and n denotes the original image pixel, corrupted image pixel and additive white Gaussian noise
respectively. The symbol I M P, denotes the corruption process by salt and pepper impulse noise.

4. SPARSE DENOISING MODEL
Let us denote an image by 2 € RN . The extracted image patch, can be represented as (2):

z; = Rjx 2)

where z; the stretched vector of an image is a patch of size \/n x y/n and R; is the matrix extraction op-
erator at location j. The goal of sparse representation theory is to find an over complete dictionary D =
[dy,da,y........ d,] € R"™™ to sparsely code x; where d; € R" is the jth atom of . Based on the derived
dictionary D, the image patch can be rewritten according to (3) [9]:

T; = DOlj (3)

where «; is a sparse coding vector. The least square solution of x can be expressed as (4):

z = Da 4

where « is the set of all coding vectors «;. In case of AWGN corrupted image y, o can be expressed as (5) [9]:

& = argmina ||y — Doz||§ + AR(«) 5)

where R(«) and A are the regularization term and regularization parameter that ensure maximum a posteriori
probability (MAP) solution of o for AWGN model. However, for mixed noise removal, MAP solution is
unreachable due to heavy tail caused by impulse noise. To deal with mixed noise removal, a new model named
weighted encoding with sparse nonlocal regularization (WESNR) has been proposed. According to WESNR,
The (5) is rewritten as [9]:

2
+ AR(w) (6)
2

1
W2(y — Da)

Q= argmina

where TV is a diagonal weights matrix its elements W is derived from residual error e; = (y — Da); as [9]:

W;j = exp(—cej) (N
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where c is a positive constant to control the decreasing rate of W;;. The weights W are adaptively updated
in each iteration. The pixel corrupted by impulse noise is assigned small weight close to zero, while the
uncorrupted pixel is left unchanged through assigning weight close to 1. This process will eliminate the effect
of heavy tails caused by impulse noise and hence ensure MAP solution of (6) to recover images corrupted by
mixed Gaussian plus impulse noise.

The updating of W depends on the coding residual error e. In [9], the initialized image 2(0) for
salt and pepper impulse noise is obtained by applying AMF [24] to y. Thus, the residual error is initialized
according to (8).

e(0) =y — x(0) (8)

Inspired by the work in [25], local sparsity and nonlocal self-similarity are the two priors adopted in
WESNR to model regularization term R(«) yields to (9):

2

+ A e = plly ©)
2

N[

w

(y — Da)

& = argmina

as proposed in [9], the (9) was solved via iteratively reweighted least square minimization scheme which has
been proposed in [26] using the (10):

A
V(e (k) — p;)? + e(k)?

Ujj(k + 1) = (10)

where o (k) and (k) is the j' element of coding vector o and numerical stability parameter in the k"
iteration respectively. Hence, €(k) as well as « are updated according to (11) and (12) respectively [9].

e(k+ 1) = min(e(k), median(|a(k) — p])) (11)

alk+1)=(DTWD +V(k+1))"Y(DTWy — DYWDpu) + 1 (12)

5.  THE PROPOSED ALGORITHM

In WESNR [9], the weights ¥ have the important role in attenuating the effect of heavy tails triggered
by impulse noise and hence retrieve back the distribution of mixed Gaussian plus impulse noise to resemble
Gaussian noise distribution. This will pave the way for sparse modeling technique to implement denoising
algorithms that can deal with images corrupted by mixed noise without explicit impulse detection phase. Re-
ferring to (6), the accuracy of estimated sparse vector & and the diagonal weight matrix W are highly affected
by residual encoding error which in turn depends upon the initialized image 2:(0). Thus, better performance
is expected when more accurate image is used for initialization. Generally, the salt and pepper impulse noise
take either minimum or maximum values in the dynamic range of the image (e.g. [0,255]). Thus, we need to
process the pixels that take these extreme values. The question raised now is how to replace the corrupted pixel
in such a way that ensures resemblance with its noise free neighbor pixels and hence dimensions the effect of
outliers. Intuitively, critical replacements occurs when the test window §2,, . centered at pixel p,, . filled with
impulses. To solve this problem, we suggest to adopt the Robust Outlier Exclusion (ROE) proposed in [27]. In
this work the test window size is expanded to the next higher one (typically 4 x4) and apply the trimmed mean
which is characterized by its robustness against outliers. The conception for limiting the maximum test window
size to 4 x4 is to boost the estimated accuracy without influencing the significant correlation characteristics of
neighbor pixels. As stated in [27], 25% of the outliers exclusion accomplishes a powerful estimatation for
recovering the corrupted pixels. Algorithm 1 shows the initialization algorithm steps according to ROE [27].
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Algorithm 1 Initialization algorithm

Input: y, an image corrupted by impulse noise
Q.- Slide window centered at p,,,. of Size MxM
Where M is an Odd number typically 3

Output: z(0), the initialized image

for each non border pixel p(7, j) € y do
if 0 < pu,- < 255 then
The pixel is uncorrupted. Hence, left unchanged
else
The pixel is corrupted, do the following:
Exclude all noisy pixels in §2,,, -
Compute median value pyedian
Set Pu,z = Pmedian
if 2, is filled of impulse noise then
Replace €2, . by ﬁuyz of size M+1xM+1
Exclude all noisy pixels in €2, -
Compute Trim Mean in ,,,, with 25% exclusion p¢rim
Set Pu,z = Ptrim
end if
if ﬁu,Z is filled of impulse noise then
Compute the Mean in Q> Pmean
Set Pu,z = Pmean
end if
end if
end for

Output the initialized image x(0)

The initialization image x(0) is now used to calculate the residual encoding error which plays impor-
tant role in updating the weight matrix . Referring to (7), the assigned weights W is firstly sensitive to the
value of the constant ¢ which controlling the decreasing rate of the weights and secondly use trigonometric
exponential function. To modify the algorithm to suit the implementation requirements, it is usually best to
avoid the use of mathematical functions, in this case, exponential functions. Hence, our goal is to replace the
exponential function while retaining the properties of its execution. Referring to (7), impulse noise will cause
a significant increase in residual error, which will lead to the assignation of weight close to zero (W — 0),
thereby eliminating the impact of heavy tails caused by impulse noise. Otherwise, if the pixel has no impulse
noise, the weight will be close to one (W — 1).

Now to achieve our goal, assuming a is a positive value greater than zero and less or equal to 1, then
(1-a)> - 0whena — 1and (1 —a)? — 1 when a — 0. The function (1 — a)? has the same properties as
the exponential function. Consequently, the diagonal weight matrix W can be updated according to (13).

W=(1-a)? 0<a<l (13)

The constraints imposed on the variable a in (13) can be related to the absolute normalized residual
coding error (|e,orm|)- Accordingly, the weight matrix W is updated through the following steps:

1. Calculate absolute residual error:

e(k) = [(y — Da(k))| (14)

2. Normalize the error by element wise division:

e(k)
norm k)= 15
¢ (k) maz (e(k)) (15)
3. Update weight diagonal matrix:
Wjj (k) = (1 - enorm(k))2 (16)
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Regarding to the case of impulsive noise which is specified by (16), the normalized error (|€,0rm|)
approaches 1 and thus a value close to zero will be assigned to the encoding weights W;; which eliminate
the effect of the impulsive noise. Hence, ensuring MAP solution of (6) in order to recover images corrupted
by mixed Gaussian plus impulse noise. Moreover, compared with (7) and (16) has the advantage of being
easier to implement in practice by avoiding the use of an exponential function. Therefore, there is no need to
calibrate the parameter c. By following the steps outlined above, Algorithm 2 demonstrates the modification of
the proposed WESNR based mixed Gaussian plus impulse image denoising algorithm.

Algorithm 2 Proposed mixed noise denoising algorithm
Input: Dictionary D, noisy image y, and number of iterations L
Initialization: Apply ROE [27] to y in order to obtain the initialized image z(0)
Calculate residual error e(k = 0) using (14)
Initialize p to zero
Output: Denoised image x
for k=1,2,....... L do
1- Compute «(k) by (12)
2- Compute z(k)=D a(k)
3- Update the nonlocal coding vector = D7 z(k)
4- Compute the residual error using (14)
5- Normalize the residual error using (15)
6- Update weight matrix W using (16)
end for

Output the denoised image = Da(L)

6. EXPERIMENTAL RESULTS

The proposed algorithm is evaluated on a set of standard images having distinctly different features
of size 512x512. These images are artificially polluted firstly by Gaussian noise with standard deviation o
of 10, 20, and 30 and then 30%, 50%, and 70% of image pixels are replaced by salt and pepper impulsive
noise. Objectively, the obtained results are evaluated using peak signal to noise ratio (PSNR) and the structural
similarity index (SSIM) [28]. Moreover, subjective evaluation is included to prove the quality of the recovered
images. The proposed algorithm is compared with WESNR [9]. The parameters of WESNR are set to its
default values as proposed in [9]. The parameters are ¢ = 0.0008, A(0) = 0.0001 to reduce the effect of impulse
noise on block-matching then A= 1 for ¢ > 10 or A= 0.5 for 0 < 10, £(0) = 0.1 and updated in accordance
with (11). The image patches are encoded over a set of offline learned PCA based dictionaries. The proposed
algorithm has the same parameters as WESNR except of the parameter ¢ which has been discarded. The number
of iterations L is kept fixed at 8 for all experiments.

6.1. Objective evaluation

The denoising relative performance in terms of PSNR and SSIM for an average of five runs using a
set of images are recorded in Table 2 (the value in parenthesis is the SSIM). According to the performance
criteria, the superior outcomes are referred with a bold font. Regarding to the results examination of Table 1,
the proposed algorithm outperforms WESNR algorithm most of the time in terms of individual, average PSNR
as well as SSIM values over the whole scope of noise levels and images under test.

In addition, by carefully checking the obtained results in Table 2, it is noticed that as the level of mixed
noise increases, the proposed algorithm exhibits higher performance compared to WESNR. As an illustration,
Figure la, Figure 1b, Figure 2a, and Figure 2b demonstrate the relative denoising of both algorithms in terms of
PSNR and SSIM for 6=30, sp=30 %, and 0=30, sp=70 % respectively. The achieved results prove the enhanced
performance and the effectiveness of the modification inserted on the conventional WESNR algorithm namely
starting with a more accurate initialized image x(0). The more accurate initialization of the proposed algorithm
has been reflected in increasing the accuracy of estimating the initialized weight matrix W. Furthermore, the
proposed function for updating the diagonal weight matrix W in (16) proves its ability to attenuate the effect of
heavy tails caused by impulse noise considerably. Therefore, a MAP solution for recovering images corrupted
by mixed Gaussian plus impulse noise has been realized.
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Table 1. PSNR (SSIM) denoising results

Images o

Lena 10
20

30

Boat 10
20

30

Hill 10
20

30

F16 10
20

30

Monarch 10
20

30

Barbara 10
20

30

House 10
20

30

Couple 10
20

30

Man 10
20

30

Zelda 10
20

30

Average 10
20

30

sp 30%
WESNR  Proposed
33.31 33.84
(0.879) (0.881)
30.68 31.03
(0.810) 0.818)
27.23 27.97
(0.634) (0.657)
30.56 31.39
(0.831) (0.845)
28.27 28.68
(0.747) (0.751)
25.83 26.39
(0.619) (0.642)
30.88 3145
(0.815) (0.830)
28.74 29.01
(0.725) (0.731)
26.27 26.81
(0.599) (0.622)
3247 29.46
(0.893) (0.889)
30.14 28.18
(0.824) (0.816)
26.79 26.32
(0.627) (0.653)
35.36 35.78
(0.935) (0.937)
31.66 32.04
(0.860) (0.880)
27.51 28.31
(0.674) (0.804)
29.18 31.44
(0.874) (0.899)
27.13 28.65
(0.793) (0.822)
24.57 25.96
(0.644) (0.692)
36.97 36.87
(0.912) (0.902)
33.67 33.76
(0.843) (0.862)
28.90 29.70
(0.630) 0.777)
30.34 31.17
(0.846) (0.860)
28.04 28.52
(0.757) (0.765)
25.56 26.12
(0.626) (0.643)
30.71 31.18
(0.841) (0.849)
28.51 28.74
(0.753) (0.755)
26.09 26.60
(0.613) (0.653)
34.73 34.99
(0.884) (0.886)
31.87 32.14
(0.815) (0.818)
28.10 29.76
(0.645) (0.747)
3245 32.76
(0.871) (0.878)
29.87 30.08
(0.793) (0.802)
26.69 27.39
(0.631) (0.690)

sp 50%
WESNR  Proposed
31.79 32.50
(0.863) (0.867)
29.61 30.19
(0.796) (0.807)
26.00 27.94
(0.603) (0.633)
28.73 29.56
(0.799) (0.808)
26.89 27.54
(0.719) (0.721)
24.34 25.93
(0.582) (0.635)
29.77 30.11
(0.785) (0.791)
27.86 28.11
(0.699) (0.704)
25.22 26.54
(0.558) (0.618)
30.61 28.84
(0.878) (0.878)
28.72 27.68
(0.813) (0.819)
25.65 26.20
(0.607) (0.635)
33.09 34.29
(0.930) (0.933)
30.03 31.16
(0.861) (0.870)
25.92 28.24
(0.644) (0.787)
26.99 28.82
(0.831) (0.860)
25.44 26.65
(0.744) (0.773)
22.64 25.02
(0.587) (0.681)
36.02 36.21
(0.904) (0.900)
32.78 33.48
(0.837) (0.859)
27.83 29.04
(0.610) (0.713)
28.77 29.50
(0.813) (0.824)
26.84 27.32
(0.725) (0.728)
24.37 25.63
(0.592) (0.637)
29.36 29.80
(0.814) (0.818)
27.65 27.91
(0.734) (0.737)
24.86 26.25
(0.577) (0.644)
33.83 34.06
(0.872) (0.875)
31.05 31.53
(0.802) (0.815)
27.14 28.48
(0.630) 0.717)
30.90 31.37
(0.849) (0.855)
28.69 29.16
(0.773) (0.783)
25.40 26.93
(0.600) (0.670)

sp 70%
WESNR  Proposed
29.31 29.85
(0.830) (0.835)
27.59 28.17
(0.769) (0.787)
24.01 26.69
(0.577) (0.620)
26.12 26.87
(0.736) (0.739)
24.86 25.49
(0.657) (0.667)
22.29 24.45
(0.532) (0.612)
27.98 28.13
(0.724) 0.728)
26.39 26.57
(0.652) (0.654)
23.60 25.62
(0.516) (0.604)
27.72 27.20
(0.846) (0.851)
26.32 26.21
(0.787) (0.806)
23.28 25.22
(0.564) (0.602)
28.72 29.83
(0.900) (0.913)
26.68 28.10
(0.830) (0.849)
23.00 26.15
(0.600) 0.754)
23.97 25.21
(0.728) (0.759)
22.75 23.88
(0.651) (0.677)
20.49 23.20
(0.505) (0.624)
33.51 33.62
(0.886) (0.890)
30.84 3145
(0.825) (0.848)
25.83 28.31
(0.598) (0.654)
26.18 26.77
(0.738) (0.744)
24.77 25.20
(0.641) (0.654)
22.51 24.19
(0.536) (0.596)
27.18 27.61
(0.758) (0.761)
25.69 26.14
(0.679) (0.690)
22.97 25.23
(0.529) (0.636)
32.10 32.23
(0.847) (0.855)
29.52 30.09
(0.779) (0.807)
25.60 27.71
(0.613) (0.705)
28.28 28.73
(0.800) (0.808)
26.54 27.13
(0.727) (0.744)
23.36 25.68
(0.557) (0.641)
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In order to complete the picture as a whole, Figures 3 and Figures 4 show the relative average PSNR
and SSIM performance for all images under the influence of different mixing noise levels. In view of the
accomplished results of Figures 3 and 4. the proposed algorithm performance has been differentiated at o =
30 compared to the WESNR algorithm. Along these lines, more accurate processing of impulse noise through
ROE [27] has the greatest impact on the quality of denoised images, especially when sp exceeds 50%.
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EWESNR m Proposed EWESNR m Proposed

(@) (b)
Figure 1. Relative denoising algorithms performance for 0=30, sp=30%; (a) PSNR (dB) and (b) SSIM
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EWESNR m Proposed EWESNR ® Proposed
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Figure 2. Relative denoising algorithms performance for 0=30, sp=70%; (a) PSNR (dB) and (b) SSIM

= WESNR = Proposed = WESNR m Proposed

(a) (b)

Figure 3. Relative average denoising performance for different mixed noise levels;
(a) PSNR (dB) and (b) SSIM

Finally, in order to quantitatively summarize the results in the case of high mixed noise levels of 0=30,
sp=70%, the proposed algorithm achieves an average PSNR gain of approximately 2.32 dB over the entire set
of images under severe noise conditions.
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soe70%. | — ooy
spesox soesox
esox _— =

B Proposed B WESNR m Proposed = WESNR

(a) (b)
Figure 4. Relative average denoising algorithms performance for 0=30; (a) PSNR (dB) and (b) SSIM

6.2. Subjective evaluation

In accordance to the performance analysis of the proposed approach, it is significant to integrate the
visual comprehension in the relative performance comparison. Figure 5 illustrates a sample of images under
test synthetically corrupted by different levels of mixed Gaussian plus impulse noise. The first column of
Figure 5 shows the original image of Monarch, Barbara, and house respectively. The subsequent columns
demonstrate the noisy and the denoised images respectively. Clearly, for =10 and sp=30%, both algorithms
achieve nearly equivalent performance (see Figure 5(al-a4). The performance of the WESNR is degraded as
the mixed noise level increased. The degradations become more obvious when o exceeds 20 and sp exceeds
50%. At a such high mixed noise environment, the proposed algorithm produces visually more pleasant results
which can be easily noticed through Figure 5(b1-b4) and Figure 5(c1-c4). The proposed algorithm preserves
the texture of the image in Figure 5(b4) and smooths the sky in Figure 5(c4) more accurately as compared with
WESNR. These results demonstrate the effectiveness of the proposed procedure for updating the weights and
to the replacement of AMF [24] adopted in WESNR by ROE [27] which in combination reduces the effect of
heavy tails of the impulse noise, especially at high impulse noise density rates.

\ : o O 3 W
(al) Monarch image (a2) =10, sp=30% (a3) WESNR (a4) Proposed

4

(b1) Barbra image

(¢1) House image ( €2) o=30, sp=70% (¢3) WESNR (c4) Proposed

Figure 5. Denoising results of mixed gaussian plus impulse noise
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7. CONCLUSION

This paper proposes a denoising algorithm in order to recover images highly corrupted by mixed Gaus-
sian plus impulse noise. The promising results show that the proposed algorithm preserves image fine details
more accurately as compared with WESNR especially for highly corrupted images. The main contributions of
the proposed algorithm are the employment of a more accurate initialization image through replacing AMF by
ROE and the use of a simple parameter-free procedure for updating encoding weights W by avoiding the use
of the exponential function and the need for calibrating the decaying rate parameter (c) in accordance with the
noise state level. As a quantitative example of the improvement in results, for o =30 and sp=70%, the proposed
algorithm accomplishes an average PSNR gain of approximately 2.32dB over the entire images under test.The
promising results of the proposed algorithm open the way for further improvement, enabling it to eliminate
more complex Gaussian plus random valued impulse noise. This issue is left as a possible future work.
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