
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 25, No. 3, March 2022, pp. 1615~1624

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v25.i3.pp1615-1624  1615

Journal homepage: http://ijeecs.iaescore.com

Optimized scheduling of scientific workflows based on iterated

local search

Alaa Abdalqahar Jihad1, Sufyan T. Faraj Al-Janabi2, Esam Taha Yassen1
1Computer Center, University of Anbar, Ramadi, Iraq

2College of Computer Science and Information Technology, University of Anbar, Ramadi, Iraq

Article Info ABSTRACT

Article history:

Received Jul 15, 2021

Revised Jan 13, 2022

Accepted Jan 21, 2022

 Recent years have witnessed a great interest in scientific applications with

large data and processing-intensive, so cloud computing is used which

provides the resources needed to implement and run these applications. One

of the challenges in the management of scientific workflow applications is
scheduling them to solve many combinatorial optimization problems,

including reducing execution time, cost, resource utilization, and energy

consumption. Due to the fact that the iterated local search algorithm (ILS) has

been successfully applied to solve many combinatorial optimization problems,
this paper investigates the performance of ILS in solving the scientific

workflow scheduling problem which is a highly constrained problem. The

main components that are different from one problem to others are the ILS

parameters, local search, and perturbation, which must be carefully designed.
The performance of the standard ILS has been examined and compared with

the latest technology. The experimental results show that the proposed

algorithm (ILS) obtained good results compared to the best-known results in

the literature. This is due to the ILS being an adaptable metaheuristic, which
can be simply adapted to different search situations and instances.

Keywords:

Cloud computing

Optimization

Quality of service

Scheduling

Scientific workflows

This is an open access article under the CC BY-SA license.

Corresponding Author:

Alaa Abdalqahar Jihad

Computer Center, University of Anbar

Ramadi, Iraq

Email: it.alaa.heety@uoanbar.edu.iq

1. INTRODUCTION

In recent times, there has been a lot of use of big data applications that combine thousands of

interrelated tasks with precedence constraints. These complex implementations are considered as a directed

acyclic graphs (DAGs) model [1]. The scientific workflow model is widely used in many fields to describe

various scientific problems such as bioinformatics, astroinformatics, and geoinformatics. The scientific

workflows are data-intensive, computation-intensive, and require many processing hours [2].

To handle scientific applications which are increasingly data-intensive, computational resources

that aid in parallel execution, such as grids, clusters, and clouds, are used. Cloud computing is the latest

trend in scalable distributed computing, which makes available technology resources at an adaptive price

for use, on-demand, and over the Internet. This can be an interesting alternative instead of buying and

owning physical data centers [3], [4].

When useing the cloud computing environment, various challenges must be dealt with to implement

a scientific workflow application. One of these is scheduling, which is the process of allocating resources to

tasks to improve one or more goals [5]. Since DAG scheduling is an NP-complete problem, one of the main

problems is to find the optimal schedule [6]. Thus, some challenges need to be taken into consideration, such

as the performance variation of virtual machines (VMs) and their common and heterogeneous nature [7].

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1615-1624

1616

This paper proposes implementation of the iterated local search (ILS) algorithm to solve the

scientific workflow scheduling problem to reduce makespan. We analyze its performance, adjust its

parameters, and present a comparison of the results obtained by the proposed algorithm with some other

known algorithms. The results show that the ILS algorithm is very flexible and offering many

implementation options to the developers in this respect.

The remaining of this paper is organized as follows: section 2 reviews some of the related literature.

Next, the research method of this work is presented in section 3. Then, section 4 describes the performance

evaluation of the proposed algorithm. Section 5 contains the experimental results of the work along with the

discussions. Finally, the paper is concluded in section 6.

2. RELATED WORKS

This section provides a brief overview of the related work in which metaheuristics have been used in

scheduling scientific workflows. Indeed, it includes a brief presentation of the problems and the proposed

improvements to the ILS algorithm. Metaheuristics are algorithms that can be used to solve a variety of

optimization issues. There are many metaheuristics based optimization approaches for scheduling of

workflow. Hu et al. [8] suggested an algorithm of multiobjective scheduling (MOS) based on particle swarm

optimization (PSO) that aims to decrease the cost and makespan and satisfying terms of the reliability. Also,

Manasrah and Ali [9] designed a GA-PSO hybridized algorithm that targets to decrease the makespan and

cost, as well as balancing the load of contingent tasks. This algorithm is allocating tasks to the resources.

Furthermore, Song et al. [10] introduced a workflow model with composite tasks. They developed a nested

particle swarm optimization which uses two types of population (the outer populations and the inner

populations). The outer populations are improving the scheduling instruction of tasks, and the inner

populations are enhancing the service instances mission. Maio and Kimovski [11] proposed a multi-objective

workflow offloading (MOWO) algorithm based on the NSGA-II metaheuristic, with the goal of reducing

response time, efficiency, and expense. Their strategy is based on the pareto principle. Also, Ma et al. [12]

offered a deadline and the cost aware genetic optimization algorithm, aiming to reduce the cost of execution

with terms of deadline. First, they divided the tasks into different levels. After that, they generated

individuals with minimal time and cost. To accurately represent the cloud's heterogeneous and robust

properties, three strings were used to code the genes in the proposed algorithm.

Faragardi et al. [13] introduced a heterogeneous earliest finish time (HEFT) modification and a

greedy resource provisioning (GRP) algorithm, that organizes the instance types into groups based on their

performance. The aim was to minimize the makespan while taking into consideration a budget limitation for

the cost-per-hour. They adjusted the HEFT algorithm to consider the budget limit. Finally, in the work by

Adhikari et al. [14] the workload of cloud servers, makespan, resource usage, and stability were the goals of

a workflow scheduling approach based on the firefly algorithm (FA). Concering the ILS algorithm, ILS has

been used in many fields including, the travelling salesman problem [15], [16], vehicle routing problem [17],

[18], flow-shop problem [19], [20], task scheduling on cloud computing [21], precedence-constraint task list

scheduling [22], the parallel machine scheduling problems [23], and the quadratic assignment problem [24].

Several enhancements were proposed over time including, using clusters and a modified multi-restart [15],

using multi types of neighborhoods moves [17], ILS memory-based [18], use of a biased-randomized [20], [25],

and hybrid with other metaheuristics algorithms [21], [22]. In this paper, the ILS algorithm is implemented for

scientific workflow scheduling, and according to the authors' knowledge, this implementation is new in this

domain. In addition, the performance of the algorithm is analyzed by modifying important parameters in the

algorithm. The goal of this work is to reduce the makespan.

3. RESEARCH METHOD

In this section, system models will be described to illustrate the working environment. The cloud

and workflow models will be described, which are necessary to visualize and understand the proposed work

model. Then we explain the iterated local search algorithm and its steps, including the local search algorithm.

3.1. System modeling

3.1.1. Cloud model

The cloud model consists of data centers, each data center consists of several physical machines. Each

resource has processing capacity, storage, memory, and bandwidth. The cloud provides different types of VMs.

The configuration of the VM type varies concerning the performance of the CPU, memory, storage, bandwidth,

and operating system. The price of the VM is the cost per unit time interval. It should be noted that VMs can be

acquired and terminated at any time. Workflows can be scheduled for any of the available resources.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Optimized scheduling of scientific workflows based on iterated local search (Alaa Abdalqahar Jihad)

1617

3.1.2. Workflow model

The workflow (W) consists of a set of computational tasks with dependency constraints between

them [26] and is represented as a DAG. It is defined by two sets W(T, E), where T is the set of n-tasks, and E

is the set of dependencies between these tasks. The task starts when you receive input data from previous

tasks, and ends when you send output data to subsequent tasks. The task that has no previous task is called

the input task, and the task that does not have any subsequent task is called the exit task. Each Ti task in the

workflow has length, required processing elements, deadline, transfer file size, lists for parent and child tasks.

The execution time of a task depends on its length (in MI) and the performance of the VM (in MIPS) that is

used to perform the task. For illustration, Figure 1(a) is an example of a workflow with n=5 tasks. If task T5

is the last task, we need to finish processing T3 and T4 and then combine their outputs as input for task T5 to

be processed, task T4 does not process until task T2 is completed, and so on. The task is not implemented

until all the list of parents are processed and their outputs are received. Every task that is handled sends its

outputs to its list of childs. Indeed, each workflow task has the followings: i) Task execution time: For a

given task, the time required to execute that task within the VM; ii) Task start time: The start time of the task

inside the VM is calculated by:

𝑆𝑇(𝑡𝑖) = {
𝑜 𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑡𝑎𝑠𝑘

max {𝐴𝑣𝑎𝑖𝑇𝑖𝑚𝑒(𝑉𝑀𝑡𝑖), max{𝐹𝑇(𝑡𝑗)}} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

where tj ∈ parent(ti), and AvaiTime(VMti) is the earliest time when VMti ready to excut any task; and iii) Task

finish time: It is the start time of the task with the time the task is executed. The time available for the VM

will also be updated at this time, calculated by (2):

𝐹𝑇(𝑡𝑖) = 𝑆𝑇(𝑡𝑖) + 𝐸𝑇(𝑡𝑖) + ∑ 𝑇𝑇(𝑡𝑗, 𝑡𝑖) (2)

where ET(ti) is execution time, TT(tj, ti) is transfer cost between tj and ti, and tj ∈ parent(ti).

3.2. Iterated local search

The ILS algorithm is one of the metaheuristic algorithms that process one solution at a time (single

solution based); in this paper the proposed ILS is illustrated in Algorithm 1, has a modular nature that makes

it adaptable as a basic template for designing algorithms [27].

Algorithm 1. Iterated local search
Input: Tasks of workflow (T) and available virtual machines (VMs)

Output: The best schedule (Schedule) for assigning VMs to T

1: Parameters initializing: number of non improvement iteration NonItr, number of

neighbors N, and perturbation ratio Pr.

2: Scurrent = Generate a random initial solution

3: Scurrent = LocalSearch(Scurrent, N)

4: Sbest = Scurrent

5: i=1

6: While i< NonItr do

7: Sperturbation = Perturbation(Scurrent, Pr)

8: Sperturbation = LocalSearch(Sperturbation, N)

9: if f(Sperturbation) < f(Sbest)

10: Sbest= Sperturbation

11: i=1

12: else

13: i=i+1

14: Scurrent = AcceptanceCriterion(Scurrent, Sperturbation)

15: end while

There are four main components of the ILS algorithm to consider [28]: i) Initial solution: generate

an empty schedule (Schedule) where the length of schedule equal to number of tasks and each index

represent the task id (ti). Randomly assign VMs for each task (ti) calculate the cost (Makespan) of the

generated solution; ii) Local search: in order to invest the search space, the local search algorithm (Hill

clamping) is adopted. Hill-climbing is perhaps the simplest and oldest metaheuristic method. It starts with a

given initial solution. At each iteration, the heuristic is replaced the current solution with an adjacent solution

that is better than the current one that improves the objective function [29].

Algorithm 2 illustrated the main steps of the utilized local search, in this algorithm the initial

solution (S0) comes from the steps of the ILS; iii) Perturbation: it is the process of selected and changed a part

of the solution to escape from the optimum solution, the perturbations should be made in a proportion that is

not too large and at the same time not too small [27]; iv) Acceptance criterion: it is select the solution that

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1615-1624

1618

will continue in the next iteration; and v) The solution is represented as in Figure 1(b), where the location

refers to the task number and the cell data refers to the number of the VM assigned to it.

(a) (b)

Figure 1. The workflow model and how it is represented in (a) workflow with five tasks and

(b) representation of the solution

Algorithm 2. Local search
Input: initial solution (S0), number of neighbors N // S0 Solution from ILS Steps

Output: The best solution Sbest (local optima).

1: Scurrent = S0

2: NoImprovement = 0

3: While NoImprovement = 0Do

4: NoImprovement = 1

5: Neighbors(Scurrent) Generate N candidate solutions (Sc) ∈ Neighbors of Scurrent
6: for each Sc in Neighbors (Scurrent)

7: if f(Sc) < f(Scurrent)

8: Scurrent = Sc

9: NoImprovement = 0

10: Endfor

11: Endwhile

4. PERFORMANCE EVALUATION

In this section, we explore the details of the relevant performance evaluation parameters and explain

how they are calculated and adjusted in the various considered scenarios. The experimental setup and metric

that was used in the evaluation will be explained. In addition to explaining the calculation of makespan

algorithm.

4.1. Experimental setup

To compare the performance of the ILS algorithm, WorkflowSim simulator [30] has been used for

the implementation. WorkflowSim is an improvement for CloudSim to simulate scientific workflow in cloud

computing. We have taken measures on personal computer with the following configuration: Intel Core i7

2.10 GHz 16 GB memory, run on Windows 10. The different experiments are the result of the application of

several VM allocation. Five VMs were used in the test. Table 1 presents the specifications of VMs used in

the simulation. The proposed algorithm is evaluated by using four types of realistic workflows, namely

Montage, CyberShake, Epigenomics, Inspiral, and for several instances.

Table 1. The specifications of VMs
VMs RAM Bandwidth MIPS No. CPU

0 512 800 800 1

1 512 900 900 1

2 512 500 500 1

3 512 600 600 1

4 512 700 700 1

4.2. Evaluation metric

The main metric used to study the performance of the proposed algorithm is makespan. Makespan is

defined as the completion time of the output task to end the application [29]. Makespan can also be

defined as the schedule length for executing the workflow, also known as the deadline [6]. Makespan is

calculated by (3).

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Optimized scheduling of scientific workflows based on iterated local search (Alaa Abdalqahar Jihad)

1619

Makespan = Max { FT(t𝑖)} where 𝑡𝑖 ∈ Tasks (3)

The time or cost of transferring data TTij between any two tasks such as ti and tj in a workflow,

where ti is parent to tj, depends on the amount of data sent from ti to tj, and the network bandwidth. TTij is

zero if ti and tj are assigned to the same VM [31]. The data transfer time is calculated as follows [32]:

TT𝑖𝑗 = {
𝑑𝑎𝑡𝑎𝑖𝑗/𝑏𝑤 𝑖𝑓 𝑉𝑀𝑡𝑖 ≠ 𝑉𝑀𝑡𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where dataij the size of the data which needs to be transferred from the ti to tj, and bw is the communication

bandwidth between the VMti and VMtj. Algorithm 3 illstrates the method which is adopted to calculate the

makespan.

Algorithm 3. Calculation of makespan
Input: Solution S (Schedule of tasks workflow)

Output: Makespan of solution S

1: vmNum = number of available VMs, taskNum = number of Tasks

2: k=0, MaxTime=0, Ready=0, TransferCost=0, Makespan=0

3: While k<=taskNum do

4: For each task (ti) in Task List (TL) do

5: If ti is not handled

6: TransferCost=0, MaxTime=0, Ready=1

7: For each parent of ti (Pti) do //where Pti ∈ Parent List (PL)ti
8: If Pti is not handled

9: Ready=0

10: else

11: MaxTime= Max(MaxTime, FT(Pti))

12: EndFor

13: If Ready=1

14: For each Pti in (PL)ti do

15: If VMti <> VMPti

16: TransferCost=TransferCost+ TT(Pti, ti)

17: EndFor

18: ST(ti) = Max(MaxTime, AvaiTime(VMti)) + TransferCost

// where AvaiTime(VMti) is Available Time of VMti

19: FT(ti) = ST(ti) + (Length of ti / Mips of VMti)

20: Makespan=Max(Makespan, FT(ti))

21: AvaiTime(VMti) = FT(ti)

22: k=k+1

23: EndFor

24: EndWhile

5. RESULTS AND DISCUSSION

In this section, we explain the results of analyzing the performance of the algorithm with the results

of its implementation. For adjusting the algorithm parameters, the performance of the algorithm has been

analyzed using different values. Figures 2(a)-(c) (see Appendix) shows the performance of the algorithm

based on the makespan value, using deferent cases of Montage and Epigenomics workflows. The

performance has been analyzed firstly by adjusting the number of iterations in the ILS algorithm, which is the

number of perturbation and local search work. The algorithm stops when it reaches the number of iterations

in which the solution has not improved. Secondly, the number of neighbors extracted from the current

solution in the local search algorithm is also considerd. Finally, adjusting the perturbation ratio of the

solution.

After trying several different values, we note that as the number of iterations increases, the solution

improves to a certain extent, and the improvement stops even when the iterations increase. The number of

neighbors generated in local search is approximately better depending on the number of tasks. Finally, the

lower the percentage of perturbation, would be the better to a certain extent. After implementing the

algorithm on many scientific workflow instances, the results are shown in Table 2, the first column represents

the application of the scientific workflow, while the second, third and fourth columns represent the proposed

algorithm results obtained. The remaining columns represent the results of the algorithms that were

compared. The obtained results of the proposed algorithm are compared with heterogeneous earliest finish

time (HEFT), minimum completion time (MCT), round robin (RR) algorithms. According to the proposed

algorithm compared to other, we note that the results of implementing the proposed algorithm are better in

many cases except in CyberShake.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1615-1624

1620

Table 2. Average makespan comparison of ILS with HEFT, MCT, and RR for scientific workflows

Workflow
ILS

HEFT MCT RR
Min Av Max

Montage_25 84.76 86.79 88.67 85.71 91.35 87.63

Montage_50 172.97 174.57 175.44 179.1 181.06 183.91

Montage_100 345.16 346.54 347.94 347.79 348.79 353.11

Montage_1000 3536.37 3539.02 3540.77 3538.97 3542.18 3587.62

CyberShake_30 379.96 389.16 396.97 380.46 425.62 393.25

CyberShake_50 544.27 562.27 582.2 521.53 539.9 527.74

CyberShake_100 831.22 853.22 891.05 753.22 761.27 767.34

CyberShake_1000 6831.79 7037.25 7334.78 6807.57 6790.68 6840.51

Epigenomics_24 6534.76 9170.13 11277.38 6548.63 9837.18 7941.59

Epigenomics_46 14046.82 18131.44 21325.42 15146.16 18250.16 17270.46

Epigenomics_100 121506.62 138622.89 159865.11 127531.9 129116.61 131399.43

Epigenomics_997 1108351.75 1109442.35 1110026.87 1107585.38 1112766.72 1120257.65

Inspiral_30 2103.01 2154.71 2204.35 2306.69 2267.42 2360.8

Inspiral_50 3488.41 3551.4 3603.18 3572.75 3978.44 4154.08

Inspiral_100 6089.93 6597.02 8167.79 7747 6254.53 6640.41

Inspiral_1000 65064.44 65066.06 65069.51 65114.86 65816.79 65669.68

6. CONCLUSION

Recently, a scientific workflow has become a rich area of research that is attracting researchers as

well as practitioners in different research domains. Accordingly, reducing the makespan of the scientific

workflow represents the main objective of this paper. The standard ILS metaheuristic is successful in tackling

various combinatorial optimization problems; therefore, the paper hypothesizes that ILS would be successful

in tackling scientific workflow. Based on the fact that the ILS components play a prominent role in

improving their behavior during the search, the appropriate selection of these components leads to enhancing

the performance of the ILS. The ILS has been implemented on a realistic scientific workflow and the

obtained results have been compared with these of the HEFT, MCT, and RR algorithms. The obtained results

supported the above-mentioned hypothesis, as the ILS has attained competitive results, if not superior, and

generalized well overall tested instances.

APPENDIX

m
ak

es
p
an

Montage_25

m
ak

es
p
an

Epigenomics_24

 Number of iterations Number of iterations

m
ak

es
p
an

Montage_50

m
ak

es
p
an

Epigenomics_46

 Number of iterations Number of iterations

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Optimized scheduling of scientific workflows based on iterated local search (Alaa Abdalqahar Jihad)

1621

m
ak

es
p
an

Montage_100

m
ak

es
p
an

Epigenomics_100

 Number of iterations Number of iterations

 (a)

m
ak

es
p
an

Montage_25

m
ak

es
p
an

Epigenomics_24

 Number of neighbors Number of neighbors

m
ak

es
p
an

Montage_50

m
ak

es
p
an

Epigenomics_46

 Number of neighbors Number of neighbors

m
ak

es
p
an

Montage_100

m
ak

es
p
an

Epigenomics_100

 Number of neighbors Number of neighbors

 (b)

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1615-1624

1622

m
ak

es
p
an

Montage_25

m
ak

es
p
an

Epigenomics_24

 Perturbation ratio Perturbation ratio

m
ak

es
p
an

Montage_50

m
ak

es
p
an

Epigenomics_46

 Perturbation ratio Perturbation ratio

m
ak

es
p
an

Montage_100

m
ak

es
p
an

Epigenomics_100

 Perturbation ratio Perturbation ratio

 (c)

Figure 2. The relation between number of iterations, number of neighbors, and perturbation ratio with quality

of solutions (makespan) of (a) number of iterations, (b) number of neighbors, and (c) perturbation ratio

ACKNOWLEDGEMENTS

The authors would like to acknowledge the contribution of the University of Anbar

(www.uoanbar.edu.iq) via their prestigious academic staff in supporting this research with all required

technical and academic support.

REFERENCES
[1] W. Ahmad, B. Alam, S. Ahuja, and S. Malik, “A dynamic VM provisioning and de-provisioning based cost-efficient deadline-

aware scheduling algorithm for Big Data workflow applications in a cloud environment,” Cluster Comput., vol. 24, no. 1, 2021,

doi: 10.1007/s10586-020-03100-7.

[2] M. A. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud

computing environments,” Concurr. Comput., vol. 29, no. 8, 2017, doi: 10.1002/cpe.4041.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Optimized scheduling of scientific workflows based on iterated local search (Alaa Abdalqahar Jihad)

1623

[3] J. Liu, S. Lu, and D. Che, “A survey of modern scientific workflow scheduling algorithms and systems in the era of big data,” in

Proceedings-2020 IEEE 13th International Conference on Services Computing, SCC 2020, 2020, doi:

10.1109/SCC49832.2020.00026.

[4] X.-F. Liu, Z.-H. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “An energy efficient ant colony system for virtual machine

placement in cloud computing,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 113-128, 2016, doi:

10.1109/TEVC.2016.2623803.

[5] A. Osman, A. Sagahyroon, R. Aburukba, and F. Aloul, “Optimization of energy consumption in cloud computing datacenters,”

Int. J. Electr. & Comput. Eng., vol. 11, no. 1, 2021, doi: 10.11591/ijece.v11i1.pp686-698.

[6] M. A. Aziz and I. H. Ninggal, “Scalable workflow scheduling algorithm for minimizing makespan and failure probability,” Bull.

Electr. Eng. Informatics, vol. 8, no. 1, pp. 283-290, 2019, doi: 10.11591/eei.v8i1.1436.

[7] K. K. Chakravarthi, L. Shyamala, and V. Vaidehi, “Cost-effective workflow scheduling approach on cloud under deadline

constraint using firefly algorithm,” Appl. Intell., vol. 51, no. 3, 2021, doi: 10.1007/s10489-020-01875-1.

[8] H. Hu et al., “Multi-objective scheduling for scientific workflow in multicloud environment,” J. Netw. Comput. Appl., vol. 114,

2018, doi: 10.1016/j.jnca.2018.03.028.

[9] A. M. Manasrah and H. B. Ali, “Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing,” Wirel. Commun.

Mob. Comput., vol. 2018, 2018, doi: 10.1155/2018/1934784.

[10] A. Song, W.-N. Chen, X.-N. Luo, Z.-H. Zhan, and J. Zhang, “Scheduling Workflows with Composite Tasks: A Nested Particle

Swarm Optimization Approach,” IEEE Trans. Serv. Comput., 2020, doi: 10.1109/TSC.2020.2975774.

[11] V. D. Maio and D. Kimovski, “Multi-objective scheduling of extreme data scientific workflows in Fog,” Futur. Gener. Comput.

Syst., vol. 106, pp. 171-184, 2020, doi: 10.1016/j.future.2019.12.054.

[12] X. Ma, H. Gao, H. Xu, and M. Bian, “An IoT-based task scheduling optimization scheme considering the deadline and cost-aware

scientific workflow for cloud computing,” Eurasip J. Wirel. Commun. Netw., vol. 2019, no. 1, 2019, doi: https: 10.1186/s13638-

019-1557-3.

[13] H. R. Faragardi, M. R. S. Sedghpour, S. Fazliahmadi, T. Fahringer, and N. Rasouli, “GRP-HEFT: A budget-constrained resource

provisioning scheme for workflow scheduling in IaaS clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 6, pp. 1239-1254,

2019, doi: 10.1109/TPDS.2019.2961098.

[14] M. Adhikari, T. Amgoth, and S. N. Srirama, “Multi-objective scheduling strategy for scientific workflows in cloud environment:

A Firefly-based approach,” Appl. Soft Comput. J., vol. 93, 2020, doi: 10.1016/j.asoc.2020.106411.

[15] G. E. A. Fuentes, E. S. H. Gress, J. C. S. T. Mora, and J. M. Marin, “Solution to travelling salesman problem by clusters and a

modified multi-restart iterated local search metaheuristic,” PLoS One, vol. 13, no. 8, p. e0201868, 2018, doi:

10.1371/journal.pone.0201868.

[16] C. Archetti, D. Feillet, A. Mor, and M. G. Speranza, “An iterated local search for the Traveling Salesman Problem with release

dates and completion time minimization,” Comput. \& Oper. Res., vol. 98, pp. 24-37, 2018, doi: 10.1016/j.cor.2018.05.001.

[17] J. Brandão, “Iterated local search algorithm with ejection chains for the open vehicle routing problem with time windows,”

Comput. \& Ind. Eng., vol. 120, pp. 146-159, 2018, doi: 10.1016/j.cie.2018.04.032.

[18] J. Brandão, “A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem,” Eur. J. Oper.

Res., vol. 284, no. 2, pp. 559-571, 2020, doi: 10.1016/j.ejor.2020.01.008.

[19] H. Zohali, B. Naderi, M. Mohammadi, and V. Roshanaei, “Reformulation, linearization, and a hybrid iterated local search

algorithm for economic lot-sizing and sequencing in hybrid flow shop problems,” Comput. \& Oper. Res., vol. 104, pp. 127-138,

2019, doi: 10.1016/j.cor.2018.12.008.

[20] D. Ferone, S. Hatami, E. M. González-Neira, A. A. Juan, and P. Festa, “A biased-randomized iterated local search for the

distributed assembly permutation flow-shop problem,” Int. Trans. Oper. Res., vol. 27, no. 3, pp. 1368-1391, 2020, doi:

10.1111/itor.12719.

[21] K. Loheswaran, T. Daniya, and K. Karthick, “Hybrid cuckoo search algorithm with iterative local search for optimized task

scheduling on cloud computing environment,” J. Comput. Theor. Nanosci., vol. 16, no. 5-6, pp. 2065-2071, 2019, doi:

10.1166/jctn.2019.7851.

[22] A. Santiago et al., “GRASP and Iterated Local Search-Based Cellular Processing algorithm for Precedence-Constraint Task List

Scheduling on Heterogeneous Systems,” Appl. Sci., vol. 10, no. 21, p. 7500, 2020, doi: 10.3390/app10217500.

[23] E. Queiroga, R. G. S. Pinheiro, Q. Christ, A. Subramanian, and A. A. Pessoa, “Iterated local search for single machine total

weighted tardiness batch scheduling,” J. Heuristics, vol. 27, no. 3, pp. 353-438, 2021, doi: 10.1007/s10732-020-09461-x.

[24] S. Shah, “Implementation of iterative local search (ILS) for the quadratic assignment problem,” 2020, doi:

10.36227/techrxiv.12814232.

[25] A. Estrada-Moreno, M. Savelsbergh, A. A. Juan, and J. Panadero, “Biased-randomized iterated local search for a multiperiod

vehicle routing problem with price discounts for delivery flexibility,” Int. Trans. Oper. Res., vol. 26, no. 4, pp. 1293-1314, 2019,

doi: 10.1111/itor.12625C.

[26] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “Parallelization of scientific workflows in the cloud,” INRIA, 2014.

[27] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search: Framework and applications,” in Handbook of

metaheuristics, Springer, pp. 129-168, 2019, doi: 10.1007/978-3-319-91086-4_5.

[28] N. Garg, D. Singh, and M. S. Goraya, “Energy and resource efficient workflow scheduling in a virtualized cloud environment,”

Cluster Comput., vol. 24, no. 2, pp. 767-797, 2021, doi: 10.1007/s10586-020-03149-4.

[29] M. Ala’Anzy and M. Othman, “Load balancing and server consolidation in cloud computing environments: A meta-study,” IEEE

Access, vol. 7, pp. 141868-141887, 2019, doi: 10.1109/ACCESS.2019.2944420.

[30] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating scientific workflows in distributed environments,” in 2012

IEEE 8th international conference on E-science, 2012, pp. 1-8, doi: 10.1109/eScience.2012.6404430.

[31] A. Tarafdar, K. Karmakar, S. Khatua, and R. K. Das, “Energy-Efficient Scheduling of Deadline-Sensitive and Budget-

Constrained Workflows in the Cloud,” in International Conference on Distributed Computing and Internet Technology, 2021,

pp. 65-80, doi: 10.1007/978-3-030-65621-8_4.

[32] P. Han, C. Du, J. Chen, F. Ling, and X. Du, “Cost and makespan scheduling of workflows in clouds using list multiobjective

optimization technique,” J. Syst. Archit., vol. 112, 2021, doi: 10.1016/j.sysarc.2020.101837.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1615-1624

1624

BIOGRAPHIES OF AUTHORS

Alaa Abdalqahar Jihad was born in Anbar-Iraq in 1985. He received his B.Sc.

from Faculty of Computer Science at Anbar University, Iraq in 2009. The MSc. degree Faculty

of Computer Science at Anbar University, Iraq 2012. His research interests are,
Metaheuristics, Scheduling, Artificial Intelligent, Data Mining, Machine Learning and Natural

Language Processing. He can be contacted at email: it.alaa.heety@uoanbar.edu.iq.

Sufyan T. Faraj Al-Janabi was born in Haditha, Iraq (1971). He obtained his

B.Sc. (1992), M.Sc. (1995), and Ph.D. (1999) in Electronic and Communications Engineering
from the College of Engineering, Nahrain University in Baghdad. He was started as a faculty

member in the Computer Engineering Dept., the University of Baghdad in 1999. Prof. (Faraj)

Al-Janabi is the winner of the 1st Award for the Best Research Paper in Information Security

from the Association of Arab Universities (AARU), Jordan, 2003. He is also the winner of the
ISEP fellowship 2009 and the Fulbright fellowship 2010, USA. He is a member of ACM,

ASEE, IACR, and IEEE. He can be contacted at email: sufyan.aljanabi@uoanbar.edu.iq.

Esam Taha Yassen is a lecturer in the college of Computer and Information
Technology at the University of Anbar, Iraq since 2002. He has obtained his PhD in Computer

Science at The University Kebangsaan Malaysia (UKM) in 2015. His main research areas

include metaheuristics, hyper-heuristics and combinatorial Optimization problems especially,

routing and scheduling. He has been served as a programme committee for four international
conferences and reviewers for high impact journals. He is a researcher in Data Mining and

Optimization Research Group (DM0), Centre for Artificial Intelligent (CAIT), UKM.

Currently, he is the manager of Computers Centre in University of Anbar. He can be contacted

at email: co.esamtaha@uoanbar.edu.iq.

https://orcid.org/0000-0002-3191-2665
https://scholar.google.com/citations?hl=ar&user=eRUjpgMAAAAJ&view_op=list_works&authuser=1
https://www.scopus.com/authid/detail.uri?authorId=55079624700
https://publons.com/researcher/1729658/alaa-abdalqahar/
https://orcid.org/0000-0002-2805-5738
https://scholar.google.com/citations?user=Oy7bOIAAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=42261149200
https://publons.com/researcher/1386765/sufyan-t-faraj-al-janabi/
https://orcid.org/0000-0002-6980-6606
https://scholar.google.com/citations?user=yLVN6R8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55490014000
https://publons.com/researcher/1729253/esam-yassen/metrics/

