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 Recent years have witnessed a great interest in scientific applications with 

large data and processing-intensive, so cloud computing is used which 

provides the resources needed to implement and run these applications. One 

of the challenges in the management of scientific workflow applications is 
scheduling them to solve many combinatorial optimization problems, 

including reducing execution time, cost, resource utilization, and energy 

consumption. Due to the fact that the iterated local search algorithm (ILS) has 

been successfully applied to solve many combinatorial optimization problems, 
this paper investigates the performance of ILS in solving the scientific 

workflow scheduling problem which is a highly constrained problem. The 

main components that are different from one problem to others are the ILS 

parameters, local search, and perturbation, which must be carefully designed. 
The performance of the standard ILS has been examined and compared with 

the latest technology. The experimental results show that the proposed 

algorithm (ILS) obtained good results compared to the best-known results in 

the literature. This is due to the ILS being an adaptable metaheuristic, which 
can be simply adapted to different search situations and instances. 
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1. INTRODUCTION  

In recent times, there has been a lot of use of big data applications that combine thousands of 

interrelated tasks with precedence constraints. These complex implementations are considered as a directed 

acyclic graphs (DAGs) model [1]. The scientific workflow model is widely used in many fields to describe 

various scientific problems such as bioinformatics, astroinformatics, and geoinformatics. The scientific 

workflows are data-intensive, computation-intensive, and require many processing hours [2]. 

To handle scientific applications which are increasingly data-intensive, computational resources 

that aid in parallel execution, such as grids, clusters, and clouds, are used. Cloud computing is the latest 

trend in scalable distributed computing, which makes available technology resources at an adaptive price 

for use, on-demand, and over the Internet. This can be an interesting alternative instead of buying and 

owning physical data centers [3], [4]. 

When useing the cloud computing environment, various challenges must be dealt with to implement 

a scientific workflow application. One of these is scheduling, which is the process of allocating resources to 

tasks to improve one or more goals [5]. Since DAG scheduling is an NP-complete problem, one of the main 

problems is to find the optimal schedule [6]. Thus, some challenges need to be taken into consideration, such 

as the performance variation of virtual machines (VMs) and their common and heterogeneous nature [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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This paper proposes implementation of the iterated local search (ILS) algorithm to solve the 

scientific workflow scheduling problem to reduce makespan. We analyze its performance, adjust its 

parameters, and present a comparison of the results obtained by the proposed algorithm with some other 

known algorithms. The results show that the ILS algorithm is very flexible and offering many 

implementation options to the developers in this respect. 

The remaining of this paper is organized as follows: section 2 reviews some of the related literature. 

Next, the research method of this work is presented in section 3. Then, section 4 describes the performance 

evaluation of the proposed algorithm. Section 5 contains the experimental results of the work along with the 

discussions. Finally, the paper is concluded in section 6. 

 

 

2. RELATED WORKS 

This section provides a brief overview of the related work in which metaheuristics have been used in 

scheduling scientific workflows. Indeed, it includes a brief presentation of the problems and the proposed 

improvements to the ILS algorithm. Metaheuristics are algorithms that can be used to solve a variety of 

optimization issues. There are many metaheuristics based optimization approaches for scheduling of 

workflow. Hu et al. [8] suggested an algorithm of multiobjective scheduling (MOS) based on particle swarm 

optimization (PSO) that aims to decrease the cost and makespan and satisfying terms of the reliability. Also, 

Manasrah and Ali [9] designed a GA-PSO hybridized algorithm that targets to decrease the makespan and 

cost, as well as balancing the load of contingent tasks. This algorithm is allocating tasks to the resources. 

Furthermore, Song et al. [10] introduced a workflow model with composite tasks. They developed a nested 

particle swarm optimization which uses two types of population (the outer populations and the inner 

populations). The outer populations are improving the scheduling instruction of tasks, and the inner 

populations are enhancing the service instances mission. Maio and Kimovski [11] proposed a multi-objective 

workflow offloading (MOWO) algorithm based on the NSGA-II metaheuristic, with the goal of reducing 

response time, efficiency, and expense. Their strategy is based on the pareto principle. Also, Ma et al. [12] 

offered a deadline and the cost aware genetic optimization algorithm, aiming to reduce the cost of execution 

with terms of deadline. First, they divided the tasks into different levels. After that, they generated 

individuals with minimal time and cost. To accurately represent the cloud's heterogeneous and robust 

properties, three strings were used to code the genes in the proposed algorithm.  

Faragardi et al. [13] introduced a heterogeneous earliest finish time (HEFT) modification and a 

greedy resource provisioning (GRP) algorithm, that organizes the instance types into groups based on their 

performance. The aim was to minimize the makespan while taking into consideration a budget limitation for 

the cost-per-hour. They adjusted the HEFT algorithm to consider the budget limit. Finally, in the work by 

Adhikari et al. [14] the workload of cloud servers, makespan, resource usage, and stability were the goals of 

a workflow scheduling approach based on the firefly algorithm (FA). Concering the ILS algorithm, ILS has 

been used in many fields including, the travelling salesman problem [15], [16], vehicle routing problem [17], 

[18], flow-shop problem [19], [20], task scheduling on cloud computing [21], precedence-constraint task list 

scheduling [22], the parallel machine scheduling problems [23], and the quadratic assignment problem [24]. 

Several enhancements were proposed over time including, using clusters and a modified multi-restart [15], 

using multi types of neighborhoods moves [17], ILS memory-based [18], use of a biased-randomized [20], [25], 

and hybrid with other metaheuristics algorithms [21], [22]. In this paper, the ILS algorithm is implemented for 

scientific workflow scheduling, and according to the authors' knowledge, this implementation is new in this 

domain. In addition, the performance of the algorithm is analyzed by modifying important parameters in the 

algorithm. The goal of this work is to reduce the makespan. 

 

 

3. RESEARCH METHOD 

In this section, system models will be described to illustrate the working environment. The cloud 

and workflow models will be described, which are necessary to visualize and understand the proposed work 

model. Then we explain the iterated local search algorithm and its steps, including the local search algorithm. 

 

3.1.  System modeling 

3.1.1. Cloud model 

The cloud model consists of data centers, each data center consists of several physical machines. Each 

resource has processing capacity, storage, memory, and bandwidth. The cloud provides different types of VMs. 

The configuration of the VM type varies concerning the performance of the CPU, memory, storage, bandwidth, 

and operating system. The price of the VM is the cost per unit time interval. It should be noted that VMs can be 

acquired and terminated at any time. Workflows can be scheduled for any of the available resources. 
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3.1.2. Workflow model 

The workflow (W) consists of a set of computational tasks with dependency constraints between 

them [26] and is represented as a DAG. It is defined by two sets W(T, E), where T is the set of n-tasks, and E 

is the set of dependencies between these tasks. The task starts when you receive input data from previous 

tasks, and ends when you send output data to subsequent tasks. The task that has no previous task is called 

the input task, and the task that does not have any subsequent task is called the exit task. Each Ti task in the 

workflow has length, required processing elements, deadline, transfer file size, lists for parent and child tasks. 

The execution time of a task depends on its length (in MI) and the performance of the VM (in MIPS) that is 

used to perform the task. For illustration, Figure 1(a) is an example of a workflow with n=5 tasks. If task T5 

is the last task, we need to finish processing T3 and T4 and then combine their outputs as input for task T5 to 

be processed, task T4 does not process until task T2 is completed, and so on. The task is not implemented 

until all the list of parents are processed and their outputs are received. Every task that is handled sends its 

outputs to its list of childs. Indeed, each workflow task has the followings: i) Task execution time: For a 

given task, the time required to execute that task within the VM; ii) Task start time: The start time of the task 

inside the VM is calculated by: 
 

𝑆𝑇(𝑡𝑖) = {
𝑜 𝑖𝑓 𝑡𝑖  𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑡𝑎𝑠𝑘

max {𝐴𝑣𝑎𝑖𝑇𝑖𝑚𝑒(𝑉𝑀𝑡𝑖), max{𝐹𝑇(𝑡𝑗)}} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

where tj ∈ parent(ti), and AvaiTime(VMti) is the earliest time when VMti ready to excut any task; and iii) Task 

finish time: It is the start time of the task with the time the task is executed. The time available for the VM 

will also be updated at this time, calculated by (2): 

 

𝐹𝑇(𝑡𝑖) = 𝑆𝑇(𝑡𝑖) + 𝐸𝑇(𝑡𝑖) +  ∑ 𝑇𝑇(𝑡𝑗, 𝑡𝑖) (2) 

 

where ET(ti) is execution time, TT(tj, ti) is transfer cost between tj and ti, and tj ∈ parent(ti). 

 

3.2.  Iterated local search 

The ILS algorithm is one of the metaheuristic algorithms that process one solution at a time (single 

solution based); in this paper the proposed ILS is illustrated in Algorithm 1, has a modular nature that makes 

it adaptable as a basic template for designing algorithms [27]. 

 

Algorithm 1. Iterated local search 
Input: Tasks of workflow (T) and available virtual machines (VMs) 

Output: The best schedule (Schedule) for assigning VMs to T 

1:  Parameters initializing: number of non improvement iteration NonItr, number of 

neighbors N, and perturbation ratio Pr. 

2:  Scurrent = Generate a random initial solution 

3:  Scurrent = LocalSearch(Scurrent, N) 

4:  Sbest = Scurrent 

5:  i=1 

6:  While i< NonItr do 

7:   Sperturbation = Perturbation(Scurrent, Pr) 

8:   Sperturbation = LocalSearch(Sperturbation, N) 

9:   if f(Sperturbation) < f(Sbest) 

10:         Sbest= Sperturbation 

11:         i=1 

12:  else 

13:         i=i+1 

14:  Scurrent  = AcceptanceCriterion(Scurrent, Sperturbation) 

15: end while 

 

There are four main components of the ILS algorithm to consider [28]: i) Initial solution: generate 

an empty schedule (Schedule) where the length of schedule equal to number of tasks and each index 

represent the task id (ti). Randomly assign VMs for each task (ti) calculate the cost (Makespan) of the 

generated solution; ii) Local search: in order to invest the search space, the local search algorithm (Hill 

clamping) is adopted. Hill-climbing is perhaps the simplest and oldest metaheuristic method. It starts with a 

given initial solution. At each iteration, the heuristic is replaced the current solution with an adjacent solution 

that is better than the current one that improves the objective function [29].  

Algorithm 2 illustrated the main steps of the utilized local search, in this algorithm the initial 

solution (S0) comes from the steps of the ILS; iii) Perturbation: it is the process of selected and changed a part 

of the solution to escape from the optimum solution, the perturbations should be made in a proportion that is 

not too large and at the same time not too small [27]; iv) Acceptance criterion: it is select the solution that 
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will continue in the next iteration; and v) The solution is represented as in Figure 1(b), where the location 

refers to the task number and the cell data refers to the number of the VM assigned to it. 

 

 

 

 

(a) (b) 

 

Figure 1. The workflow model and how it is represented in (a) workflow with five tasks and  

(b) representation of the solution 

 

 

Algorithm 2. Local search 
Input: initial solution (S0), number of neighbors N // S0 Solution from ILS Steps 

Output: The best solution Sbest (local optima). 

1:  Scurrent  = S0   

2:  NoImprovement = 0 

3:  While NoImprovement = 0Do 

4:   NoImprovement = 1 

5:   Neighbors(Scurrent ) Generate N candidate solutions (Sc) ∈ Neighbors of Scurrent 
6:   for each Sc in Neighbors (Scurrent ) 

7:    if f(Sc) < f(Scurrent) 

8:          Scurrent = Sc   

9:        NoImprovement = 0 

10: Endfor 

11: Endwhile 

 

 

4. PERFORMANCE EVALUATION 

In this section, we explore the details of the relevant performance evaluation parameters and explain 

how they are calculated and adjusted in the various considered scenarios. The experimental setup and metric 

that was used in the evaluation will be explained. In addition to explaining the calculation of makespan 

algorithm. 

 

4.1.  Experimental setup 

To compare the performance of the ILS algorithm, WorkflowSim simulator [30] has been used for 

the implementation. WorkflowSim is an improvement for CloudSim to simulate scientific workflow in cloud 

computing. We have taken measures on personal computer with the following configuration: Intel Core i7 

2.10 GHz 16 GB memory, run on Windows 10. The different experiments are the result of the application of 

several VM allocation. Five VMs were used in the test. Table 1 presents the specifications of VMs used in 

the simulation. The proposed algorithm is evaluated by using four types of realistic workflows, namely 

Montage, CyberShake, Epigenomics, Inspiral, and for several instances. 

 

 

Table 1. The specifications of VMs 
VMs RAM Bandwidth MIPS No. CPU 

0 512 800 800 1 

1 512 900 900 1 

2 512 500 500 1 

3 512 600 600 1 

4 512 700 700 1 

 

 

4.2.  Evaluation metric 

The main metric used to study the performance of the proposed algorithm is makespan. Makespan is 

defined as the completion time of the output task to end the application [29]. Makespan can also be  

defined as the schedule length for executing the workflow, also known as the deadline [6]. Makespan is 

calculated by (3). 
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Makespan = Max { FT(t𝑖)} where 𝑡𝑖  ∈  Tasks (3) 

 

The time or cost of transferring data TTij between any two tasks such as ti and tj in a workflow, 

where ti is parent to tj, depends on the amount of data sent from ti to tj, and the network bandwidth. TTij is 

zero if ti and tj are assigned to the same VM [31]. The data transfer time is calculated as follows [32]: 

 

TT𝑖𝑗 = {
𝑑𝑎𝑡𝑎𝑖𝑗/𝑏𝑤 𝑖𝑓 𝑉𝑀𝑡𝑖  ≠ 𝑉𝑀𝑡𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

where dataij the size of the data which needs to be transferred from the ti to tj, and bw is the communication 

bandwidth between the VMti and VMtj. Algorithm 3 illstrates the method which is adopted to calculate the 

makespan. 

 

Algorithm 3. Calculation of makespan 
Input: Solution S (Schedule of tasks workflow) 

Output: Makespan of solution S 

1:  vmNum = number of available VMs, taskNum = number of Tasks 

2:  k=0, MaxTime=0, Ready=0, TransferCost=0, Makespan=0 

3:  While k<=taskNum do 

4:   For each task (ti) in Task List (TL) do 

5:    If ti is not handled 

6:     TransferCost=0, MaxTime=0, Ready=1 

7:     For each parent of ti (Pti) do //where Pti  ∈ Parent List (PL)ti 
8:      If Pti is not handled 

9:       Ready=0 

10:      else 

11:       MaxTime= Max(MaxTime, FT(Pti)) 

12:   EndFor 

13:    If Ready=1 

14:     For each Pti in (PL)ti do 

15:      If VMti <> VMPti 

16:           TransferCost=TransferCost+ TT(Pti, ti) 

17:   EndFor 

18:     ST(ti) = Max(MaxTime, AvaiTime(VMti)) + TransferCost  

// where AvaiTime(VMti) is Available Time of VMti 

19:     FT(ti) = ST(ti) + (Length of ti / Mips of VMti) 

20:     Makespan=Max(Makespan, FT(ti)) 

21:     AvaiTime(VMti) = FT(ti) 

22:     k=k+1 

23: EndFor 

24: EndWhile 

 

 

5. RESULTS AND DISCUSSION 

In this section, we explain the results of analyzing the performance of the algorithm with the results 

of its implementation. For adjusting the algorithm parameters, the performance of the algorithm has been 

analyzed using different values. Figures 2(a)-(c) (see Appendix) shows the performance of the algorithm 

based on the makespan value, using deferent cases of Montage and Epigenomics workflows. The 

performance has been analyzed firstly by adjusting the number of iterations in the ILS algorithm, which is the 

number of perturbation and local search work. The algorithm stops when it reaches the number of iterations 

in which the solution has not improved. Secondly, the number of neighbors extracted from the current 

solution in the local search algorithm is also considerd. Finally, adjusting the perturbation ratio of the 

solution. 

After trying several different values, we note that as the number of iterations increases, the solution 

improves to a certain extent, and the improvement stops even when the iterations increase. The number of 

neighbors generated in local search is approximately better depending on the number of tasks. Finally, the 

lower the percentage of perturbation, would be the better to a certain extent. After implementing the 

algorithm on many scientific workflow instances, the results are shown in Table 2, the first column represents 

the application of the scientific workflow, while the second, third and fourth columns represent the proposed 

algorithm results obtained. The remaining columns represent the results of the algorithms that were 

compared. The obtained results of the proposed algorithm are compared with heterogeneous earliest finish 

time (HEFT), minimum completion time (MCT), round robin (RR) algorithms. According to the proposed 

algorithm compared to other, we note that the results of implementing the proposed algorithm are better in 

many cases except in CyberShake. 
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Table 2. Average makespan comparison of ILS with HEFT, MCT, and RR for scientific workflows 

Workflow 
ILS 

HEFT MCT RR 
Min Av Max 

Montage_25 84.76 86.79 88.67 85.71 91.35 87.63 

Montage_50 172.97 174.57 175.44 179.1 181.06 183.91 

Montage_100 345.16 346.54 347.94 347.79 348.79 353.11 

Montage_1000 3536.37 3539.02 3540.77 3538.97 3542.18 3587.62 

CyberShake_30 379.96 389.16 396.97 380.46 425.62 393.25 

CyberShake_50 544.27 562.27 582.2 521.53 539.9 527.74 

CyberShake_100 831.22 853.22 891.05 753.22 761.27 767.34 

CyberShake_1000 6831.79 7037.25 7334.78 6807.57 6790.68 6840.51 

Epigenomics_24 6534.76 9170.13 11277.38 6548.63 9837.18 7941.59 

Epigenomics_46 14046.82 18131.44 21325.42 15146.16 18250.16 17270.46 

Epigenomics_100 121506.62 138622.89 159865.11 127531.9 129116.61 131399.43 

Epigenomics_997 1108351.75 1109442.35 1110026.87 1107585.38 1112766.72 1120257.65 

Inspiral_30 2103.01 2154.71 2204.35 2306.69 2267.42 2360.8 

Inspiral_50 3488.41 3551.4 3603.18 3572.75 3978.44 4154.08 

Inspiral_100 6089.93 6597.02 8167.79 7747 6254.53 6640.41 

Inspiral_1000 65064.44 65066.06 65069.51 65114.86 65816.79 65669.68 

 

 

6. CONCLUSION 

Recently, a scientific workflow has become a rich area of research that is attracting researchers as 

well as practitioners in different research domains. Accordingly, reducing the makespan of the scientific 

workflow represents the main objective of this paper. The standard ILS metaheuristic is successful in tackling 

various combinatorial optimization problems; therefore, the paper hypothesizes that ILS would be successful 

in tackling scientific workflow. Based on the fact that the ILS components play a prominent role in 

improving their behavior during the search, the appropriate selection of these components leads to enhancing 

the performance of the ILS. The ILS has been implemented on a realistic scientific workflow and the 

obtained results have been compared with these of the HEFT, MCT, and RR algorithms. The obtained results 

supported the above-mentioned hypothesis, as the ILS has attained competitive results, if not superior, and 

generalized well overall tested instances. 
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Figure 2. The relation between number of iterations, number of neighbors, and perturbation ratio with quality 

of solutions (makespan) of (a) number of iterations, (b) number of neighbors, and (c) perturbation ratio 
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