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 Multilayer perceptron (MLP) optimization is carried out to investigate the 

classifier's performance in discriminating the uniformity of reduced 

Graphene Oxide (rGO) thin-film sheet resistance. This study used three 

learning algorithms: resilient back propagation (RP), scaled conjugate 

gradient (SCG) and levenberg-marquardt (LM). The dataset used in this 

study is the sheet resistance of rGO thin films obtained from MIMOS Bhd. 

This work involved samples selection from a uniform and non-uniform rGO 

thin-film sheet resistance. The input and output data were undergoing data 

pre-processing: data normalization, data randomization, and data splitting. 

The data were divided into three groups; training, validation and testing with 

a ratio of 70%: 15%: 15%, respectively. A varying number of hidden neurons 

optimized the learning algorithms in MLP from 1 to 10. Their behavior 

helped establish the best learning algorithms in discriminating MLP for rGO 

sheet resistance uniformity. The performances measured were the accuracy 

of training, validation and testing dataset, mean squared errors (MSE) and 

epochs. All the analytical work in this study was achieved automatically via 

MATLAB software version R2018a. It was found that the LM is dominant in 

the optimization of a learning algorithm in MLP for rGO sheet resistance. 

The MSE for LM is the most reduced amid SCG and RP. 

Keywords: 

Image classification 

LM 

MLP 

Reduced graphene oxide  

RP  

SCG  

Sheet resistance 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Marianah Masrie 

School of Electrical Engineering 

College of Engineering 

Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia 

Email: marianah@uitm.edu.my 

 

 

1. INTRODUCTION  

Graphene consists of one layer of carbon atoms organized in a very honeycomb pattern and may 

even be delineated as a one-atom-thick layer of graphite [1]-[4]. Graphene is reliable to be an electrical 

conductor for just one atom thick for remains light, flexible and transparent [5]-[7]. The most recognize 

technique has been developed to create large-scale continuous graphene films such as chemical vapour 

deposition (CVD), graphene epitaxial growth on silicon carbide (SiC) and graphene oxide reduction. 

Amongst these approaches, the oxide reduction proved to be a practical approach to produce graphene at a 

relatively low cost with optimal quality. Graphene Oxide (GO) is identified as an electrical insulator with low 

thermal conductivity due to the disruption of its sp2 bonding networks. To recover the hexagonal honeycomb 

lattice and electrical conductivity, the rGO must be produced in a high-temperature vacuum chamber with a 

certain degree of temperature. 

https://creativecommons.org/licenses/by-sa/4.0/
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MLP is one of the preferred methods used for the classification and prediction of nanomaterials 

properties such as thin films, nanofluids, nanofiber, and nanocomposites reported in the previous research. 

Khosrojerdi et al. [8] predicted a thermal conductivity of graphene nanofluid using the multilayer perceptron 

(MLP) of an artificial neural network. Model accuracy was evaluated using square mean quadrature (RMS) 

indexes. The ANN algorithm was used to model Cd(II) elimination efficiency and optimize process variables 

of Cd(II) concentration, initial pH values, contact times and operating temperatures [9]. Amani et al. [10] 

performed multi-criteria modeling and optimization of the rheological and thermophysical properties of an 

environmentally-friendly covalently functionalized nanofluid containing graphene nanoplatelets (CGNPs). 

The Narx-ANN mathematical model was developed to shift the quartz resonator's frequency shift on GO 

langmuir bladgett thin-films [11]. The application of ANN to the classification and prediction of graphene 

nanomaterial is very minimal, but it is extensive for others [12]. Guo et al. [13] reported ten multilayer 

perceptrons were integrated into a random forest and multilayer perceptron (RF-MLP) model using the 

random forest (RF) method for predicting the dielectric loss of polyimide nanocomposite films. They also 

applied the MLP. A multilayer perceptron and a support vector machine (SVM) based on a PUK kernel were 

used to classify both the single-layer and three-layer polyimide nanocomposite films [14]. Konomi et al. [15] 

have developed a novel method to characterize thin-film conductivity in EFM based on feed-forward neural 

networks and evolutionary algorithms. MLP has also been conducted to predict the optical properties of 

Plasmonic thin-film solar cells and optimize their structures [16]. The MLP is also applied to predict the 

efficiency of a double-walled reactor using nanofluids as heat transfer and in predicting the nanofluids 

relative viscosity [17], [18]. Hassan et al. [19] have developed a model based on the prediction of R-squared 

value that can be implemented to estimate the values of specific heat capacity for nanofluids samples. For 

nanofiber materials, the MLP-based ANN model was used to predict the mean diameter of the electrospun 

fiber [20], [21]. Apart from this, two ANN models have been developed to model the elimination efficiency of 

nanomaterials heavy metals and the estimation of chemical material adsorption on nanocomposite [22], [23]. 

According to previous research, there is not yet report on the use of intelligent computing and neural networks 

technology to classify nanomaterial thin-film sheet resistance uniformity. This study has given rise to new 

challenges in the field of nanomaterial sheet resistance. MLP can provide the best model behaviour for a 

uniform sheet resistance. 

This study proposes three learning algorithms of multilayer perceptron (MLP) classifier: resilient 

backpropagation (RP), scale conjugate gradient (SCG) and levenberg-marquardt (LM) for process modeling 

and accomplishing optimal coating parameters for investigating the nanomaterial thin film property. The 

algorithms have been developed to optimize the uniformity of rGO thin-film sheet resistance. The rGO sheet 

resistance datasets were acquired from the previous researcher in MIMOS Berhad. The data were processed 

beforehand and the datasets were used in three phases: training, validation and testing. The process continues 

with the development of the MLP model through RP, LM and SCG. Then, all three models developed models 

were tested and accepted once each model met performance criteria. Finally, the results obtained have also 

been validated experimentally. 

 

 

2. RESEARCH METHOD  

The experimental setup for the optimization of learning algorithms is depicted in Figure 1. The 

process begins with a data collection from MIMOS Berhad. The method of producing rGO sheet resistance 

datasets was started with the spray of graphene oxide (GO) with 3x and 4x spray passes on silicon dioxide 

(SiO2) wafer by using an atomizer system developed by MIMOS Berhad [24]. The process was repeated for 

five runs of the experiment. The GO samples were then reduced through a high temperature of the thermal 

reduction process to produce rGO samples [25]. The four-point machine measured electrical conductivity, 

which is the sheet resistance at 49 different coordinate points distributed radially from the center of the whole 

8-inch SiO2 wafer shown in Figure 2 right after the reduction process. The figure also illustrates the 

distribution of the sheet resistance values for 4x spray passes.  

The datasets were undergoing data pre-processing where 70% was used for training, 15% for 

validation and the remaining data, 15% was used for testing. The process continued with the multilayer 

perceptron (MLP) training using two different datasets trained separately. In this process, learning algorithms 

were varied, which includes training using RP, LM and SCG. The neurons in the hidden layer were varied 

using pattern recognition network (patternet) function in MATLAB R2018a, set with 1 to 10 hidden neurons. 

Then it was followed by the validation and testing of the trained network for each learning algorithm. To 

accept the developed MLP model, the following performance was measured by the criteria of the confusion 

matrix, accuracy, sensitivity, specificity and precision that appeared in neural network training (nntraintool). 

The model was accepted if the model passed. But if not, it endured the data processing precise to either three 

processes as shown in Figure 1.  
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As shown in Figure 3, one can see the architecture of multilayer perceptron (MLP) with input, 

hidden and output layers. The process starts from the first layer taking in inputs and the last layer producing 

output. In the middle of the layer is a hidden layer. The input layer has 49 neurons, representing 49 points on 

rGO sheet resistance by reading the 4-point probe machine. After that hidden layer is optimized from 1 to 10 

neurons and the output layer has one neuron is representing the uniformity of the sheet resistance. Each 

perceptron is connected to every perceptron on the next layer. So that the information is constantly "feed-

forward" from one layer to the next; hence this network is also called a forward feed network. 

 

 

 
 

Figure 1. Flowchart of the experimental set-up in modeling for rGO sheet resistance classifier  

 

 

 
 

Figure 2. The contour plots for sheet resistance distribution on 49 points for 4x spray passes 
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Figure 3. The MLP Architecture modeling for rGO sheet resistance classifier  

 

 

3. RESULTS AND DISCUSSION  

This section presents the classifier's performance in discriminating the uniformity of reduced 

graphene oxide (rGO) thin-film sheet resistance results obtained by optimizing RP, SCG and LM algorithms 

in testing, validation and training. Besides, these optimization learning algorithms, the number of epochs, the 

MSE value and the number of iterations are also highlighted.  

Table 1 and Table 2 tabulate the accuracies for training, validation and testing for both datasets: 3x 

spray passes and 4x spray passes. The machine learning from the MATLAB software implementation 

optimized the model development that for all the training, validation and testing give the 100% accuracy for 

both datasets. From these data, it can be seen that the problem of uniformity of rGO sheet resistance is not too 

difficult for MATLAB version R2018a to optimize and the model is genuinely performing exceptionally well. 

 

 

Table 1. Accuracy for training, validation and  

testing performance for RP, SCG and LM  

for 3x spray passes 
No. of hidden neuron Accuracy (%) 

Training Validation Testing 

1 100 100 100 
2 100 100 100 

3 100 100 100 

4 100 100 100 
5 100 100 100 

6 100 100 100 

7 100 100 100 
8 100 100 100 

9 100 100 100 

10 100 100 100 
 

Table 2. Accuracy for training, validation and  

testing performance for RP, SCG and LM  

for 4x spray passes 
No. of hidden neuron Accuracy (%) 

Training Validation Testing 

1 100 100 100 
2 100 100 100 

3 100 100 100 

4 100 100 100 
5 100 100 100 

6 100 100 100 

7 100 100 100 
8 100 100 100 

9 100 100 100 

10 100 100 100 
 

 

 

Results illustrated in Table 3 and Table 4 show the average MSE versus the number of hidden 

neurons using RP, SCG and LM algorithms for 3x spray passes and 4x spray passes datasets. For 3x spray 

passes, the average MSE among the algorithms shows that LM was the best performance among the others. 

The smallest value for LM is only 7.26×10−10 at hidden neurons 2 followed by SCG (1.25×10−7) algorithm 

at hidden neurons10 and lastly, RP (1.98×10−7) algorithm for nine hidden neurons. In 4x spray passes, the 

average MSE for LM is good compared to SCG and RP algorithms. The LM algorithm gives the minimum 

error, which is only 1.08×10−9 at hidden neuron 7 while SCG (1.20×10−7) at 8 hidden neurons and RP 

(2.26×10−7) for 9 hidden neurons. Furthermore, SCG and RP algorithms still give the slightest error for both 

3x spray passes and 4x spray passes, the range value close to 0. 

Table 5 and Table 6 summarize the parameter for the best-hidden neurons obtain in SCG, LM and 

RP algorithms (for both datasets: 3x spray passes and 4x spray passes. A similar finding was achieved by 3x 

spray passes and 4x spray passes in which, for both sprays pass, the LM training algorithm outperforms 

others. It is shown by having the lowest MSE at 7.68×10−10 (3x spray passes) and 1.08×10−9(4x spray passes). 

Besides that, the number of nodes in hidden neurons for LM is 2 (3x spray passes) and 7 (4x spray passes) 

accompanied with the epoch of 14 (3x spray passes) and 8 (4x spray passes). Interestingly, SCG and RP also 

give the smallest value of MSE, which is nearer to 0 and used the minimum of hidden neurons and epochs. 
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Table 3. Average MSE versus the number of hidden neurons using RP, SCG and LM algorithms  

for 3x spray passes datasets 
No. of hidden neuron Mean square error (MSE) 

RP 
Mean square error (MSE) 

SCG 
Mean square error (MSE) 

LM* 

1 3.35×10−6 3.21×10−7 1.28×10−8 

2 2.78×10−6 3.10×10−7 7.68×10−10 

3 2.27×10−6 1.47×10−7 2.26×10−8 

4 2.28×10−6 1.28×10−7 4.72×10−9 

5 2.01×10−6 1.84×10−7 1.31×10−8 

6 9.90×10−7 2.19×10−7 3.04×10−9 

7 1.87×10−6 1.33×10−7 9.66×10−9 

8 3.96×10−7 1.70×10−7 3.69×10−9 

9 1.98×10−7 1.56×10−7 2.18×10−9 

10 1.61×10−6 1.25×10−7 1.82×10−9 

*The best performance 

 

 

Table 4. Average MSE versus the number of hidden neurons using RP, SCG and LM algorithms  

for 4x spray passes datasets 
No. of hidden neuron Mean square error (MSE) 

RP 

Mean square error (MSE) 

SCG 

Mean square error (MSE) 

LM* 

1 4.17×10−6 4.67×10−7 2.37×10−8 

2 2.39×10−6 1.80×10−7 2.41×10−8 

3 9.30×10−7 3.74×10−7 8.72×10−9 

4 1.96×10−6 1.47×10−7 5.87×10−9 

5 1.28×10−6 3.74×10−7 6.74×10−9 

6 2.13×10−6 1.50×10−7 2.43×10−9 

7 2.26×10−7 1.21×10−7 1.08×10−9 

8 1.37×10−6 1.20×10−7 5.20×10−9 

9 3.85×10−7 1.64×10−7 3.40×10−9 

10 1.48×10−6 1.30×10−7 3.87×10−9 

 
 

Table 5. Parameters for the best RP, SCG and LM algorithms for 3x spray passes datasets 
Parameters RP LM SCG 

MSE 1.98×10−7 7.68×10−10 1.25×10−7 

Number of nodes in hidden neuron 9 2 10 

Epochs 5 14 22 

 
 

Table 6. Parameters for the best RP, SCG and LM algorithms for 4x spray passes datasets 
Parameters RP LM SCG 

MSE 2.26×10−7 1.08×10−9 1.20×10−7 

Number of nodes in hidden neuron 7 7 8 
Epochs 9 8 27 

 

 

The overall accuracy results for both 3x and 4x spray passes were quite similar. Therefore, only 

MLP final design parameter for 3x spray passes is discussed in this study. Table 7 summarizes the last design 

parameter for MLP architecture and the training parameter. The highest MSE found in LM by using dataset 

3x spray passes which is 7.68×10−10 with the epochs of 14 iterations. The number of the input layer is 49 

points by reading from rGO sheet resistance and the hidden neurons of 2 neurons in the hidden layer obtained 

the lowest MSE. The output, which is the uniformity of rGO sheet resistance, is represented by 1 output 

layer. The confusion matrix, as depicted in Figure 4, shows that the accuracy of the training dataset is 100%, 

and it is proven that LM outperforms others. This finding is supported by the results as tabulated in Table 8 

in which the accuracy, sensitivity, specificity and precision are all 100%. 
 

 

Table 7. MLP design parameters 
Parameter Value 

Learning algorithms LM 
Dataset  3x spray passes 

Epochs  14 

Mean Square Error (MSE) 7.68×10−10 

Number of Inputs layer 49 
Number of nodes in the hidden layer 2 

Number of the output layer 1 
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Figure 4. The MLP classification performance confusion matrix 

 

 

Table 8. Accuracy, sensitivity, specificity and precision 
Parameter Value (%) 

Accuracy 100 

Sensitivity 100 
Specificity 100 

Precision 100 

 

 

In general, it was found that levenberg marquardt (LM) training algorithms outperform others for all 

training, testing and validation datasets. This study proved that LM could obtain the lowest mean squared 

error (MSE) and performs 100% accuracy for optimal behaviour (sensitivity, specificity and precision). Due 

to this, LM capable of approaching the direction of the steepest descent. This finding agrees that SCG is 

faster in computational time but more significant error compares to LM. This is because it avoids line search 

per learning iteration by the LM approach. Therefore, it is providing the lowest sum of squared errors. 

 

 

4. CONCLUSION  

The optimization algorithms in the MLP network for rGO thin-film sheet resistance uniformity for 

3x and 4x spray passes were successfully performed in this study. It is clear that, amid three algorithms used 

in network training development to optimize rGO sheet resistance uniformity, LM gains the best. This study 

has been proven through uppermost accuracy (100%) yielded by LM for testing, validation and training. 

However, the result is reduced to the MSE value only and the number of epochs and a number of the hidden 

neuron research area. This study is essential and beneficial, especially in the uniformity of graphene sheet 

resistance for classifier analysis. 

 

 

ACKNOWLEDGEMENTS  

The authors acknowledge funding from the Minister of Higher Education (MOHE) of Malaysia 

under the FRGS Grant No: 600-IRMI/FRGS 5/3/ (031/2019) and the School of Electrical Engineering, 

College of Engineering, Universiti Teknologi MARA (UiTM) for supporting this research. 

 

 

REFERENCES  
[1] A. Dahal, "Surface Science Studies of Graphene Interfaces," Graduate Theses, Department of Physics, University 

of South Florida, USA, 2015.  

[2] Y. Han, "Electronic Properties of Graphene Tuned by Two-dimensional Crystals," Thesis, Department of Physics, 

Hong Kong University of Science and Technology, Hong Kong, 2015.  

[3] V. K. Nagareddy, "Fabrication, functionalisation and characterisation of epitaxial graphene devices," Thesis, 

Department of Electrical and Electronic Engineering, Newcastle University, United Kingdom, 2015.  

[4] M. Goosey, "A short introduction to graphene and its potential interconnect applications," Circuit World, vol. 38, 

no. 2, pp. 83-86, 2012, doi: 10.1108/03056121211222309. 

[5] W. Wang, "Development of Nanocomposites Using Graphene Synthesized by Solvent Exfoliation Method," 

University of Toledo, 2014.  



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 23, No. 2, August 2021: 686 - 693 

692 

[6] L. B. Modesto-López, M. Miettinen, T. Torvela, A. Lähde, and J. Jokiniemi, "Direct deposition of graphene 

nanomaterial films on polymer-coated glass by ultrasonic spraying," Thin Solid Films, vol. 578, pp. 45-52, 2015, 

doi: 10.1016/j.tsf.2015.01.073.  

[7] D. Steinberg, R. Gerosa, F. Pellicer, S. Domingues, E. T. de Souza, and L. Saito, "Sub-300fs mode-locked erbium 

doped fiber laser using graphene oxide and reduced graphene oxide onto D-shaped optical fibers," in 2017 

SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), IEEE, 2017, pp. 1-3,  

doi: 10.1109/IMOC.2017.8121086.  

[8] S. Khosrojerdi, M. Vakili, M. Yahyaei, and K. Kalhor, "Thermal conductivity modeling of graphene 

nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental 

results," International Communications in Heat and Mass Transfer, vol. 74, pp. 11-17, 2016,  

doi: 10.1016/j.icheatmasstransfer.2016.03.010. 

[9] M. Fan, et al., "Artificial neural network modeling and genetic algorithm optimization for cadmium removal from 

aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites," 

Materials, vol. 10, no. 5, p. 544, 2017, doi: 10.3390/ma10050544.  

[10] P. Amani and K. Vajravelu, "Intelligent modeling of rheological and thermophysical properties of green covalently 

functionalized graphene nanofluids containing nanoplatelets," International Journal of Heat and Mass Transfer, 

vol. 120, pp. 95-105, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.12.025.  

[11] K. Büyükkabasakal, S. C. Acikbas, A. Deniz, Y. Acikbas, R. Capan, and M. Erdogan, "Chemical sensor properties 

and mathematical modeling of graphene oxide langmuir-blodgett thin films," IEEE Sensors Journal, vol. 19,  

no. 20, pp. 9097-9104, 2019, doi: 10.1109/JSEN.2019.2926367.  

[12] M. Kamran, S. Haider, T. Akram, S. Naqvi, and S. He, "Prediction of IV curves for a superconducting thin film 

using artificial neural networks," Superlattices and Microstructures, vol. 95, pp. 88-94, 2016,  

doi: 10.1016/j.spmi.2016.04.018.  

[13] H. Guo, J. Zhao, and J. Yin, "Random forest and multilayer perceptron for predicting the dielectric loss of 

polyimide nanocomposite films," RSC advances, vol. 7, no. 49, pp. 30999-31008, June 2017,  

doi: 10.1039/C7RA04147K.  

[14] H. Guo, J. Zhao, J. Yin, and L. Yao, "Structural testing of polyimide nanocomposite films with SAXS and SVM-

PUK," Polymer Testing, vol. 70, pp. 30-38, 2018, doi: 10.1016/j.polymertesting.2018.06.025.  

[15] M. Konomi and G. Sacha, "Feedforward neural network methodology to characterize thin films by Electrostatic 

Force Microscopy," Ultramicroscopy, vol. 182, pp. 243-248, 2017, doi: 10.1016/j.ultramic.2017.07.015.  

[16] M. Kaya and S. Hajimirza, "Surrogate based modeling and optimization of plasmonic thin film organic solar cells," 

International Journal of Heat and Mass Transfer, vol. 118, pp. 1128-1142, March 2018,  

doi: 10.1016/j.ijheatmasstransfer.2017.11.044.  

[17] A. Mohammadi Ghahdarijani, F. Hormozi, and A. Haghighi Asl, "Convective heat transfer and pressure drop study 

on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network," 

International Communications in Heat and Mass Transfer, vol. 84, pp. 11-19, May 2017,  

doi: 10.1016/j.icheatmasstransfer.2017.03.014.  

[18] H. Reza Ansari, M. Javad Zarei, S. Sabbaghi, and P. Keshavarz, "A new comprehensive model for relative 

viscosity of various nanofluids using feed-forward back-propagation MLP neural networks," International 

Communications in Heat and Mass Transfer, vol. 91, pp. 158-164, February 2018,  

doi: 10.1016/j.icheatmasstransfer.2017.12.012. 

[19] M. A. Hassan and D. Banerjee, "A soft computing approach for estimating the specific heat capacity of molten salt-

based nanofluids," Journal of Molecular Liquids, vol. 281, pp. 365-375, 2019, doi: 10.1016/j.molliq.2019.02.106. 

[20] C. Yilmaz, D. Ustun, and A. Akdagli, "Usage of artificial neural network for estimating of the electrospun 

nanofiber diameter," in 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 2017, 

pp. 1-5, doi: 10.1109/IDAP.2017.8090329.  

[21] C. Ieracitano, A. Paviglianiti, M. Campolo, A. Hussain, E. Pasero, and F. C. Morabito, "A novel automatic 

classification system based on hybrid unsupervised and supervised machine learning for electrospun nanofibers," 

IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 64-76, 2021, doi: 10.1109/JAS.2020.1003387. 

[22] A. H. Hamidian, S. Esfandeh, Y. Zhang, and M. Yang, "Simulation and optimization of nanomaterials application 

for heavy metal removal from aqueous solutions," Inorganic and Nano-Metal Chemistry, vol. 49, no. 7,  

pp. 217-230, 2019, doi: 10.1080/24701556.2019.1653321.  

[23] M. Sadegh Mazloom, F. Rezaei, A. Hemmati-Sarapardeh, M. M. Husein, S. Zendehboudi, and A. Bemani, 

"Artificial intelligence based methods for asphaltenes adsorption by nanocomposites: Application of group method 

of data handling, least squares support vector machine, and artificial neural networks," Nanomaterials, vol. 10,  

no. 5, pp. 890, 2020, doi: 10.3390/nano10050890.  

[24] M. Rofei Mat Hussin, S. Aishah Mohamad Badaruddin, N. Mohd Razali Mohd Nor, and M. Hilmy Azuan Hamzah, 

"Ultrasonic atomization of graphene derivatives for heat spreader thin film deposition on silicon substrate," 

Materials Today: Proceedings, vol. 7, 2019, pp. 763-769, doi: 10.1016/j.matpr.2018.12.072.  

[25] M. Masrie, S. Badaruddin, M. Hussin, N. Nor, and J. Joe, "Rapid Reduction of Graphene Oxide Thin Films on 

Large-Area Silicon Substrate," in Journal of Physics: Conference Series, vol. 1535, no. 1, 2020, p. 012027,  

doi: 10.1088/1742-6596/1535/1/012027.  

 

 

 

https://doi.org/10.1016/j.tsf.2015.01.073
https://doi.org/10.1016/j.icheatmasstransfer.2016.03.010
https://doi.org/10.1016/j.icheatmasstransfer.2017.12.012
https://doi.org/10.1016/j.molliq.2019.02.106


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Optimization of learning algorithms in multilayer perceptron for … (Noor Aiman bin Aminuddin) 

693 

BIOGRAPHIES OF AUTHORS  

 

 

Noor Aiman bin Aminuddin recieved the B. Eng. in Electronic Enginering from the Faculty 

of Electrical Engineering, Universiti Teknologi Mara (UiTM) in 2019. He is currently working 

as a Process Engineer at Samsung Sdiem. He is responsible for designing, implementing, and 

testing new procedures to optimize lithium ion battery production. 

  

 

Ir Ts Dr Nurlaila Ismail is a senior lecturer at School of Electrical Engineering, College of 

Engineering, Universiti Teknologi MARA (UiTM), Shah Alah, Selangor. She obtained her 

BSc, MSc and PhD in Electrical Engineering from UiTM Shah Alam. She joined UiTM 

during her postdoctoral service in 2016. She is a professional engineer in the discipline of 

teaching recognized by the Board of Engineer Malaysia (BEM), an active member in several 

organizations, including IEEE Malaysia, especially Control System Society, Malaysian 

Society for Computed Tomography and Imaging Technology (MyCT) and Institute of 

Engineer Malaysia (IEM) and Malaysia Board of Technologists (MBOT) as well as ASEAN 

Engineering Register (AER). She has published more than 50 technical papers, locally and at 

international level. Her research interests are in advanced signal processing and artificial 

intelligence. 

  

 

Ir Ts Dr Marianah Masrie received the B.Sc. in Electric, Electronic & System Engineering, 

Universiti Kebangsaan Malaysia (1999), M.Sc. in Faculty of Electrical Engineering Universiti 

Teknologi MARA (2009) and Ph.D. in Microengineering & Nanoelectronics from Institute of 

Microengineering & Nanoelectronics (IMEN) Universiti Kebangsaan Malaysia (2017). She is 

a professional engineer in the discipline of teaching recognized by the Board of Engineer 

Malaysia (BEM). She is currently, the Coordinator for Discipline of System Engineering, 

School of Electrical Engineering, College of Engineering Universiti Teknologi MARA. Her 

current research interests include MEMS sensors, microfluidic and artificial intelligence. 

  

 

Siti Aishah Mohamad Badaruddin received the B.Sc. degrees in Electrical Engineering from 

University of Missouri Rolla, USA in 2000. She is currently a Senior Engineer in MIMOS’s 

Advance Device Lab of Research & Development department since 2017. Her major 

responsibility is heading the 2D nanomaterial group for the development of 2DNM mainly 

graphene and hexagonal boron nitride (hBN) in various application such as VOC, thermal 

management, and GaN process technology. She involved in the development of MIMOS 

atomizer system and its large area Graphene spray deposition process capability. Other main 

responsibility is producing IPs (patents, copyrights and trade secrets) and publications. Past 

experiences include 11 years as process engineers overseeing the process development, and 

optimization for thin film and wet process modules and 3 years as researcher for CMOS & 

MEMS process group. 

 


