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 Image-fusion provide users with detailed information about the urban and 

rural environment, which is useful for applications such as urban planning 

and management when higher spatial resolution images are not available. 

There are different image fusion methods. This paper implements, evaluates, 
and compares six satellite image-fusion methods, namely wavelet 2D-M 

transform, gram schmidt, high-frequency modulation, high pass filter (HPF) 

transform, simple mean value, and PCA. An Ikonos image (Panchromatic-

PAN and multispectral-MULTI) showing the northwest of Bogotá 
(Colombia) is used to generate six fused images: MULTIWavelet 2D-M, 

MULTIG-S, MULTIMHF, MULTIHPF, MULTISMV, and MULTIPCA. In order to 

assess the efficiency of the six image-fusion methods, the resulting images 

were evaluated in terms of both spatial quality and spectral quality. To this 
end, four metrics were applied, namely the correlation index, erreur relative 

globale adimensionnelle de synthese (ERGAS), relative average spectral 

error (RASE) and the Q index. The best results were obtained for the 

MULTISMV image, which exhibited spectral correlation higher than 0.85, a Q 
index of 0.84, and the highest scores in spectral assessment according to 

ERGAS and RASE, 4.36% and 17.39% respectively. 
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1. INTRODUCTION  

Image fusion is a solution that allows satisfying the frequent need for obtaining a single satellite 

image that carries both spectral (multi-spectral) and spatial (panchromatic) high-resolution data. The input to the 

fusion process is commonly taken from satellite images originated with the same type of sensor, or else, from 

several remote sensors so that decision makers are provided with the most effective basis available [1]-[12]. 

Image fusion delivers detailed information about rural and urban environments [13], which is useful for 

several applications such as territorial planning [14], agriculture [15], environmental monitoring [16], [17], 

medecine [18]-[21] among others. 

Conventional image fusion processes are based on several methods such as RGB-to-IHS 

transformation, Brovey techniques, and multiplication, among others. However, these methods are not 

completely successful since spatial information is enhanced at the cost of degrading spectral information. 

Given this limitation, other processes have been explored. Processes involving the two-dimensional wavelet 
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transform have been employed due to a reduced degradation of the spectral information contained in the 

original multi-spectral images, also leading to improvement in the spatial resolution [22]-[31]. According to 

wavelet-based studies, showing promising results for image fusion, [5], [26], [27], [32], [33] the wavelet 

transform contributes to obtaining better fused images due to the way in which coefficients are computed as 

part of the transformation process [34], [35]. This process yields the wavelet planes, which keep more spatial 

and spectral information from the original images than other techniques. Wavelet-based techniques also produce 

an intensity component that maintains the spatial richness of images along with tone and saturation components 

that that maintain spectral richness when transforming the image composition from RGB to IHS [36]. 

The present work focuses on six satellite-image fusion methods, namely the wavelet 2D-M 

transform using the RGB-to-HSV color model [37], the gram schmidt (G-S) method, high-frequency 

modulation (HFM), high pass filter transform (HPF), simple mean value (SMV), and principal component 

analysis (PCA). A step-by-step implementation process is proposed for applying each of the six methods. 

Moreover, a reference framework is established to assess the spectral and spatial quality of the resulting 

fused images (MULTIWavelet 2D-M, MULTIG-S, MULTIMHF, MULTIHPF, MULTISMV, y MULTIPCA) in terms of 

specific numerial indexes, namely the correlation coefficient, the relative average spectral error (RASE) 

index, the erreur relative globale adimensionnelle de synthese (ERGAS) index, and the Q universal quality 

index.  

 

 

2. METHODOLOGY 

This section is threefold: a description of the satellite images employed in the study is provided; 

followed by a description of the six image-fusion methods, which includes a proposal for implementing the 

methods; finally, the metrics applied to assess and compare the (spatial and spectral) quality of the resulting 

images are presented. 

 

2.1.  Satellite images and the region covered 

The region covered by the satellite images corresponds to a western area of Bogotá (Colombia), 

specifically the area around the airport of the city, namely “El Dorado” airport. This region is covered by 

Ikonos of sub-images multi-spectral (MULTI) origin as shown in Figure 1(a) and panchromatic (PAN) as 

shown in Figure 1(b). The PAN sub-image has a spatial resolution of one (1) meter; this image was captured 

on December 13th, 2007 according to the UTM/WGS 84 reference system. The MULTI sub-image includes 

four-channel information; however, only three channels were involved in the present study (R-red, G-green 

and B-blue). The image has a spatial resolution of four (4) meters and was captured on the same date as the 

PAN sub-image, also sharing the same reference system. The two images were cropped to have a width of 

2048 pixels and a height of 2048 pixels, satisfying dyadic properties [23]. 
 

 

 
(a) 

 
(b) 

 

Figure 1. Original images are (a) MULTI Sub-image and (b) PAN sub-image; 2048x2048 pixels 
 

 

2.2.  2D wavelet transform  

The wavelet discrete transform is a useful tool in the field of signal processing. This transform is 

mainly applied to divide data sets into smaller components associated to different spatial frequencies, which 

are represented by a common scale. Algorithms known as Mallat and ‘à trous’ are typical in applying the 

discrete wavelet transform to image fusion. Each of these algorithms has its own mathematical properties and 

leads to a different type of image decomposition; therefore, different types of fused images can be expected. 

Although the ‘á trous’ algorithm appears to be less adequate than the Mallat algorithm when extracting 

spatial details in the context of multiresolution analysis (from a theoretical perspective), this algorithm yields 
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images with significantly higher global quality [38]. For the six methods applied in this study, an RGB (true) 

color composition must be rendered from a combination of the MULTI and the PAN sub-images, using the 

same pixel size of the latter (1 meter).  

Procedure for implementing 2D-M wavelet transform, (A modification to the wavelet haar 

transform) [33], [34]: 

- Step 1. Transform the RGB image into hue, saturation, value (HSV) and adjust the histograms of the PAN 

image and the V component, yielding the new Vap component. 

- Step 2. Apply the 2D-M wavelet transform to the V component (second decomposition level), yielding 

the corresponding approximation and detail coefficients; the A1v approximation coeficientes contain the 

spectral information of the image; meanwhile, detail coefficients cV1v, cH1v and cD1v store the spatial 

information of the image. Decompose the A1v a second time, yielding the A2v approximation 

coefficients that contain the spectral information of the image; meanwhile, cV2v, cH2v and cD2v along 

with cV1v, cH1v and cD1v correspond to the detail coefficients that hold the spatial information of the 

transformed image. 

- Step 3. Apply the 2D-M wavelet transform to the panchromatic image (second decomposition level), 

yielding the corresponding approximation and detail coefficients; the A1p approximation coefficients 

contain the spectral information of the image; meanwhile, detail coefficients cV1p, cH1p and cD1p store 

the spatial information. Decompose A1p a second time to obtain the A2p second-level approximation 

coefficients, which contain the spectral information; meanwhile, cV2p, cH2p and cD2p along with cV1, 

cH1p and cD1p correspond to the detail coefficients bearing the spatial information of the transformed 

image. 

- Step 4. Generate a new value component (NI), using the A2v coefficients that store the information of the 

V-component image together with the second-level detail coefficients of the panchromatic image (cV2p, 

cH2p and cD2p) and the detail coefficients from the first-level decomposition (cV1p, cH1p and cD1p). 

- Step 5. Apply the inverse 2D-M wavelet transform to obtain the new intensity component (NV). 

- Step 6. Given the new NV, and the original hue and saturation components, generate the new HS-NV. 

- Step 7. Conduct the inverse image transformation from HS-NV to RGB. Thus, the new multispectral 

image is obtained, which maintains the spectral resolution, leading to a gain in spatial resolution. 

 

2.3.  Gram-schmidt  

The Gram-Schmidt image-fusion method is based on a general vector orthogonalization algorithm. 

The algorithm consists in taking non-orthogonal vectors and apply rotation to make them orthogonal. When 

applied to image processing, each band (the panchromatic, the red, the green, the blue and the infrared) 

corresponds to an n-dimensional vector (# dimensions = # pixels). 

Implementation procedure: 

- Step 1. Simulate the panchromatic band from the low-spatial-resolution spectral bands. 

- Step 2. Apply the Gram-Schmidt transform to the simulated panchromatic band and also to the spectral 

bands, employing the simulated panchromatic band as the first band. 

- Step 3. Intercambiar la alta resolución espacial de banda pancromática con la primera banda de Gram-

Schmidt. 

- Step 4. Apply the inverse Gram-Schmidt transform to construct the high-resolution spectral bands. 

 

2.4.  High-frequency modulation  

This method is a variation of the so-called spatial-domain fusion methods [39], which focus on 

transferring the high frequencies of a high-resolution image onto a low-resolution image. The high-frequency 

representation of an image contains the information related to the details and such information can be 

obtained by means of filtering operators or convolution. Basically, these methods consist in adding the high-

frequency components of the panchromatic image to each of the bands of a multi-spectral image: 
 

𝑅𝑖 = (𝑀𝑆)𝑖 + 𝑃𝐴(𝑃𝑎𝑛) (1) 
 

where iR  represents a generic band in the fusion and PA(Pan) is the result of applying a high-pass filter to 

the panchromatic image. The operation in (1) is similar to that of applying an enhancement filter to the high 

frequency components of an image (high-boost), although with a different image providing the high-pass 

information, namely the high-resolution panchromatic image in this case. Thus, the efficiency of this filter is 

based on the existence of radiometric correlation, which arises from the high-frequency components of the 

two images. 

Implementation procedure: 

- Step 1. Apply the high-pass filter and the low-pass filter to the panchromatic image. 
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- Step 2. In order to generate each of the fused images, add each band to the product obtained from dividing 

the band over the low-pass filtered image times the high-pass filtered image. 

- Step 3. Concatenate the fused images to obtain the new RGB image. 

 

2.5.  High-pass filter transform 

This method consists in adding the spatial information from the panchromatic band to the multi-

spectral information that has lower spatial resolution [40]. To this end, a high-pass filter is applied along with 

a map-algebra operation [41]. 

Implementation procedure: 

- Step 1. Obtain a constant R by dividing the multi-spectral image cell size into the panchromatic image 

cell size.  

- Step 2. Obtain a constant R by dividing the multi-spectral image cell size into the panchromatic image 

cell size. Based on this constant, a high-pass filter is generated and applied to the panchromatic image, 

yielding the standard deviations of both the multispectral image and the panchromatic image. A 

coefficient W is obtained, resulting from dividing the sum of the standard deviations into the product of 

the panchromatic standard deviation times the central value (M) as a function of the values of R [40]. 

- Step 3. Obtain the fused images, each image results from the addition of its corresponding band and the 

filtered image times W. 

- Step 4. Concatenate the fused images to obtain the new RGB image. 

 

2.6.  Simple mean value 

This method applies a simple average equation to each of the combinations of output bands as: 

- High-resolution Red Band = 0.5 * (original Red Band + Panchromatic Band)  

- High-resolution Blue Band = 0.5 * (original Blue Band + Panchromatic Band)  

- High-resolution Green Band = 0.5 * (original Green Band + Panchromatic Band) 

Implementation procedure: 

- Step 1. Generate fused images from the average of the Simple Mean Value, which consists of the sum of 

a single band and the panchromatic band (a result devided by 2), thus obtaining the fused images. 

- Step 2. Concatenate the fused bands so as to obtain the new fused RGB image. 

 

2.7.  PCA 

The principal component analysis, also coined PCA transformation, Karhunen-Loève transform, or 

Hotelling transform [42], is intended to create new images (Principal Components-PC) from the original 

images; such Principal Components (PCs) are non-correlated and lead to a reorganization of the original 

information. By having the PCs, redundant information is avoided. Thus, the first PC is defined as the 

direction of maximum data variance. The essence of this analysis is the transformation of a set of correlated 

variables into a new set of non-correlated variables [43]. 

Implementation procedure: 

- Step 1. Obtain as many principal components as the number of bands in the multi-spectral image. Thus, 

PC1 holds spatial information, and the remaining PCs contain the spectral information.  

- Step 2. Equate the histogram from the panchromatic image to that of the first principal component (PC1), 

that is, to the component that holds information related to the set of bands.  

- Step 3. Substitute the first principal component (PC1) with the modified panchromatic image (once the 

histogram has been adjusted).  

- Step 4. Apply the inverse transform to the resulting components so as to obtain the fused image, namely 

the new, fused RGB image. 

 

2.8.  Assessment metrics 

For the evaluation and analysis of the resulting fused images obtained by means of MULTIWavelet 2D-

M, MULTIG-S, MULTIMHF, MULTIHPF, MULTISMV, and MULTIPCA, the following indexes were computed: 

the correlation coefficient (corr), the relative average spectral error (RASE) index, the ERGAS index (erreur 

relative globale adimensionallede synthèse) and the universal quality index Q. This set of indexes is 

described below.  

i) Correlation coefficient (corr). The correlation between pairs of bands ( / )corr A B  from a fused 

image and the bands of an original image can be computed as (2): 

 

𝑐𝑜𝑟𝑟(𝐴/𝐵) =
∑ (𝐴𝑗−𝐴

−
)
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−
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)
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Where A  and B  are the mean values of the two images. ( / )corr A B  can take values between –1 and +1 

and it has no units as shown in Table 1, that is, the coefficient does not depend on the units of the original 

variables. The ideal value of the correlation coefficient, for both spectral and spatial assessment,  

is 1 [44]. 

ii) ERGAS index. The evaluation of the quality of fused images has been conducted by observing 

the value of the ERGAS indexes obtained for the spectral and spatial features as shown in Table 2. The 

spectral ERGAS index is defined in (3) [45]: 
 

𝐸𝑅𝐺𝐴𝑆𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 = 100
ℎ

𝑙
√

1

𝑁𝐵𝑎𝑛𝑑𝑠
∑ [

(𝑅𝑀𝑆𝐸𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝐵𝑎𝑛𝑑𝑠
𝑖))2

(𝑀𝑈𝐿𝑇𝐼𝑖)2
]

𝑁𝐵𝑎𝑛𝑑𝑠
𝑖=1  (3) 

 

Where h  and l  represent the spatial resolution of the PAN  and MULTI  images; NBands corresponds to 

the number of bands of the fused image; 
i

MULTI  is the radiance value associated to the i ésima  band of 

the MULTI image [46], and RMSE is defined in (4): 
 

𝑅𝑀𝑆𝐸𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝐵𝑎𝑛𝑑𝑎𝑖) =
1

𝑁𝑃
√∑ (𝑀𝑈𝐿𝑇𝐼𝑖 − 𝐹𝑈𝑆𝑖)2

𝑁𝑃
𝑖=1   (4) 

 

In (4), NP  denotes the number of pixels of the ( , )
i

FUS x y  image. Moreover, in [47], an index 

coined EspacialERGAS  is proposed. This index follows the same principles of the ERGAS index. 

EspacialERGAS  is aimed at evaluating the spatial quality of fused images and is defined in (5): 

 

𝐸𝑅𝐺𝐴𝑆𝑆𝑝𝑎𝑡𝑖𝑎𝑙 = 100
ℎ

𝑙
√
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𝑁𝐵𝑎𝑛𝑑𝑠
∑ [

(𝑅𝑀𝑆𝐸𝑆𝑝𝑎𝑐𝑖𝑎𝑙(𝐵𝑎𝑛𝑑𝑠
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(𝑃𝐴𝑁𝑖)2
]

𝑁𝐵𝑎𝑛𝑑𝑠
𝑖=1  (5) 

 

Where EspacialRMSE  is a term defined in (6):  

 

𝑅𝑀𝑆𝐸𝐸𝑠𝑝𝑎𝑐𝑖𝑎𝑙(𝐵𝑎𝑛𝑑𝑎𝑖) =
1

𝑁𝑃
√∑ (𝑃𝐴𝑁𝑖 − 𝐹𝑈𝑆𝑖)2

𝑁𝑃
𝑖=1  (6) 

 

After evaluation of image quality usign these indexes (i.e. spatial and spectral ERGAS), values close 

to zero indicate excellent quality (see Table 2). 

RASE index. The RASE index is expressed as a percentage (7), as indicated by the results in Table 2: 

 

𝑅𝐴𝑆𝐸 = 100
ℎ

𝑙
√
1

𝑁
∑ [

(𝑅𝑀𝑆𝐸(𝐵𝑖))
2

𝑀𝑖
2 ]𝑛

𝑖=1  (7) 

 

Where h  is the value of resolution associeted to the high-spatial-resolution (PAN) image, and l  is the value 

of resolution associated to the low-spatial-resolution (MULTI) image [46]. The best results are obtained 

when the percentage indicated by RASE goes to zero. 

Universal quality Q index. This quality index is intended to identify image distortion as a 

combination of three factors, namely correlation loss, luminance distortion and contrast distortion [48]. This 

index is copmputed according to (8) (see results in Table 2). 

 

𝑄 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
⋅

2�̄��̄�

(𝑥)2+(𝑦)2
⋅
2𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑥

2 (8) 

 

A higher quality of the fused image will be obtained as the value of Q approaches 1. 

 

 

3. RESULTS AND DISCUSSION 

For qualitative assessment purposes, a visual inspection of the images is provided in Figure 2. The 

figure shows segments of the MULTI as shown in Figure 2(a) and PAN MULTI Figure 2(b) images as well 

as segments of the fused images obtained after applying the image fusion methods Figure 2(c)-(h). In 

addition to the visual assessment provided in Figure 2, quantitative results are presented in Tables 1 and 2. 

Table 2 shows the results that describe the spatial and spectral correlation of fused images after applying the 

six methods. 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 

 
(g) 

 
(h) 

 

Figure 2. Detail of sub-images; (a) MULTI, (b) PAN, (c) Wavelet fused, d) Gram-schmitd fused,  

(e) High-frequency modulation, (f) HPF fused, (g) Simple mean value fused, and (h) PCA fused 
 

 

Table 1. Quantitative evaluation of Ikonos image quality, spatial and spectral correlation 
Fused Image corr spatial corr spectral 

R G B R G B 

MULTIWavelet 2D-M 0.77 0.81 0.77 0.85 0.79 0.76 

MULTIG-S 0.92 0.97 0.95 0.78 0.69 0.62 

MULTIMAF 0.66 0.68 0.65 0.94 0.92 0.90 

MULTIHPF 0.53 0.54 0.49 0.70 0.69 0.60 

MULTISMV  0.84 0.85 0.88 0.88 0.87 0.80 

MULTIPCA 0.94 0.97 0.89 0.55 0.54 0.57 

 

 

In terms of the spatial correlation of images, the results show that the highest values of the 

coefficients are obtained for the MULTIG-S, MULTIPCA images in each of the three bands. Regarding the 

spectal correlation of images, the highest values can be observed for the MULTIWavelet 2D-M, MULTIMAF fused 

images. Table 2 shows the resulting values of computing the RASE index, the ERGAS index and the 

universal quality Q index, regarding both spatial and spectral features. 
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Table 2. Quality evaluation for the Ikonos sub-image, values of ERGAS, RASE, and Q indexes, spatial and 

spectral evaluation 
Fused image ERGAS spatial ERGAS spectral RASE spatial RASE spectral Q spatial Q spectral 

MULTIWavelet 2D-M 6.22 5.38 24.89% 21.60% 0.77 0.79 

MULTIG-S 3.63 5.97 14.52% 24.00% 0.93 0.70 

MULTIMAF 8.92 5.22 35.68% 20.96% 0.64 0.89 

MULTIHPF 15.32 13.93 61.31% 55.01% 0.41 0.52 

MULTISMV  4.42 4.36 17.71% 17.39% 0.84 0.84 

MULTIPCA 11.255.38 12.48 45.01% 49.99% 0.70 0.43 

 

 

The results obtained by computing the spatial ERGAS index highlight the quality of the MULTIG-S 

fused image (spatial ERGAS equal to 3.63). Meanwhile, the spectral ERGAS index indicates that the 

MULTISMV fused image delivers better quality (spectral ERGAS equal to 4.36). Regarding the values of the 

spatial and spectral RASE indexes, the best results follow the same trend (as observed for ERGAS), that is, 

the most promising values of spatial RASE are associated to the MULTIG-S image (14.52 %, spatial and 24% 

spectral) and the best spectral RASE score was obtained for the MULTISMV image (17.71%). Finally, the 

values of the Q index (spatial and spectral) show excellent results for both the MULTIG-M image and the 

MULTISMV image; however, the MULTISMV fused image outperforms the others since the two indexes 

(spectral and spactial) maintain equivalent values. 

Previous work [1], [5], [26], [27], [32], [33], [35], [37], [38], [41], [43], [47] has shown that image 

fusion methods based on the wavelet transform (employing the Á trous and Mallat algorithms) are better 

suited for the fusion of images than traditional methods.  

Moreover, Wald [45] proposed a set of requirements that should be met by quality tests and Quality 

Indexes: 

1. Indexes should be unit-independent, including calibration instuments and gain values. 

2. Indexes should not depend on number of spectral bands. 

3. Indexes should not depend on the relation among the spatial resolution of the source images. 

Therefore, the results provided for the qualitative analysis in Figure 2 and the quantitative analysis 

(Tables 1 and 2) show that the best fused image (the image resulting in the smallest degradation of spectral 

richness with significant spatial gain) was obtained when applying the Simple Mean Value algorithm 

(MULTISMV). 
 

 

4. CONCLUSION 

The implementation of various mathematical proposals, namely 2D-M wavelet transform, Gram 

Schmidt transform, High-frequency modulation, HPF transform, Simple Mean Value and Principal 

Component Analysis, allowed generating fused images from the satellite Ikonos images that are useful for a 

variety of applications. Implementation of various methods in a single study favors the interest of 

researchers, since the best method has not been found, instead, the best fused image must be found. The best 

fused image showing the highest spatial gain, though with some degradation of spectral richness, is the 

MULTIG-S image. The Simple Mean Value method (MULTISMV) allowed fused images with higher spatial 

and spectral quality; however, it can be concluded that the images with higher spatial quality tend to degrade 

spectral richness, conversely, the images with higher spectral quality fail to offer excellent spatial features. 

The methods proposed herein lead to fused images that provide users with detailed information about urban 

and rural surroundings, which is useful for applications such as urban planning and management when there 

is no availability of higher spatial resolution images (e.g. drone-based images). The usefulness of the present 

study also extends to project development in fields such as agriculture, hydrology, environmental sciences 

and natural dissarter scenarios (e.g. floods, forrest fires), among others. 
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