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 Most lung cancers do not cause symptoms until the disease is in its later 

stage. That led the lung cancer having a high fatality rate compared to other 

cancer types. Many scientists try to use artificial intelligence algorithms to 

produce accurate lung cancer detection. This paper used extreme gradient 

boosting (XGBoost) models as a base model for its effectiveness. It enhanced 

lung cancer detection performance by suggesting three stages model; feature 

stage, XGBooste parallel stage and selection stage. This study used two types 

of gene expression datasets; RNA-sequence and microarray profiles. The 

results presented the effectiveness of the proposed model, especially in 

dealing with imbalanced datasets, by having 100% each of sensitivity, 

specificity, precision, F1_score, area under curve (AUC), and accuracy 

metrics when it applied on all of the datasets used in this study.  
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1. INTRODUCTION 

Lung cancer is common cancer that causes a higher fatality rate between cancer types. The five-year 

survival rate is about 56% for patients that cancer is still in the lung. While 5% for the cases, its cancer 

spread out of the lung. Only 16% of lung cancer cases are detected early [1]. Recognition and prediction the 

lung cancer in the earliest stage can increase the survival rate of the patients. Lung cancer has no symptoms 

in the early stages [2], [3], so it needs more than traditional detection to detect it. Cancer can be defined as a 

disease of altered gene expression. The development of gene expression technologies has become the 

standard technology for studying the cells [4]-[6]. The development of this technology made many 

researchers apply many studies on improving lung cancer prediction by analyzing the changes in gene 

expression. Some researchers study gene expression-based prognostic signatures for lung cancer [3]. Others 

try to use gene expression technology such as microarray and RNA-sequences to develop lung cancer 

detection methods. Many studies used artificial intelligence to detect lung cancer for their power tools. They 

used different methods, like Al-Anni et al. [7]-[12], they proposed different optimization models to enhance 

the non-small cell lung cancer (NSCLC) detection accuracy using microarray gene expression datasets. Also, 

Azzawi et al. [13]-[16] have multiple studies on multiclass improvement using the GEP algorithm in the lung 

cancer classification stage to determine the specific therapy and reduce the fatality rate. Hu et al. [17] 

proposed detecting and recognizing different life stages of bladder cells using two cascaded convolutional 

neural networks (CNNs). To detect cancer cells and their stages. While Saric et al. [18] proposed a fully 

automatic method for detecting lung cancer in lung tissue. They used two convolutional neural network CNN 

architectures (VGG and ResNet) for training, and their performance is compared. The results obtained show 
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that the CNN-based approach can help pathologists diagnose lung cancer. Also, Li et al. [19] proposed a 

fusion algorithm that combines handcrafted features into the features learned at the output layer of a 3D deep 

convolutional neural network (CNN). Patra [20] analyzed various machine learning classifier techniques to 

classify lung cancer into benign and malignant. Lai et al. [21] trained clinical and gene expression data with 

improved deep neural network (DNN). It used patients based on microarray data to predict the 5-year 

survival status of NSCLC. The study Priya and Jawhar [22] proposed an automatic approach to classifying 

the lung image into a normal case or cancer case by preprocessing the computed tomography (CT) lung 

image to remove noise. Then combines the histogram analysis with morphological and extracts the lung 

regions by thresholding operations, while Ogunleye and Wang [23] used a clinical database to classify the 

patient if he has chronic kidney disease or not using XGBoost. Desuky et al. [24] suggested a new method 

for classification to deal with imbalanced medical datasets. It used the crossover to increase the minority 

class and then used the boosting for classification. This method enhances the classification accuracy results. 

Rustam et al. [25 ] used feature extraction from CT images as data to classify lung cancer. Fuzzy C-Means 

and fuzzy kernel C-Means were used to classify the lung nodule from the patient into benign or malignant. 

The score showed fuzzy kernel C-Means had higher accuracy than fuzzy C-Means accuracy. Pandian et al. 

[26] developed an algorithm to classify lung cancer medical images as normal and infected. The features are 

extracted from CT images of normal lung and cancer affected lungs were taken into the study. The artificial 

neural network is used in classification. Hakim et al. [27] compared two popular feature selection models to 

enhance the support vector machine (SVM) cancer classification. They showed that the ReliefF outperformed 

compared with CFS as microarray data feature_selection approach. Kareem et al. [28] developed the CT 

scanning data set using imaging/computer vision algorithms for diary of healthy and tumorous chest scans; 

This comprises three preprocessing steps: i) improvement of images, ii) segmentation of images, and  

iii) strategies for feature extraction. In the last stage, a support vector machine (SVM) is utilized to categorize 

slide instances as one of 3 types (normal, benign, or malignant) by using classification technology. The best 

accuracy, 89,8876 percent, was obtained when applying this technique to the new dataset. Selwal and  

Raoof [29] developed a MATLAB-based CNN for automated detection of cancerous cervix cells where the 

templates segmented the nucleus of the cells. The simulation results show that the proposed CNN algorithm 

can automatically detect the cervix cancer cells with more than 88% accuracy. Raju et al. [30] used high 

resolution computer tomography (HRCT) images with multi-classification to classify 17 interstitial lung 

diseases with convolutional neural network (CNN) architecture called SmallerVGGNet. It obtained 95% 

averaged accuracy. Ali et al. [31] deep neural networks were used, that is, the enhancer Deep Belief Network 

(DBN), which is constructed from two Restricted Boltzmann Machines (RBM). The enhancer DBN was 

trained by back propagation neural network (BPNN). It found that LASSO with LR gives the best accuracy 

in their study dataset. Abdullah et al. [32] developed a MATLAB-based CNN for automated detection of 

cancerous cervix cells where the templates segmented the nucleus of the cells. The proposed CNN algorithm 

detected the cervix cancer cells automatically with more than 88% accuracy.  

A previous study [33] compares multiple current machine learning and found that the XGBoost is 

the most accurate system in balance and imbalance datasets. This study tried to improve the XGBoost by 

using a feature selection to use only the genes responsible for lung cancer disease in the learning stage and 

applied a parallel XGBoost (PXGB) with different hyperparameters to increase the system variety and 

decrease the overfitting and underfitting. The PXGB showed more accurate prediction values for detecting 

cancer and normal lung state, especially for imbalanced datasets. 

 

 

2. XGBOOST ALGORITHM 

XGBoost is a decision-tree-based ensemble machine learning algorithm developed by Tianqi Chen 

and Carlos Guestrin. They employ machine learning algorithms under the gradient boosting framework. They 

introduced their work at the SIGKDD conference in 2016 [34].  

First, let us clarify the concept of boosting. It is an ensemble method that seeks to create a robust 

classifier (model) based on "weak" classifiers. In this context, weak and robust refer to how correlated the 

learners are to the actual target variable. By adding models on top of each other iteratively, the errors of the 

previous model are corrected by the next predictor, sequentially in the training stage, as it appeared in figure1 

until the training data is accurately predicted or reproduced by the model. Finally, as seen in Figure 1, it 

provides a parallel tree boosting for the testing stage that quickly and accurately solves many data science 

problems. It offers a range of hyperparameters that give fine-grained control over the model training 

procedure. It worked very well with the imbalance database. It had many features suitable for large databases 

like; parallelization, distributed computing, out-of-core computing (for managing the large dataset with the 

memory), cache optimization (to the best use of hardware) [35]. 
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3. LUNG CANCER DATASETS 

The datasets used in this study are microarray and RNA-sequence datasets. The data gathered 

through microarrays represents the gene expression profiles, which show simultaneous changes in the 

expression of many genes in response to a particular condition or treatment. They represent the molecular 

level states of the cell [6]. RNA-sequence datasets used a sequencing technique (next-generation sequencing) 

to disclose the presence and quantity of RNA in a biological sample at a given moment, analyzing the 

continuously changing cellular transcriptome [36]. This study applied the proposed model on two microarray 

datasets and one RNA-sequence dataset as shown in Table 1. All datasets were downloaded from the gene 

expression omnibus site (GEO). 
 

 

 
 

Figure 1. XGBoost algorithm [33] 
 
 

3.1.  Dataset information 

Each dataset used has a different way of extracting the gene expression, the number of features and 

the number of cases. The first is (GSE30219) dataset representing the gene expression by microarray 

technology. It has 14 normal lung samples and 293 lung cancer samples [37]. The second (GSE74706) 

dataset is also represented by microarray technology. It expresses data of early-stage NSCLC. It has 18 lung 

cancer samples and 18 normal lung samples. The last dataset (GSE81089) [38] has 218 cases expressed by 

RNA-sequencing, which is called next-generation sequencing [39]; RNA-Seq allows researchers to detect 

gene fusions variants, both known and novel features and other features without the limitation of prior 

knowledge [40]. It has 199 lung cancer samples with lung cancer type NSCLC and 19 healthy lung samples.  
 

 

Table 1. Dataset's information 
Datasets Type patients Features The Class Sample distribution 

Cancer case Normal case 

GSE30219 Microarray 307 54675 Cancer/Normal 293 14 

GSE74706 Microarray 36 34182 Cancer/Normal 18 18 

GSE81089 New Generation Sequencing (NGS) 218 63129 Cancer /Normal 199 19 

 

 

3.2.  Data preprocessing 

Data preprocessing in machine learning is an essential step in enhancing data quality to raise 

meaningful perceptiveness. It refers to cleaning and organizing the raw data to make it suitable for building 

and training machine learning models. In biological data, it is crucial to clean the data to improve the quality 

of the data for searching and analyzing. To do that, it runs a process to detect and remove corrupt or 

inaccurate records from the database. Each record with missing data must be deleted because it is regarded as 

irrelevant and cause inappropriate learning results. The XGBoost classification deals with the numeric 

representation in the decision class. In contrast, the classes in the lung cancer datasets are in nominal 

representation, like normal/cancer. Therefore, it must change them to numeric representation (0/1).  
 

 

4. THE PARALLEL_XGBOOST (PXGB) 

There is no way to teach one machine learning to fit all kinds of information. In our case, the 

XGBoost succeeded in learning on some datasets with high accuracy but lower in others. That is because of 

its firm reliance on its hyperparameter setting. This study developed an XGBoosts structure to accommodate 
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different types of datasets by connecting multiple numbers of XGBoosts on parallel with various values of 

hyperparameters. Then it takes the maximum probability for its prediction, as shown in Figure 2. All the 

XGboosts are working in parallel not to cause a delay in learning time. As seen in Figure 2, the proposed 

methodology has three stages: 

i) Feature selection stage: The benefit of using XGBoost in feature selection is that after the boosted trees 

are constructed, they will retrieve the importance scores for each feature. The importance score refers to 

how useful or valuable each feature was in constructing the model boosted decision trees. The more 

feature is used, the higher its importance score. This importance is computed for every feature in the 

dataset, allowing the ranking and comparison between them. 

The importance of every decision tree is estimated by calculating the number of observations 

responsible for each feature split and increasing the measurement of performance. In every decision tree 

in the model, the attribute imports are then averaged [23]. In this paper, the importance score threshold 

setting was (10-6). Each attribute less than this threshold will be neglected. The features of GSE30219, 

GSE74706, and GSE81089 datasets were (54675), (34182) and (63129), respectively, but after the feature 

selection stage, it becomes (20), (1) and (8) features.  
 
 

 
 

Figure 2. The proposal learning model (PXGB) 
 

 

ii) Parallel XGBoost stage: After the feature selection stage, the data will be subset to 70% for training and 

30% for testing, then entered into each XGBoost simultaneously. In our case, it needs to use different 

types of bio_dataset. This dataset is usually noisy, so it needs the model to tune its hyperparameters each 

time to avoid overfitting or underfitting to handle a wide range of datasets. For that reason, It used multi 

XGBoost models connected in parallel. Each XGBoost has its hyperparameters setting different from 

each other. This study will take six sets of XGBoost hyperparameters from the most common range that 

consider the XGBoost model often works well in them. The hyperparameters ranges are; the subsample 

[0.5 -1], the Max_depth [2-7], the learning rate [0.05-0.3], the n_estimators (no. of trees) [5-50], and the 

last is the min_child weight from [1-6]. Their arrangement depends on the most values that do not cause 

overfitting but may sometimes cause an underfitting (level one), to the more values that may cause 

overfitting but less likely causing underfitting (level six), see Table 2. The end of this stage will have a 

probability prediction for both classes in each level. 

iii) Selection stage: At this stage, it will take the maximum probability value of all XGBoost levels. The 

result is that the class with maximum probability is chosen as the final class prediction. 

 

 

Table 2. The setting of each XGBoost hyperparameters in the PXGB 
XGBoost sequence  
in the parallel stage 

 XGBoost hyperparameters 

subsamble Max_depth Learning rate n_estimators min_child_weight 

First level 0.5 2 0.3 5 6 

Second level 0.6 3 0.25 10 5 

Third level 0.7 4 0.2 20 4 

Fourth level 0.8 5 0.15 30 3 

Fifth level 0.9 6 0.1 40 2 

Sixth level 1 7 0.05 50 1 
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5. THE RESULTS AND DISCUSSION 

To state the findings of the research, it arranged the results in a logical sequence. At first, it compared 

the result of the PXGB model with the original XGBoost [35] to represent its improvement. It then compared its 

result with representative machine learnings to give the whole performance state of the proposal. 

 

5.1.  XGBoost hyperparameters setting 

The PXGB sets seven common hyperparameters for each XGBoost classification model, as illustrated 

in Table 2. These hyperparameters are chosen depending on their arrangement from most hyperparameters 

that may cause the overfitting situation to the most parameters that may cause the underfitting situation. The 

setting of the original XGBoost and SVM [41], deep forest (gcforest) [42], k-nearest neighbors algorithm 

(KNN), and naive Bayes, which are the machine learnings that used in this study, have a particular setting 

illustrated in Table 3. 
 

 

Table 3. Parameters setting of representative models 
XGBoost SVM gcForest KNN Naive Bayes 

Parameter value Parameters value Parameter value Parameter value Parameter value 

max_depth 6 kernel RBF max_depth 6 n_neighbor 2 var_smoothing 1e-9 
n_estimators 

(Trees) 

2 gamma 1 no. of trees in 

each forest 

stages= 500 

500 weights uniform sample_weight None 

Learning rate 0.3 tolerance 0.001 Wind. size 500 algorithm auto   

min_child_weight 1 C 1 Step 100 leaf_size 1   

Subsample 0.7   Min_samples_split 0.7     

 

 

5.2.  Comparison of different classifiers 

Different results were obtained after applying the PXGB model and other machine learning models 

to the lung cancer datasets. Tables 4 illustrate each model's sensitivity, specificity, precision, F1_score, area 

under curve (AUC), accuracy, and learning time metrics. Furthermore, Figures 3, 4, and 5 show the receiver 

operating characteristic (ROC) drawings and the AUC values of each machine learning model. 
 

 

Table 4. Comparison results of lung cancer detection for all dataset 
GSE81089 dataset 

Classifier Name Sensitivity Specificity Precision F1_score AUC Accuracy Time (min.) 

PXGBS 1.0 1.0 1.0 1.0 1.0 1.0 00:03 
XGBoost 1.0 1.0 1.0 1.0 1.0 1.0 00:04 

SVM 0.2 0.83 0.5 0.29 0.52 0.55 00:01 

gcForest 1.0 0 0.45 0.63 0.50 0.45 00:36 
KNN 0.8 1.0 1.0 0.89 0.90 0.91 00:01 

Naive Bayes 0.6 0.67 0.6 0.6 0.63 0.64 00:01 

Classifier Name Sensitivity Specificity Precision F1_score AUC Accuracy Time (min.) 
PXGBS 1.0 1.0 1.0 1.0 1.0 1.0 00:13 

XGBoost 1.0 0.95 1.0 0.99 0.99 0.98 00:24 

SVM 1.0 0.5 0.95 0.98 0.75 0.95 00:05 
gcForest 0.98 0.83 0.98 0.98 0.91 0.97 03:37 

KNN 0.95 0.5 0.95 0.95 0.72 0.91 00:29 

Naive Bayes 1.0 0.17 0.92 0.96 0.58 0.92 00:02 
GSE74706 dataset        

Classifier Name Sensitivity Specificity Precision F1_score AUC Accuracy Time (min.) 

PXGBS 1.0 1.0 1.0 1.0 1.0 1.0 00:13 
XGBoost 0.99 1.0 0.99 1.0 0.99 0.99 00:17 

SVM 1.0 0 0.96 0.98 0.5 0.96 00:07 

gcForest 0.98 0.75 0.98 0.98 0.87 0.97 03:26 
KNN 0.98 1.0 1.0 0.99 0.99 0.99 00:12 

Naive Bayes 0.99 1.0 1.0 0.99 0.99 0.99 00:02 

 
 

5.3.  Analyzing metrics 

From Table 4, it is seen that all PXGB metrics have excellent values when applied to all datasets. It 

succeeded in detecting all cases (cancer and normal cases) in all datasets. In contrast, XGBoost successfully 

predicts all cases only in GSE81089 dataset because it has only one set of hyperparameters, while XGBoost 

has a range of hyperparameters that let it build multiple XGBoost structures in the training stage. PXGB 

gives the flexibility to deal with different datasets and allows all the XGBoost structures to contribute to the 

class detection in the test stage and then choose the best prediction by selecting the class with the maximum 

prediction value. 
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The PXGB improved the performance of the XGBoost. It has become more powerful and reliable 

for a variant type of dataset without changing its hyperparameters. Although the naive Bayes has the shortest 

learning time in most datasets, the PXGB has an accepted learning time ranging from 3 to 13 seconds. It is 

even shorter than the original XGBoost ranging from 4 to 23 seconds because of the selection feature 

process, and the multiple XGBoost are worked in parallel, decreasing the system overhead. 

 

 

  
 

Figure 3. The ROC curves and AUC values for all 

comparative models on GSE81089 dataset 

 

Figure 4. The ROC curves and AUC values for all 

comparative models on GSE30219 dataset 

 

 

 
 

Figure 5. The ROC curves and AUC values for all comparative models on GSE74706 dataset 

 

 

6. CONCLUSION 

This study proposed a lung cancer detection system with multi-stages to reach optimal results. It 

uses the XGBoost as a feature selection to choose only active genes that have an essential role in lung cancer 

disease and suggested a flexible machine learning by using multiple XGBoost classifications to run in 

parallel. Each XGBoost in parallel stage has different sets of hyperparameters, ranging from the most values 

that may lead to overfitting to the parameters' values that might cause the underfitting. That led to obtaining 

various tree buildings, which gives the PXGB flexibility and reliability; when applied to different datasets. 

Moreover, using feature selection improved the detection accuracy; it also sped up the learning time. The 

results showed that the PXGB model, the proposed model, improved lung cancer detection performance. This 

improvement is better than the original XGBoost and other comparative machine learning, especially for 

imbalanced datasets and within an acceptable time. 
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