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Abstract

In this paper, a frequent itemsets mining algorithm of data stream based on concept lattice and
sliding window is presented. This algorithm mines frequent concepts for new inflowing basic window in
batches in a sliding window and generates concept lattice Hasse diagram. With introduction into small
support degree ¢ and error factor £to do the pruning operations for non-frequent concept node, each
connection point in the Hasse diagram contains the information of frequent itemsets and support degree.
As the generation of Hasse diagram in the new basic windows, we integrate concept lattice vertically with
the generated Hasse diagram and sliding window, and ultimately output all frequent itemsets through
scanning all the graph nodes of Hasse diagram graph. The experimental results show that the proposed
algorithm has a good performance.
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1. Introduction

With the growing number of data applications, the data mining techniques have
attracted widespread attention under environment of data stream. However, data stream has
characteristics of continuous, unlimited, real-time, and un-prediction, and the traditional frequent
pattern mining algorithms are difficult to deal with such data stream. Therefore, frequent pattern
mining under the environment of data stream has become a challenging research direction.
Some relevant algorithms are put forward successively, such as Sticky Sampling and Lossy
Counting in the literature [1] gave an effective algorithm for solving a single frequent pattern by
introducing the error factor ¢, this algorithm can obtain the entire frequent itemsets of data
stream by scanning data. The FP-Stream algorithm was presented in the literature [2]. This
algorithm uses the Pattern-Tree structure with a similar FP-Tree prefix tree to store the potential
frequent pattern information for the time window in the past, and solves the time sensitivities
problem of historical data by the introduction of tilted time window techniques. Chang in the
literature [3] proposed a mining frequent itemsets algorithm SW by making use of sliding
window. The concept of frequent closed patterns was proposed by Pasquier in the literature [4],
it is only to determine the accurate support rate of all frequent patterns, and the size is of
smaller magnitudes of order than the frequent pattern set. Chi in the literature [5] provided
closed frequent itemsets mining algorithm based on sliding window.

Since the theory of formal concept analysis was put forward according to the philosophy
of "concept" thinking by Germany professor Wille since 1982 [6], its core data structure of the
formal concept analysis theory is-concept lattice. Relevant researches have obtained rapid
development, several research directions on the combination of concept lattice and data mining
has gradually become a hot topic. Because the essence of concept lattice is a concept of
hierarchical structure induced by a binary relation, it is very suitable for data analysis and rule
extraction. According to the generated process of concept lattice by number of data records in
data sets, its essence is a clustering process for concepts. And it is a very useful formal analysis
tool. The concept lattice embodies the unification for the concepts of connotation and
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denotation, it not only reflects the association between objects and attributes, but also contains
the concept relationships between generalization instantiation. Therefore, it is very suitable to
find the potential concept and knowledge with combinations with data mining applications.

At present, group of scholars at home and abroad have already studied the combined
application of concept analysis and data mining, the main research directions focus on some
quick concept lattice algorithms [7, 8], the association rule algorithms based on concept lattice
[9, 10], the classification algorithms based on concept lattice [11], the relationships between the
concept lattices and rough sets [12, 13], and other aspects.

There are few works about mining frequent itemsets in data stream based on concept
lattice by access to domestic and foreign literature. Learn from previous researches on data
stream mining and concept lattice, in this paper, we present a new frequent pattern mining
algorithm DSCL in data stream based on sliding window and concept lattice. The proposed
algorithm makes use of a core data structure concept lattice Hasse diagram in the formal
concept analysis theory to store some potential frequent concept in the sliding window, as the
sliding window updating and maintaining this structure in real time constantly, we can output the
frequent itemsets.

2. Related Definitions
2.1. Sliding Window

Definition 1. Suppose |={i,i,,...,in} be a set of all data items, itemset X is a subset of
complete data items | sub-sets (XZI), some items containing k items are k-itemsets.
Transaction T is an itemset, data stream can be seen as a continuous arriving transaction
sequence DS = {T4, T, ..., T\}. Let T4 be the transactions of earliest arrival time in data stream,
Ty be the latest arrival transactions in the data stream.

Definition 2. Let w represent the fixed size of basic sliding window, that is, there are
only w recent transactions in the basic sliding window. Data stream DS can be segmented
according to the number W, each w transactions correspond to as a sub-sequence data stream,
that the corresponding size (or width) of the basic sliding window is w. The current basic sliding
window is represented as: sw;={T4,T,,...,Ty}, where sw indicates the basic sliding window, i is
the current window number of the window (i.e., the i-th basic window). The sliding window SW
consists of a continuous series of basic window sw; which denotes as <swy, swy,..., Swi >,
sliding window contains the numbers of the window is the size of the sliding window, denoted by
| SW | =k.
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Figure 1. Sliding Window

Definition 3. Given a minimum support threshold and error factor&, suppose w

denote the width of the sliding window SW, that SW contains number of transactions. f.(A)
denotes the support count of pattern A in the sliding window SW. For pattern A, if there is
fsw(A)2(¢ -€)w, then A is a frequent pattern in the sliding window SWi; if there is fqu (A) > & w,
then A is a critical frequent pattern in the sliding window SWi; if there is fs.(A)<&w, then Ais a
non-frequent pattern in the sliding window SW; for the basic window sw also has the same
definition as above.

2.2. Concept Lattice
In the formal concept analysis, it can be understood as follows, the extension of a
concept C is a set of all objects that belong to the C, the common feature or attribute set of all
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these objects is called the connotation of the concept C, and each concept in concept lattice is a
set of objects of the greatest common properties. All concepts together with the relationships of
generalization/instantiation form the concept lattice. The concept lattice is the core data
structure of formal concept analysis theory, the corresponding Hasse diagram realize data
visualization.

Definition 4: A formal context (Context) is a triple K =(G, M, |), where G is a set of
objects, M is a set of attributes, | is a binary relation between the G and M, i.e. | GxM, gim
denotes it exists a relationship I.

Definition 5: In the formal context K, a binary groups (A, B) from G x M exists the
following two properties:

(1) B =f(A), where f(A) ={m:(meM)A\(V geACG, gim)};

(2) A =g(B), where g(B)={g :(9€G )A(V meBCM, gim)}.

In the formal context K, (A, B) is called as a concept, where B is referred to as intent of
the concept (Intent), and A is called the extension of the concept (Extent).

Definition 6: A partial order relation between the concept nodes is established. Given
C1=(A1, B4) and C,=(A,, B,), then C>C, << B;C B,<> A;5 A,, the leading order means C1 is
the parent node of C2 or the generalization. If concepts C1=(A,, B4) and C,=(A,, B,) satisfy A,
A4, and there does not exist the concepts (A,B) such that A,c Ac A4; then C1 is called the
direct super-concept of C2, C2 is a direct sub concept of C1, referred to as (A4, B1)>(A2, B,).
The linear diagram of concept lattice is generated based on the partial order relation, that is
Hasse diagram.

Definition 7: Given a set of objects G, and a set of attributes M, a binary relation is | C

GxM (here (g, m) € | is called as "object g has attribute m").

Definition 8: For the concept C(X, Y), c (IX], Y) is quantized by the concept C, and C is
the real concept of C. |X| is the cardinality of the epitaxial X, the posed lattice is quantified by
quantitative concept, which is quantitative concept lattice.

Definition 9: Given concept C(A,B), BEM; given a threshold minsup€][0, 1], the
support degree of attribute set B in forms background K issup(B) < (g(B)| /G| (Where g(b)={gE G|

vV me B: (g,m)€E1}), if sup(B)=minsup, then B is called the frequent attribute set (content), and
C is a frequent concept. That if the connotation of concept is frequent, then the connotation is
called as the concept of frequent connotation, which is also called as frequent concept,
sup(C) g (g(B)|/|GH Al/|G[=minsup where | A | is the epitaxial base of concept C, |G| is the total

number of transactions in the database D.

3. DSCL Algorithm
3.1. The Descriptions of Algorithm

Algorithm DSCL divides data stream into some data blocks of equal length, each data
block is as a basic window sw, each window contains the number of transactions w, and k
consecutive basic windows are composed of a sliding window SW. The algorithm generates a
Hasse diagram after the first window entering into the sliding window, and after each new
window entering into the sliding window the new Hasse diagrams are generated, and they
merge vertically and reconstruct with previous Hasse diagrams in real-time. After completing the
establishment and consolidation of Hasse diagram for basic window and generate new Hasse
diagram that are reference to error factor & and the minimum support threshold { to filter out

non-frequent concept (pruning) and to reconstruct the sides of Hasse diagram. The Algorithm
just need to handle and store the critical frequent concept set of each basic window, it does not
contain non-frequent concept node. Therefore, this algorithm greatly reduces the processing
time and the amount of data storage. It consists of four main parts: the initialization of window,
the stage of window sliding, the pruning of window Hasse diagram and the merger of window
Hasse diagram.

3.2. Pseudo Codes
Algorithm 1: DSCL
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Input: The basic windows swy, Sw;, Sws, ...SW,...sw, of data stream, the minimum support
degree ¢ , the error factor £=x¢ , the size of sliding window k, the size of basic window size w.
Output: the frequent concept lattice Hasse diagram.
Step 1:

i=1; /li is the identification of basic sw;

n=0; //n is the count of the current sliding window SW containing basic sw;

&=x¢ ;/l error factor, x is adjustable

minsupw= £ w; // The critical support count of basic window
minsupk= & k w; // The critical support count of sliding window
minsupn=¢ (n+1) w; // The critical support count of sliding window for n +1 basic
windows
Hall-i= & ; //Current Hasse diagram Hall-i is empty
Flag=false; // Whether the sliding window is full window
Step 2: Input basic sliding window sw;, use 0,1 to indicate whether the transaction owns the
attribute and generate a formal context matrix.
Step 3: swi=>Hasse diagram H; ; // use the improved algorithm to generate concept lattice in
batch swi of Hasse diagram H;;
DeleteConceptlLattice (H;, minsupw); // Delete no-frequent concepts
Step 4: IF n>=k
Flag=true; // Flag=true is full window

END IF
Step 5: IF Flag = = false // Flag=true is full window
IF Hai1 # @

Ha1-1+Hi=> Hay ;// call the improved vertical integration of concept lattice algorithm to
combine and generate the Hasse diagram Hy;
Let Minsupn=¢ ¢ (n+1) w; // the support count of the sliding window for current n+1

basic windows
DeleteConceptlLattice(H,;, minsupn); // Delete no-frequent concepts
n=n+1; // Record the number of basic windows entering into the sliding window
ELSE IF HaII-i-1= =¢
Let Hi=> Hall.i; /nitialize Hall-i is Hi
END IF
ELSE
delete Hix From H,..¢; // Delete Hasse diagram H, of basic window swiin Haj.iq
Ha14tH; => Hyy 5 // call the vertical integration of improved concept lattice algorithm to
generate the Hasse diagram H,,; of combining H; and H,.i.1
DeleteConceptLattice(H;, Minsupk); // To delete no-frequent concepts
END IF

Step 6: i=i+1, turn to Step 2. // Get the next basic window swi.

Algorithm 2: DeleteConceptLattice (H ,Minsup_Num)
Input: Hasse diagram H of one concept lattice Minimum support count Minsup_Num
Output: Hasse diagram H’.
Begin
For each C € H//C is a node of H
If sup(C) < Minsup_Num
Delete C from H; // Delete no-frequent concepts C from H, do the pruning operation
End For
ForeachC € H
Re_Add edge C =>H; // Reconstruct side for each concept node
End For
END

3.3. Instance of Verification
The preceding 16 transactions in data stream DS determine the formal context K as
shown in Table 1, w=4, k=3, ¢ =30%,£=0.33¢ .
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Table 1. Formal Context

ID a b c d e f g ID a b c d e f g
1 1 0 1 1 0 1 0 9 1 1 0 1 0 1 0
2 1 1 1 1 0 1 0 10 1 1 1 1 0 0 1
3 1 0 1 0 0 0 1 1" 1 1 1 0 0 0 0
4 1 1 0 0 0 0 1 12 1 0 0 0 0 0 1
5 1 1 0 0 0 0 1 13 1 1 0 0 0 1 1
6 1 1 1 0 0 0 1 14 1 1 1 0 0 0 0
7 1 1 0 1 0 1 0 15 1 1 1 1 0 0 1
8 1 0 1 1 1 0 0 16 1 0 1 1 0 1 0

Step 1:// Initialize parameters
i=1; // i is the identification of basic sw;
n=0; // The count of basic window containing some basic windows
&£=0.33 ¢ =0.33*0.3=0.1;// error factor

Minsupw= & w=0.4; // The critical support count of basic window

Minsupk= ¢ k w=1.2; // The critical support count of sliding window

Minsupn= & (n+1) w=0.4;// The critical support count of only one basic window
Haio= ¢ ; /lcurrent Hasse diagram H, is empty

Flag=false;//whether the sliding window is full

Step 2: The sliding window SWis is empty, which is a non-full window. The inflowing data of
the basic window SW; is T4, T,, T3, T4. We use 0,1 to indicate that the transaction whether has
this attribute and generate a formal context matrix, such as the first to fourth row in Table 1.
Step 3: The improved batch algorithm let sw1 generate Hasse, diagram denoted as H, , due to
Minsupw=0.4, which is less than the minimum support count 1 of the concept nodes in H,, and
we do not need to call Delete Concept Lattice (H;,Minsupw), the result of this step is shown in
Figure 2.

(1234, a) (1234, a) {5,5,5?9, a)
(24.ab) (123 ac) 34, a8) (24.ab) (123, ac) @4, ag) (567, ab) (68, ac) (78, ad)
\ T e i = y , AN
\“ /@ Iécg) (4, abg) | (3,acg) (4, abg) (56, abg) /
(12, acdf) | / (12, acdf) ;
(6, abog) (8.acde) (7. abdP)
(2./abedf) |/ (2.'abodf) “ By, I
’," o/ "*.\\|’, :
(@ ,‘ébcd(‘fg) (@, abedefg) (@, a]:cdefg)
Figure 2. H, Diagram Figure 3. H,,., Diagram Figure 4. H, Diagram

Step 4: Due to n=0; thus n>=k does not satisfy, Flag=false, the current sliding window is not a
full window.
Step 5: Because Flag = false and H,.0= =¢, thus Hi=> Hg.4, the current concept lattice Hy.4 of

sliding window, which shown in Figure 3.
Step 6: i=i +1, turn to Step 2, as described above steps, continue to complete the input of sw,
and swjs the results are as follows:

The inflowing data of the basic window sw; is Ts. Te. T7. Tg, and the inflowing data of
the basic window swj is Tg. T10. T14. T42, such as the fifth to eighth row in Table 1, the ninth to
twelfth row in Table 1.

The generated Hasse, diagram of sw, is denoted by H,, as shown in Figure 4; combine
H, and Hy¢ to generate the H,, shown in Figure 5, because Minsupn=¢ (1+1) w=0.8 is less
than the minimum support count of concept lattice in Hy,» diagram. Thus it does not call Delete
Concept Lattice (Ha-2, Minsupn);

TELKOMNIKA Vol. 11, No. 8, August 2013: 4780 — 4787



TELKOMNIKA e-ISSN: 2087-278X W 4785

The generated Hasse; diagram of sw 3 is denoted by Hs, as shown in Figure 6; combine
H; and H,» to generate the H,,3 shown in Figure 7, because Minsupn=¢ (2+1) w=1.2 is less
than the minimum support count of concept lattice in H,.;3 diagram. Thus it does not call
DeleteConceptlLattice (Hai.3, Minsupn), and delete the concept nodes of non-frequent concept
lattice, and generate H ,; in Figure 8.
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Figure 7. Hy,.3 Diagram Figure 8.H'a.._3 Diagram

Up to this step so far, the number of size of sliding window containing the basic
windows, then the sliding window is full.
Step 7: i= i +1, Step 2-Step 6 are repeated, continue to complete the input and processing of
swy, the results are as follows: the inflowing data of basic window swy is T3. Tq4. T1s. Toe ,
generate a formal context matrix in the in the 13th to the 16th row shown in Table 1.

The generated Hasse H, diagram denoted by H,, as shown in Figure 9; and execute to
Step 4, since n=k=3, so Flag=true; and then perform Step 5, delete firstly the concept nodes in
Hi from H,3 and generating H 4.3, as shown in Figure 10. Then, call the improved vertically
merging algorithm of concept lattice and combine H, and H .3 to generated Hasse diagram Hy.
4, as shown in Figure 11; and call DeleteConceptLattice (H;, Minsupk) to delete non-frequent
concept node in Hy4 and generate H .4 , the final result show in Figure 12.

(131415186, a) (66739101142.2)

/
(B67910°1, ab) (681011, ac) (78910,ad) (661012, ag)
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Figure 9. H, Diagram
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Figure 10. H 1.3
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Step 8: i= i +1, repeat Step 2-6, and continue to complete the input and processing of sws,
SWe,... SWy,.

4. Experimental Analysis

Because FP-stream algorithm has good time efficiency, we select the FP-stream as a
comparison algorithm. The experimental environment is a Pc machine of Windows Server 2003
operating system, 17 2.0G 64-bit quad-core eight lines into the processor, 8G memory, and the
program runs on the JAVA SDK1.4.2 environment. The experiments [14] employ the data set
T1016D100K generated by IBM synthetic data generator, where the total number of transactions
are100,000, the average transaction length is 10, the average length of the potential frequent
itemsets is 6, this data set contains different item number 1000. The experiments make a
comparison with Algorithms FP-stream and DSCL, not considering the read time of data. Figure
13 presents a comparison of mining time consumption as the number of transactions of the
sliding window change under the premise of the conditions that the window size w changes, the
minimum support¢is 0.003, the error factor is 0.1¢ ; Figure 14 shows a comparison of memory

consumption as the minimum support{ changes between Algorithms FP-stream and DSCL
under the premise of the conditions that the window size W = 1000, the error factor takes 0.1¢.

70000 » g MH
0000 |—| —#—FP-gtream o mw v —-FP-gtrean |
1 50000 (— —-ISCL Ea g 0000 _1—\\._;EU§CT.
40000 / 5 25000 — '“*h—-___‘
E /0//' E 20000 -
£ 30000 o7 i
5 /I/ [ 15000 —
§ 20000 —— £
10000 = P
0 1 Il 1 1 3 1 1 I I
1000 3000 G000 7200 3000 Z 4 e ; w
The size of sliding window the ninimm support e
Figure 13. Comparisons of Running Time of Figure 14. Comparisons of Memory
Algorithms FP_Stream and DSCL Consumption of Algorithms FP_Stream and

DSCL

The experiments have demonstrated the solving efficiency is similar between the DSCL
algorithm and the FP-stream algorithm based on sliding time window and concept lattice. A
good performance of this algorithm is to use Hasse diagram of the concept lattice to indicate
frequent concept sets, the next is to compress the size of the concept lattice efficiently under the
case of ensuring the integrity of information followed by the oriented concept lattice pruning
strategy, greatly reduces the search range of the algorithm and improve the space-time
complexities of the algorithm.
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5. Conclusion

In this paper, a new frequent pattern mining algorithm DSCL in data stream based on
sliding window and concept lattice, due to it employs a core data structure concept lattice Hasse
diagram to store the potential frequent concept of the sliding window in the formal concept
analysis theory, and use pruning strategy aiming for concept lattice in the generated process of
basic window and sliding window, delete the non-frequent concept in the concept lattice.
Because the scale after pruning concept lattice is much less than the corresponding scale of
concept lattice, thus it greatly reduce the search scope of solving the frequent itemsets,
overcome the drawback of previous construction algorithm on the concept lattice, and improve
the space-time performance of solving the frequent itemsets based on concept lattice. The
experimental results show that DSCL algorithm has a better time and space complexity. In this
paper, we make an experimental under the fixed attributes of experimental data set. Our future
research work is to the construction of concept lattice based on sliding window under the case
that attributes increase or decrease around the concept solved oriented data flow, and to carry
out the algorithm on merging vertically and horizontally, and to mine the frequent patterns and
characteristics rules in the case of ensuring the performance of space and time complexities.
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