
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 24, No. 1, October 2021, pp. 621~636

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v24.i1.pp621-636  621

Journal homepage: http://ijeecs.iaescore.com

Formal security analysis of lightweight authenticated key

agreement protocol for IoT in cloud computing

Ahmed H. Aly1, Atef Ghalwash2, Mona M. Nasr3, Ahmed A. Abd El-Hafez4
1,2,3Faculty of Computer Science and Artificial Intelligence, Helwan University, Cairo, Egypt

4National Telecom, Regulatory Authority (NTRA), Cairo, Egypt

Article Info ABSTRACT

Article history:

Received Jun 24, 2021

Revised Aug 29, 2021

Accepted Aug 30, 2021

 The internet of things (IoT) and cloud computing are evolving technologies in

the information technology field. Merging the pervasive IoT technology with
cloud computing is an innovative solution for better analytics and decision-

making. Deployed IoT devices offload different types of data to the cloud,

while cloud computing converges the infrastructure, links up the servers,

analyzes information obtained from the IoT devices, reinforces processing
power, and offers huge storage capacity. However, this merging is prone to

various cyber threats that affect the IoT-Cloud environment. Mutual

authentication is considered as the forefront mechanism for cyber-attacks as the

IoT-Cloud participants have to ensure the authenticity of each other and
generate a session key for securing the exchanged traffic. While designing

these mechanisms, the constrained nature of the IoT devices must be taken into

consideration. We proposed a novel lightweight protocol (Light-AHAKA) for

authenticating IoT-Cloud elements and establishing a key agreement for

encrypting the exchanged sensitive data was proposed. In this paper, the formal

verification of (Light-AHAKA) was presented to prove and verify the

correctness of our proposed protocol to ensure that the protocol is free from

design flaws before the deployment phase. The verification is performed based
on two different approaches, the strand space model and the automated

validation of internet security protocols and applications (AVISPA) tool.

Keywords:

AVISPA

Formal verification

Internet security protocol

Internet of things

Lightweight authentication

Strand space model

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ahmed Hassan Aly

Faculty of Computer Science and Artificial Intelligence

Helwan University, Cairo, Egypt

Email: ahmed71.aly@gmail.com

Nomenclatures
C Bundle in strand space model

E (.) Symmetric lightweight encryption

F Dobbertain function

IDIoT IoT identity

IDS Authentication server identity

IDU User identity

H (.) A lightweight collision-free one-way hash function

PWIoT, PWU The password of the IoT device, user respectively

PSKIoT The pre-shared key between the user and the IoT device

PSKU The pre-shared key between the user and the server

RS, RU, RIoT Random numbers of server, user, IoT device respectively

TS, TU, TIoT Time-stamps of server, user, IoT device respectively

Δ T Time range allowed for delay

i Index selected from RU – ex: i= decimal value of ith byte of RU

j Index selected from RIoT – ex: j= decimal value of jth byte of RIoT

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 621 - 636

622

|| Concatenation

 XoR Operation

Abbreviations
HMAC Hash message authentication code

LFSR Linear feed- back shift register

NFSR Non-linear feed-back shift register

SK Session key

1. INTRODUCTION

The internet of things (IoT) has become an emerging technology in recent years, the number of

connected devices is anticipated to reach 75 billion devices by the end of 2025 [1]. IoT technology covers

different applications, smart cities, healthcare, and smart traffic. Based on the application used, IoT devices

send a plethora of data, real-time videos, and photos to the servers. The traditional platforms storage systems

and computing platforms can not effectively handle the massive data generated by deployed IoT devices. As

a result, imperative attention is required to find suitable mechanisms that rely on large resource pools such as

cloud computing to handle the offloaded data. In many use cases, authorized users need to access real-time

data directly from the IoT devices for instant and critical decisions (i.e., Healthcare, Fire ignition, and Traffic

Congestion) [3]. In this use case, cloud servers are responsible for the mutual authentication of the user and

the intended IoT device before granting authorized users the right to access the real-time data. Due to the

constrained nature of IoT devices, these devices are susceptible to different vulnerabilities and security

breaches [4], [5]. Meanwhile, hackers are developing new methods to exploit poor security mechanisms

implemented in IoT devices. A robust authentication protocol is substantial to prevent unauthorized access,

protect sensitive data, and maintain user privacy.

In this context, we proposed a new lightweight authentication and key agreement protocol (Light-

AHAKA) [6]. Our proposed protocol is based on the challenge-response mechanism to achieve mutual

authentication, taking into consideration the constrained nature of IoT devices. The cryptographic functions

used are symmetric-key cryptography, hash function, and hash message authentication code (HMAC) [7].

Every session, the protocol generates a new key for encrypting the traffic. A different session key for each

session allows a limited number of messages to be encrypted with one session key, making it very difficult

for attackers to find the generated session keys. Moreover, if the attacker succeeds in finding the session key

by any means, this key is related to a specific session and has nothing to do with the upcoming sessions. For

enhancing the resiliency of the IoT-Cloud network, the (Light-AHAKA) updates the pre-shared keys,

passwords, and participant identities. All the previous parameters are valid only for one session, making the

breakthrough to our protocol very difficult.

The design and formal analysis of security protocols is a challenging problem. Serious security flaws in

protocols were discovered in several cases, many years after they were first published or deployed. Attacks on

these protocols generally avoid targeting the mathematical cryptographic primitives, but rather focus on exploiting

the protocol's design flaws. Formal verification provides rigorous and thorough methods of evaluating the

correctness of the security protocols to discover subtle flaws. Researchers have developed numerous approaches

and formal methods that could be utilized for the verification of security protocols. In this context, we present the

formal verification of (Light-AHAKA) to verify the correctness of our proposed protocol. The formal verification

is conducted based on two different approaches, the strand space model and AVISPA.

The upcoming sections of the paper are structured in the following way. Section 2 of the paper

reviews the (Light-AHAKA) protocol. The formal analysis of (Light-AHAKA) is introduced thoroughly in

section 3 based on two different approaches. Section 4, discusses the results of the formal analysis of the

(Light-AHAKA). Finally, section 5 concludes the paper.

2. REVIEW OF (LIGHT-AHAKA)

The (Light-AHAKA) is a lightweight authentication protocol based on lightweight symmetric key

cryptography, lightweight hash function, lightweight hash-based message authentication code (HMAC) [8], and

exclusive-or operation. A review of the (Light-AHAKA) will be illustrated in the upcoming steps. The IoT-Cloud

network will be initialized according to the following:

 The network administrator (NA) assigns a unique identity (IDUi), password (PWUi), and a pre-shared key

(PSKUi) for each user (Ui) stored safely in the client application.

 The (NA) loads (IDIoTi), (PWIoTi), and pre-shared key (PSKIoTi) in a tamper-proof memory for each IoT

device.

The (Light-AHAKA) procedure Figure 1 will be reviewed in the following steps:

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Formal security analysis of lightweight authenticated key agreement protocol for IoT… (Ahmed H. Aly)

623

Figure 1. Light-AHAKA procedure

1) The user sends an access request to the authentication server:

o (IDU ||H (PWU) ||TU1) || (HMACU1).

2) The authentication server will do the following:

 Checks if (TU1 < Δ T), calculates (HMACU1), and compares it with the received one.

 Searches in the database for (IDU) and the hash of the password.

 Generates a random number (RS1).

 Sends the following message encrypted with the pre-shared key (PSKU) as a challenge for the user:

o EPSKU
 (IDS ||RS1) ||TS1 || (HMACS1).

3) The user receives the message and will do the following:

 Checks if (TS1 < Δ T) and verifies (HMACS1).

 Decrypts the message and checks IDS (received) =IDS (stored).

 Extracts (RS1).

 From the previous steps, the user authenticates the server.

 The user will generate a random number (RU) and send the following message as a response to the server:

o EPSKU
 (RS1||RU||IDIoT) ||TU2 || (HMACU2).

4) The authentication server receives the message and will do the following:

 Checks if (TU2 < Δ T) and verifies (HMACU2).

 Decrypts the message and checks if RS1 (sent) = RS1 (received).

 From the previous step, the server authenticates the user.

 Stores RU and searches for the (IDIoT).

 The server sends the user acknowledgment message and the HMAC of the acknowledgment using

(RU) as a key for the HMAC as a response for the user:

o ACK || HMACS2

 The user receives the messages and calculates the HMAC using (RU) as a key and compares the

result with the received one.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 621 - 636

624

5) The server will start the mutual authentication with the intended IoT device:

 The server generates a random number (RS2) and sends a challenge message to the intended IoT device:

o EPSKIoT
 (IDS ||IDIoT ||RS2) ||TS1||HMACS3

 The IoT receives the message, checks if (TS1 < Δ T), and verifies (HMACS3).

 Decrypts the message and checks if IDS (received) = IDS (Stored).

 From the previous steps, the IoT device authenticates the server.

 The IoT device calculates the response message for the challenge of the server:

o HMACIoT1 (TIoT1 RS2 PWIoT).

 Calculates the nonce RIoT as follows:

o RIoT = Hash (RS2  IDS  IDIoT)

6) The IoT device sends the following response message to the server:

o (HMACIoT1 || TIoT1).

 The server receives the message, checks if (TIoT1 < Δ T), and verifies (HMACIoT1).

 Calculates RIoT as follows:

o RIoT = Hash (RS2  IDS  IDIoT)

From the previous steps, the server authenticates the IoT device.

7) The server sends the IoT device acknowledgment message and the HMAC of the acknowledgment using

(RIoT) as a key for the HMAC as a response for the IoT device:

o ACK || HMACS4

8) After the authentication server has finished authenticating the user and the IoT device, the server sends

the user and the IoT device temporary parameters to establish a temporary key. The user will make use

of this key to access the IoT device. In the initial stages of designing (Light-AHAKA), it was designed

to make the authentication server send KIoT to the user, but after studying the Strand Space Model

presented in section 4.1, we found that to achieve maximum security, it is not recommended to transmit

pre-shared keys.

9) The server sends to the user the following data:

 RTemp1 = (RIoT  IDS)

 IoT device password (PWIoT), and RTemp1

o EPSKU
 (RTemp1 || PWIoT) ||TS1||HMACS5

 The user receives the message, checks if (TS1 < Δ T), and verify HMACS5.

 Calculates RIoT= RTemp1  IDS.

 Calculates KTemp1 = RIoT  RU.

10) The server sends to the IoT device the following data:

 RTemp2=RU  IDS.

 RTemp2 and user ID encrypted with IoT pre-shared key (PSKIoT) as follows:

o EPSKIoT
 (RTemp2 || IDU) ||TS2||HMACS6

 The IoT device receives the message, checks if (TS2 < Δ T), and verifies HMACS6.

 Calculates RU=RTemp2  IDS

 Stores (RU) and (IDU).

 Calculates KTemp1 = RIoT  RU.

11) The user sends an access request to the IoT device as follows:

o EK
Temp1

 (PWIoT) ||IDU ||TU1|| MACU3

 The IoT device receives the message, checks if (TU1 < Δ T), and Verifies HMACU3.

 Checks if IDU (received) = IDU (stored).

 Decrypts the message using (KTemp1).

 Extracts the password and checks that it is a valid password.

 Sends acknowledgment to the user.

12) The (Light-AHAKA) participants (server- IoT device -user) store two shift registers. The first shift

register is a linear feedback shift register (L1) connected to a primitive polynomial to produce a well-

balanced sequence of streams. The second is a non-linear feedback shift register (L2) connected to a

non-linear Boolean function to increase the non-linearity of the output sequence. The output of the two

registers is connected to a vectorial dobbertain function (F) as a combiner function [9], which is an

almost perfect non-linear function characterized by high resistance to linear and differential attacks.

13) The IoT device and the user will do the following for generating the session key:

 IV1=Hash (RIoT).

 IV2=Hash (RU).

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Formal security analysis of lightweight authenticated key agreement protocol for IoT… (Ahmed H. Aly)

625

 IV1 and IV2 will be used to fill (L1) and (L2), respectively.

The session key (SK) will be calculated using the key agreement and parameters update module as

shown in Figure 2.

o SK= F [Shift (L1(i)), Shift (L2(j))]

 As an example, let's assume that i is predetermined as the 20th byte of RU, and the decimal value of i

is (126), so the L1 will be shifted (126) shifts.

14) The passwords and the identities of (User- IoT) will be updated every session based upon the method

illustrated in step (13). More details about (Light-AHAKA) are provided in [1].

Figure 1. Key agreement and parameters update module

3. FORMAL SECURITY ANALYSIS OF (LIGHT-AHAKA)

In this section, we review the security analysis of (Light-AHAKA), which is summarized in Table 1.

We also present the formal analysis of the protocol based on two different approaches, the Strand Space

Model and AVISPA. Table 2 presents the adversary capabilities which are based on the Dolev-Yao

model [10] and the Canetti-Krawczyk threat model [11].

Table 1. Security analysis of light-AHAKA
Security attack Countermeasures

Impersonation attacks Updating the following parameters every session:

1- (User-IoT device) passwords.

2- (User-IoT) Identities.

3- Pre-shared Keys.

4- Random Numbers

Privileged insider attacks 1- Storing the password Hashed

2- Sending the hash of the password

Man in the middle attacks

(MITM)

1- Encrypting all challenges and responses

2- Fresh Random Numbers

3- Using Timestamps

DOS Attacks Updating the following parameters every session:

1- (User-IoT device) passwords

2- (User-IoT) Identities

3- Pre-shared Keys

Replay Attacks 1- Fresh Random Numbers

2- Using Timestamps

Offline guessing attacks 1- Sending the password hashed

2- Updating the password every session

Data integrity attacks 1- Using HMAC function

2- Using fresh random numbers

Parallel session attack 1- Using the hash function

2- Using the HMAC function

Session key discloser attack Using the following:

1- Fresh Random Numbers (RU - RIoT)

2- Collision-free hash function

3- The Primitive Polynomial

4- The Nonlinear Boolean Function

5- The shifting values of the two LSFR

User anonymity and

untraceability

Updating the following every session:

1- (User- IoT) Identities

2- Fresh Random Numbers

Table 2. Adversary capabilities
Capabilities Definition

Capability 1 The adversary can intercept, replay and modify any message exchanged in the network.

Capability 2 The adversary is a legitimate participant in the network, s/he can initiate a session with any other participant.

Capability 3 The adversary can send/receive messages.

Capability 4 The adversary can perform a man in the middle, impersonation, replay attacks on any run of the protocol.

Capability 5 The adversary can obtain an expired session key.

Capability 6 The adversary can obtain the pre-shared keys of the network participants.

Capability 7 initiate an unlimited number of parallel protocol runs with network participants

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 621 - 636

626

3.1. Strand space model

The strand space model [12]-[15] is a formal analysis method vastly used to prove the correctness of

authentication protocols. We have selected the strand space model to prove the correctness of (Light-

AHAKA) as the authentication test idea is well-suited to authentication protocols based on the challenge-

response mechanism. The authentication tests [14], [16]-[18] provide rigorous poof for each challenge and

response used in (Light-AHKA) and ensure that each response follows the constraints of the authentication

tests. Before proving the correctness of (Light-AHAKA) using the strand space model, we will discuss the

basic notions of strand space and the authentication test idea.

3.1.1. Basic notions of the strand space model

The basic notions of the Strand Space Model are as follows:

 Σ: is the set of strand space comprising all strands of the protocol participant in addition to the

penetrator strands.

 A: The set of all elements that are exchanged between the protocol participants.

 t: are the elements of set A.

 + t/-t: The positive sign means the term t is sent while the minus sign means received.

 n1→n2: Denotes that the message is sent from node n1 and received in n2.

 n1→n2: Denotes that n1 and n2 belong to the same strand and n1 precedes n2 on the graph.

 S: Set of all edges in the graph.

 n ≺S n’: Denotes that the path from n to n’ contains one or more edges in S.

 n ≺S n’: Denotes that path from n to n’ contains zero or more edges in S.

 T: Denotes the set of atomic messages exchanged in the protocol.

 K: Denotes the set of cryptographic keys of regular strands.

 {m}K: Denotes that the participant used the cryptographic key K in encrypting the message m.

3.1.2. Penetrator strands

In this section, the capabilities of the penetrator are presented, which depend on two factors. The

first one is the set of keys KP owned by the penetrator, the second is the ability of the penetrator to generate a

new message from the intercepted messages. The strands of the penetrator are illustrated in the following

points:

 Text message (M): The penetrator can send a message <+m>.

 Flushing (F): The penetrator receives a message from a legitimate participant <-m>.

 Tee (T): The penetrator receives the message m and sends it.

 Concatenation (C): The penetrator receives the messages m and t, the penetrator joins them to get (mt),

then sends (mt).

 Component separation (S): The penetrator receives the message (mt) and can separate the components

(m) and (t) and sends them.

 Key (K): The penetrator sends a key < + Kp> which is from the list of the penetrator keys.

 Encryption (E): The penetrator receives a legitimate key K and a message m, then encrypts m using K,

then sends {m}K

 Decryption (D): The penetrator receives a private key K−1 and a ciphertext {m}K, then decrypts {m}K

using K-1, and extracts the message m, then sends it.

 Hash message authentication code (HAMC): The penetrator receives K and a message m, and obtains

the HMAC function. The penetrator calculates the HMAC value of K||m, then sends HMAC {K ||M}

(additional penetrator strand).

3.1.3. Authentication test idea

Based on the strand space, Thayer and Guttman [14], [16]-[18] proposed the concept of

authentication tests. It formalizes the challenge-response method used in structuring many authentication

protocols. In the authentication tests, a protocol participant transmits a test component (e.g. Nonce), and later

receives back the test component in another transformed form, then only a regular participant, not a

penetrator, performed this transformation. Accordingly, mutual authentication can be achieved based on the

idea of authentication tests. For proving a security protocol correctness, one or more of the following

authentication tests must be examined:

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Formal security analysis of lightweight authenticated key agreement protocol for IoT… (Ahmed H. Aly)

627

a) Outgoing Test: a challenge (nonce) is sent in an encrypted form by a protocol participant. The receiver,

as a regular participant, is challenged to decrypt it and extract the nonce and send it back to the sender

in another encrypted form. i.e. the encrypted form is going out of the edge.

b) Incoming Test: a challenge (nonce) is sent by a protocol participant. The receiver is challenged to

encrypt the nonce and send it back to the sender to prove its legitimacy. i.e. the encrypted form is

incoming to the edge.

c) Unsolicited Test: a participant receives a message without a prior request. If the message form shows

that it can only be produced by a legitimate participant, we can deduce that the regular node that

originated the message is preceding the receiving node. It is frequently used in the case of a server

requesting a client to send its authentication parameters.

The security analysis of (Light-AHAK) is based on the outgoing test and the unsolicited test, which

are considered as the first and third authentication tests respectively. The theorems for these two tests are

formalized as follows:

Theorem 1: Let n and n' ∈ C, if n ⇒ +n' is an outgoing test for a in t then:

1) The nodes m, m' ∈ C exit.

2) t is a component of m.

3) m ⇒ +m' is transforming edge for a.

Additionally, if :

1) a occurs only in t1.

2) t1 subterm of m'.

3) K-1 ∉ P.

Then there exists a regular negative node that receives t1 as a component which is n'.

Theorem 2: For a test component t={h}K, n is considered an unsolicited test for t, if there exists a positive

regular node m, t is a component of m and m is preceding n such that m ≺C n.

The strand space introduced tests for testing the encrypted components, but other

cryptographic functions like the HMAC are not represented. When the HMAC cryptographic

function is used in authentication protocols, the formal analysis becomes more sophisticated. To

reinforce the formal analysis of the authentication protocols, the test theorem of HMAC is

proposed in [19] as follows:

Theorem 3: Let t= (h)HMAC_K, t ⊂ term (n), t is a new component of n and n is a negative node,

assuming K is safe. Then, there must be a regular node m preceding n, m ≺C n, and t and h are

uniquely originating at m.

3.1.4. Light-AHAKA formal analysis

Figure 3 shows Light-AHAKA executive bundle, which contains 3 sets: authentication server

strands, user strands, IoT strands. The trace of strands in the Light-AHAKA is presented in Table 3.

Figure 3. Light-AHAKA bundle

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 621 - 636

628

Table 3. Set of strands
Principal Set of Strands Trace

Authentication Server (AS) AS [H(PWU), IDU, IDS, IDIoT,

RS1, RS2, RU, RTemp1, RTemp2, PWIoT,

HMACU1-3, HMACS1-6, HMACIoT1]

< - IDU, H(PWU), HMACU1

+ {RS1, IDS}K
US

 , HMACS1

- {RS1, RU, IDs, IDIoT} K
US

 , HMACU2

+ ACK, HMACS2

+ {IDS, IDIoT, RS2} K
IoT ,

HMACS3

- HMACIoT1

+ ACK, HMACS4

+ {RTemp1, PWIoT} K
US

, HMACS5

+ {RTemp2, IDU} K
IoT

, HMACS6 >

User(U) U[H(PW), IDU, IDS, IDIoT,

RS1, RU, RTemp1, PWIoT,

HMACU1-3, HMACS1,2,5]

< - IDU, H(PWU), HMACU1

- {RS1, IDS} K
US

 , HMACS1

+ {RS1, RU, IDS, IDIoT} K
US

 , HMACU2

- ACK, HMACS2

- {RTemp1, PWIoT} K
US

, HMACS5

+ {PWIoT} K
Temp

, IDU, HMACU3 >

IoT(D) D [IDIoT, IDU, IDS, PWIoT,

RS2, RTemp2, RU, HMACIoT1, HMACS3,4,6, HMACU3]
< - {IDS, IDIoT, RS2} K

IoT
, HMACS3

+ HMACIoT1

- ACK, HMACS4

- {RTemp2, IDU} K
IoT

, HMACS6

- {PWIoT} K
Temp

, IDU

, HMACU3 >

4.1.5. Strand space proof

In this section, the correctness of (Light-AHAKA) will be proved by proposing eight lemmas for

bundle C which is in Σ space.

According to Figure and Table:

 The authentication server strand SAS ∈ AS is in bundle C and its height is 9

 KUS and KIoT ∉ P.

 The random numbers RS1, RS2, and RU are fresh values and uniquely originating in Σ.

 There is user strand SU ∈ U in bundle C and its height is 6 at least.

 There is IoT strand SD ∈ D in bundle C and its height is 5 at least.

Lemma 1: If H ∉ P, then node n= <S, 1> is an unsolicited test for t = {PW}H where the originating edge is

m=<U,1> and a = PW.

Proof: According to Theorem 2, m =<U,1> is the only positive regular node where t ⊂ m; t ⊄ n for all n

such that m ≺C n.

Lemma 2: If KUS ∉ P, RS1 is uniquely originating in <S, 2> then the edge <S, 2> ⇒+ <S, 3> is an outgoing

test for RS1, t= {RS1, IDS} KUS
 is the test component and a= RS1.

Proof: According to Theorem 1, proving the lemma is achieved by finding two regular nodes (m, m′) in

bundle C and m ⇒+ m' is transforming edge for RS1. In Figure, m =<U,2> in user strand SU, and m′ =<U,3>

in SU.

Lemma 3: If KUS ∉ P, RU is uniquely originating in <U, 3>then the edge <U, 3> ⇒+ <U, 4> is an outgoing

test for RU, t= {RS1, RU, IDs, IDIoT} KUS
 is the test component and a= RU and the response is in HMACS2 using

RU ∉ P as the key for the HMACS2.

Proof:

1) According to Theorem 1, proving the lemma is achieved by finding two regular nodes (m, m′) in bundle C

and m ⇒+ m' is transforming edge for RU. In Figure, m =<S,3> in server strand SAS, and m′=<S,4> of SAS.

2) According to Theorem 3 and Figure, n=<U, 4> is the only negative node of user strand SU, and the test

component t= HMACS3 is sub-term of the node n and a new component of this node, while RU ∉ P.

Then the positive node m=<S, 4> such that m ≺C n, where t is uniquely originating at m.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Formal security analysis of lightweight authenticated key agreement protocol for IoT… (Ahmed H. Aly)

629

From the proof of the three aforementioned lemmas, we prove the correctness of the mutual

authentication between the authentication server S and the user U; moreover, the random numbers (RS1 & RU)

are freshly generated from regular strands.

Lemma 4: If KIoT ∉ P, RS2 is uniquely originating in <S, 5> then the edge <S, 5> ⇒+ <S, 6> is an outgoing

test for RS2, t= {IDS, IDIoT, RS2} KIoT
 is the test component and a= RS2, and the response is in HMACS2 using RU

∉ P as the key for the HMACS2.

Proof:

1) According to Theorem 1, proving the lemma is achieved by finding two regular nodes (m, m′) in bundle

C and m ⇒+ m' is transforming edge for RS2. In Figure 3, m=<D,1> in D strand SD, and m′=<D,2> of

SD.

2) According to Theorem 3 and Figure 3, n=<S, 6> is the only negative server strand SAS, and the test

component t= HMACIoT1 is sub-term of the node n and a new component this node, while Kds ∉ P.

Then the positive node m=<D, 2> such that m ≺C n, where t is uniquely originating at m.

From the proof of the previous lemma, we prove the correctness of the mutual authentication

between the authentication server S and the IoT device. Furthermore, the random numbers (RS2) are freshly

generated from a regular strand.

Lemma 5: If RIoT ∉ P, HMACS4 is uniquely originating in m=<D, 3> then the node n= <S, 7> is a test for

t= HMACS4 with RIoT as a key, and the test component is a= ACK.

Proof: According to Theorem 3 and Figure 3, n is the only negative node of bundle C, and t= HMACS4 ⊂

term (n) is a new component of n with K ∉ P. Then the positive node m=<S, 7> such that m ≺C n, where t is

uniquely originating at m.

Lemma 6: If KUS ∉ P, then node n= <U, 5> is an unsolicited test for t = {RTemp1, PwIoT}K
US

 where m=<S, 8>

and a = RTemp1.

Proof: According to Theorem 2 and Figure 3, m=<S,8> is the only positive node in server strand SAS where t

⊂ m; t ⊄ n for all n such that m ≺C n.

Lemma 7: If KIoT ∉ P, then node n= <D, 4> is an unsolicited test for t = {RTemp2, IDU}KIoT
 where m=<S, 9>

and a = RTemp2.

Proof: According to Theorem 2 and Figure 3, m=<S,9> is the only positive node in server strand SAS where t

⊂ m; t ⊄ n for all n such that m ≺C n.

Lemma 8: If KTemp ∉ P, then node n= <D, 5> is an unsolicited test for t = {Pw}KTemp
where m=<U, 6> and a

= Pw.

Proof: According to Theorem 2 and Figure 3, m=<U,6> is the only positive node in user strand SU where t ⊂

m; t ⊄ n for all n such that m ≺C n.

4.2. Simulation for formal security verification using AVISPA tool

To ensure the correctness of (Light-AHAKA), we used automated validation of internet security

protocols and applications (AVISPA) as a tool for simulating (Light-AHAKA).

4.2.1. AVISPA

AVISPA is an automated tool used for validating security protocols and cryptographic

applications [20]-[22]. AVISPA is used for analyzing the security properties of the investigated protocols by

searching for possible attacks in different scenarios. We specified (Light-AHAKA) in high-level protocol

specification language (HLPSL), which is a role-based language developed for AVISPA.

The HLPSL language specifies the different roles in the authentication protocols. Each role

represents a protocol participant, and then all the roles are composed to represent the interacting behavior of

the participants. Each role specified in HLPSL is independent of the other roles, setting the initial knowledge

of each role and communicating with the other roles via data transfer channels. HLPSL is a role-based

language, in such a way that the sequence of actions of each protocol participant is specified in a separate

module, which is called a basic role. After completing the step of specifying all the roles of the protocol

participants, these roles will be instantiated by one or more agents playing the given role and describing how

the participants interact with each other by concatenating all the basic roles together into one composed role.

AVISPA uses the HLPSL2IF tool for transforming a specification written in the HLPSL language

into a low-level specification in the IF language. This tool compiles the specification of a protocol given as a

parameter in a file with the extension (.hlpsl), and either lists the errors found in the specification or generates

a file with the same name but with a new extension (.if) containing the specification that will be analyzed

later on. In the field of designing lightweight authentication protocols for IoT-Cloud computing, numerous

researchers [23]-[28] relied on the AVISPA tool for simulating their proposals and verifying the correctness

of the proposed lightweight protocols, as AVISPA presents four protocol analyzer tools, on-the-fly model-

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 621 - 636

630

checker (OFMC) [29], SAT-based model-checker (SATMC) [30], constraint logic-based attack searcher

(CL-AtSe) [31], and tree automata based on automatic approximations for the analysis of security protocols

(TA4SP) [32].

AVISPA implementation consists of the users' roles, session role, environment role, and finally the

security goals. The user roles comprise all agents in the protocol, the symmetric keys, and finally the

send/receive channels. All the messages exchanged via the channels are subjected to the control of the Dolev-

Yao (dy) intruder model. According to this model, it is assumed that the intruder has full power over the

communication network, such that all messages exchanged by the agents are intercepted by the intruder. In

addition, the intruder has the power to analyze, modify, and compose new messages to other protocol

participants, pretending that these messages were initiated by a legitimate agent. The local section defines all

the local variables used by each role.

4.2.1. User role

Figure 4 shows the role of the user (U), which is considered as the initiator of the protocol, played

by U. The knowledge of U comprises all agents in the protocol (U, authentication server (S), IoT device (D),

and the symmetric pre-shared key (kus) between U and S.

"Rcv(start)" is sent to U as a trigger signal to initiate the protocol run. U starts the registration phase

with the authentication server S (step 1) and after successful registration, U starts the mutual authentication

process with S (steps 2 & 3). Finally, U receives an acknowledgment (ACK) from the server (step 4). In step

(5), U receives the credentials of D from the server and sends an access request to D (step 6).

Figure 2. User role

4.2.2. Server role

Figure 5 shows the role of the server (S). S receives a registration request from U (step 1). Then S

starts the mutual authentication process with U (steps 2 & 3) and after passing the mutual authentication, S

will send U the ACK message (step 4). Then, S will start authenticating the intended IoT device D (steps 5

and 6). After successful authentication, S sends D an ACK message (step 7). Finally, S sends the credentials

of D to U (step 8), and the identity of U to D (step 9).

4.2.3. Device role

Figure 6 shows the role of the device (D). D receives the challenge from the server to start the

mutual authentication process (step 1). D responds with the HMAC of S challenge concatenated with its

password (step 2). S verifies the HMAC of D, then S replies with the acknowledgment ACK (step 3). In (step

4), S sends D the identity of U that is requesting access to the data from the IoT device. Finally, in (step 5) D

receives the access request from U.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Formal security analysis of lightweight authenticated key agreement protocol for IoT… (Ahmed H. Aly)

631

Figure 5. Server role

Figure 6. Device role

4.2.4. Session role

Figure 7 shows the role of the session of the Light-AHAKA in HLPSL. The roles of the three

agents, U, S, and D, are combined by defining a role for the session. The three roles are instantiated with the

arguments of each role and combined using the keyword composition. In the composition role, the sessions

are illustrated by specifying how the agents interact in the (Light-AHAKA) protocol.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 621 - 636

632

Figure 7. Session role

4.2.5. Environment role

The environment role is the top-level role that specifies the global constants and forms the

composition of one or more sessions. In Figure 8, five sessions are instantiated and the intruder is represented

and his/her knowledge is defined. The first session is the normal session with the three agents of (Light-

AHAKA). In the second session, the intruder represents the user U with the knowledge of the pre-shared key

kus, which is represented as kis. In the third session, the intruder presents the server S with the knowledge of

the pre-shared key Kus, which is presented as Kis. In the third session, the intruder presents also the server S,

but in this session the knowledge is different, the intruder knows the pre-shared key kus, which is presented

as kis. In the fourth session, the intruder presents the authentication server S with the knowledge of the pre-

shared key kds, which is presented as kis. Finally, in the fifth session, the intruder presents the IoT device D

with the knowledge of the pre-shared key kds as kis.

Figure 8. Environment role

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Formal security analysis of lightweight authenticated key agreement protocol for IoT… (Ahmed H. Aly)

633

4.2.6. Security goals

AVISPA achieves two goals, which are secrecy and authentication. Secrecy is verified via the goal

predicate secret, while authentication is verified utilizing the goal predicates witness and request. In (Light-

AHAKA) implementation Figure 9, the following secrecy and authentications goals are examined and

verified:

1) Two authentication goals:

a) The authentication_on auth_1 represents that the random number Ru is generated by U and only

known to U. If S verifies that this random number is generated by U and encrypted by the pre-

shared key Kus, then S authenticates U.

b) The authentication_on auth_2 represents the random number Rs1 is generated by S and only

known to S. If U verifies that this nonce is generated by S and encrypted by the pre-shared key kus,

then U authenticates S.

c) The authentication_on auth_3 represents that the random number Rs2 is generated by S and only

known to S. If D verifies that this nonce is generated by S and encrypted by the pre-shared key

Kds, then D authenticates S.

2) Three secrecy goals:

a) The secrecy_of sec_4 denotes that the random number Ru is kept secret only to U and S.

b) The secrecy_of sec_5 denotes that the random number Rs1 is kept secret only to S and U.

c) The secrecy_of sec_6 denotes that the random number Rs2 is kept secret only to D and S.

Figure 9. Light-AHAKA goals

2.4.7. Simulation results

In this section, we presented the simulation results of our (Light-AHAKA) protocol using the back-

ends OFMC and CL-AtSe using AVISPA.

Figure 10 and Figure 11 ensure that the simulation of (Light-AHAKA) is considered SAFE under

the two back-ends, OFMC and CL-AtSe, respectively. The (Light-AHAKA) achieves mutual authentication

between all protocol participants. All the random numbers generated in the protocol procedure are kept

secret, and finally, no attacks were found.

Figure 10. OFMC result

Figure 11. ATSE result

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 621 - 636

634

4. RESULTS AND DISCUSSION

In IoT-Cloud computing networks, users may require to access real-time data from IoT devices

directly rather than accessing offloaded data to the cloud. This use-case is for instant and critical decisions. In

this case, the user and the IoT device have to be authenticated before granting the user the right to access the

data. In this context, we presented (Light-AHAKA) as a new authentication and key agreement protocol for

IoT in cloud computing.

The main advantages of (Light-AHAKA) are as follows:

 (Light-AHAKA) is a challenge-response protocol based on lightweight cryptographic functions.

 (Light-AHAKA) authenticates the user and the IoT device (Mutual Authentication).

 Considering the constrained nature of IoT devices, the response in the authentication of the IoT device is

formed of the HMAC function only.

 (Light-AHAKA) provides perfect forward secrecy.

 (Light-AHAKA) provides key agreement to encrypt the exchanged traffic.

 (Light-AHAKA) updates the passwords and identities of the user and the IoT device every session.

 Unprecedented key agreement and parameters update module Figure 2.

 (Light-AHAKA) is immune to the attacks summarized in Table 1.

In this paper, we conducted the formal analysis of (Light-AHAKA) based on two approaches, the

Strand Space Model, and the AVISPA simulation tool. The results of the formal analysis were as follows:

1) By proving eight lemmas based on the Strand Space Model:

 All challenge-response messages were tested according to the authentication test idea.

 No extra/ missing messages were found.

 It was proved that all messages were initiated by regular strands.

 (Light-AHAKA) achieves mutual authentication.

 All random numbers are fresh and generated by regular strands.

2) By Simulating (Light-AHAKA) using two back ends of the AVISPA tool :

 No attacks were found on (Light-AHAKA).

 The authentication server authenticates the user.

 The authentication server authenticates the IoT device.

 All random numbers are fresh and kept secret.

According to the aforementioned results, it was necessary to conduct a formal analysis of (Light-

AHAKA) based on the aforementioned approaches. The first approach verifies the correctness of challenge-

response-based protocols, checks the right sequences of the exchanged messages, and the honesty of the

strands. The second approach searches for possible attacks on (Light-AHAKA) using two back ends.

5. CONCLUSION

We proposed (Light-AHAKA) as a new lightweight authenticated key agreement protocol for IoT in

cloud computing. The (Light-AHAKA) authenticates the user and the IoT device before granting the user the

right to access the IoT device directly for critical and instant decisions. Additionally, the user and the IoT device

generate a session key to encrypt the exchanged traffic. To enhance the resiliency of IoT-Cloud networks, after

each session, the passwords and the identities of (IoT-User) are updated. The security analysis was conducted to

ensure that Light-AHAKA is immune to potential attacks. In this paper, formal verification of the (Light-

AHAKA) was conducted to ensure that the protocol is secure against known security attacks. We conducted the

formal verification based on two different approaches: the Strand Space Model and the AVISPA. The Strand

Space Model tested all challenges and responses forming the protocol and proved that each challenge was

succeeded by the appropriate response. In AVISPA we used two back-ends, OFMC and CL-AtSe. The results

of the two approaches show that (Light-AHAKA) achieved mutual authentication, all random numbers

generated in the protocol procedure were kept secret, and no attacks were found. In future work, we plan to

work on the practical implementation of the (Light-AHAKA). A test-bed network will be constructed to test and

evaluate the communication cost, computational cost, execution time, and storage cost.

REFERENCES
[1] "HIS, Internet of Things (IoT) Connected Devices Installed BaseWorldwide from 2015 to 2025," 2021. Accessed:

25 May. [Online]. Available: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/

[2] M. Wazid, A. K. Das, R. Hussain, G. Succi, and J. J. Rodrigues, "Authentication in cloud-driven IoT-based big data

environment: Survey and outlook," Journal of Systems Architecture, vol. 97, pp. 185-196, 2019, doi:
10.1016/j.sysarc.2018.12.005.

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Formal security analysis of lightweight authenticated key agreement protocol for IoT… (Ahmed H. Aly)

635

[3] M. Medwed, "IoT security challenges and ways forward," in Proceedings of the 6th International Workshop on

Trustworthy Embedded Devices, 2016, pp. 55-55, doi: 10.1145/2995289.2995298.
[4] Y. H. Hwang, "IoT security & privacy: threats and challenges," in Proceedings of the 1st ACM workshop on IoT

privacy, trust, and security, 2015, pp. 1-1, doi: 10.1145/2732209.2732216.

[5] M. Abomhara and G. M. Køien, "Cyber security and the internet of things: vulnerabilities, threats, intruders and

attacks," Journal of Cyber Security and Mobility, pp. 65-88, 2015, doi: 10.13052/jcsm2245-1439.414.
[6] A. Aly, G. Atef, N. Mona, and A. E.-H. Ahmed, "A New Lightweight Authenticated Key Agreement Protocol For

IoT In Cloud Computing," Journal of Engineering Science and Technology (JESTEC), vol. 16, no. 5, 2021.

[7] M. Bellare, R. Canetti, and H. Krawczyk, "Keying hash functions for message authentication," in Annual

international cryptology conference, Springer, pp. 1-15, 1996, doi: 10.1007/3-540-68697-5_1.
[8] K. McKay, L. Bassham, M. Sönmez Turan, and N. Mouha, "Report on lightweight cryptography," National Institute

of Standards and Technology, 2016, doi: 10.6028/NIST.IR.8114.

[9] H. Dobbertin, "Almost perfect nonlinear power functions on GF (2n): the Niho case," Information and Computation,

vol. 151, no. 1-2, pp. 57-72, 1999, doi: 10.1006/inco.1998.2764.
[10] D. Dolev and A. Yao, "On the security of public key protocols," IEEE Transactions on information theory, vol. 29,

no. 2, pp. 198-208, 1983, doi: 10.1109/TIT.1983.1056650.

[11] R. Canetti and H. Krawczyk, "Universally composable notions of key exchange and secure channels," in

International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2002, pp. 337-
351, doi: 10.1007/3-540-46035-7_22.

[12] F. J. T. Fabrega, J. C. Herzog and J. D. Guttman, "Strand spaces: why is a security protocol correct?," Proceedings.

1998 IEEE Symposium on Security and Privacy (Cat. No.98CB36186), 1998, pp. 160-171, doi:

10.1109/SECPRI.1998.674832.
[13] F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman, "Strand spaces: Proving security protocols correct," Journal of

computer security, vol. 7, no. 2/3, pp. 191-230, 1999, doi: 10.3233/JCS-1999-72-304.

[14] Guttman and F. J. Thayer, "Authentication tests," in Proceeding 2000 IEEE Symposium on Security and Privacy.

S&P 2000, 2000: IEEE, pp. 96-109, doi: 10.1109/SECPRI.2000.848448.
[15] S. Doghmi, J. Guttman, and F. J. Thayer, "Skeletons and the shapes of bundles," in Proc. 7th Int. Workshop on

Issues in the Theory of Security, 2006: Citeseer, pp. 24-25.

[16] J. D. Guttman, "Key compromise, strand spaces, and the authentication tests," Electronic Notes in Theoretical

Computer Science, vol. 45, pp. 1-21, 2001, doi: 10.1016/S1571-0661(04)80960-5.
[17] J. D. Guttman and F. J. Thayer, "Authentication tests and the structure of bundles," Theoretical computer science,

vol. 283, no. 2, pp. 333-380, 2002, doi: 10.1016/S0304-3975(01)00139-6.

[18] J. D. Guttman, "Authentication tests and disjoint encryption: a design method for security protocols," Journal of

Computer Security, vol. 12, no. 3-4, pp. 409-433, 2004, doi: 10.3233/JCS-2004-123-405.
[19] M. Yao, D. Zhou, R. Deng, and M. Liu, "A Security Protocol for Access to Sensitive Data in Trusted Cloud Server,"

in International Conference on Cloud Computing and Security, 2018: Springer, pp. 531-542, doi: 10.1007/978-3-

030-00009-7_48.

[20] A. Armando et al., "The AVISPA tool for the automated validation of internet security protocols and applications,"
presented at the International conference on computer aided verification, 2005, doi: 10.1007/11513988_27.

[21] "AVISPA v1.0 User Manual." Accessed: 25 May, 2021. [Online]. Available: http://avispa-project.org

[22] L. Vigano, "Automated security protocol analysis with the AVISPA tool," Electronic Notes in Theoretical Computer

Science, vol. 155, pp. 61-86, 2006, doi: 10.1016/j.entcs.2005.11.052.
[23] H. Khalid, S. J. Hashim, S. M. S. Ahmad, F. Hashim, and M. A. Chaudhary, "A New Secure and Lightweight Multi-

Factor Authentication Scheme for Cross-Platform Industrial IoT Systems," Sensors, vol. 21, no. 4, p. 1428, 2021,

doi: 10.3390/s21041428.

[24] H. Khalid, S. J. Hashim, S. M. Syed Ahmad, F. Hashim, and M. A. Chaudhary, "Cross-SN: A Lightweight
Authentication Scheme for a Multi-Server Platform Using IoT-Based Wireless Medical Sensor Network,"

Electronics, vol. 10, no. 7, p. 790, 2021, doi: 10.3390/electronics10070790.

[25] R. Amin, N. Kumar, G. Biswas, R. Iqbal, and V. Chang, "A light weight authentication protocol for IoT-enabled

devices in distributed Cloud Computing environment," Future Generation Computer Systems, vol. 78, pp. 1005-
1019, 2018, doi: 10.1016/j.future.2016.12.028.

[26] G. Sharma and S. Kalra, "A lightweight user authentication scheme for cloud-IoT based healthcare services,"

Iranian Journal of ScienceTechnology, Transactions of Electrical Engineering vol. 43, no. 1, pp. 619-636, 2019,

doi: 10.1007/s40998-018-0146-5.
[27] S. Zargar, A. Shahidinejad, and M. Ghobaei‐Arani, "A lightweight authentication protocol for IoT‐based cloud

environment," International Journal of Communication Systems, vol. 34, no. 11, p. e4849, 2021, doi:

10.1002/dac.4849.
[28] Y. Ben Slimane, K. J. I. J. o. E. Ben Ahmed, and C. Engineering, "Efficient End-to-End Secure Key Management

Protocol for Internet of Things," vol. 7, no. 6, 2017, doi: 10.11591/ijece.v7i6.pp3622-3631.

[29] D. Basin, S. Mödersheim, and L. Vigano, "An on-the-fly model-checker for security protocol analysis," in European

Symposium on Research in Computer Security, 2003: Springer, pp. 253-270, doi: 10.1007/978-3-540-39650-5_15.
[30] K. L. McMillan, "Interpolation and SAT-based model checking," in International Conference on Computer Aided

Verification, 2003: Springer, pp. 1-13, doi: 10.1007/978-3-540-45069-6_1.

[31] M. Turuani, "The CL-Atse protocol analyser," in International Conference on Rewriting Techniques and

Applications, 2006: Springer, pp. 277-286, doi: 10.1007/11805618_21.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 1, October 2021: 621 - 636

636

[32] Y. Boichut, P.-C. Héam, O. Kouchnarenko, and F. Oehl, "Improvements on the Genet and Klay technique to

automatically verify security protocols," in Proc. AVIS, 2004, vol. 4, p. 84.

BIOGRAPHIES OF AUTHORS

Ahmed H. Aly received his M.Sc. in Electrical Engineering from Arab Academy for Science,

Technology and Maritime Transport (AASTMT) in 2014. Currently, he is Ph.D. student

Faculty of Computers & AI, Helwan University. He is an expert in Cryptography and Network

Security.

Prof Atef Z. Ghalwash, received his Ph.D. degree from the Faculty of Engineering, Maryland

university- USA. Currently, he is a full professor in the Faculty of Computers & AI, Helwan
University. Artificial Intelligence, Security & SWE are part of his field of interest.

Prof. Mona M. Nasr. Chief Information Officer, CIO for Helwan University Manager of

Scientific Computing Center (SCC) for Helwan University. Head of Information Systems

Department.

Dr. Ahmed Ali Abdel-Hafez received his Ph.D. from the School of Information Technology

and Engineering (SITE), University of Ottawa, Ottawa, Canada in 2003. Currently, he is Chief
Expert; National Telecom. Regulatory Authority (NTRA), Egypt.

