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Abstract
This paper proposes a new binary particle swarm optimization with a greedy strategy to solve 0-

1 knapsack problem. Two constraint handling techniques are consider to cooperation with binary particle
swarm optimization that are penalty function and greedy. The sigmoid transfer function is used to convert
real code to binary code. The experimental results have proven the superior performance of the proposed
algorithm.
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1. Introduction
The 0-1 knapsack problem(KP01) is known to be a combinatorial optimization problem.

The knapsack problem has a variety of practical applications such as cutting stock problems,
portfolio optimization, scheduling problems [1] and cryptography [2, 3, 4]. The knapsack appears
as a sub-problem in many complex mathematical models of real-world problems. In a given set
of n items, each of them has an integer weight wi and an integer profit pi. The problem is to
select a subset from the set of n items such that the overall profit is maximized without exceeding
a given weight capacity C. It is a NP-Hard problem and hence it does not have a polynomial time
algorithm unless P = NP [5]. The problem may be mathematically modelled as follows:

Maximize

n∑
i=1

xipi; (1)

Subject to

n∑
i=1

xiwi ≤ C, xi ∈ {0, 1},

∀i ∈ {1, 2, . . . , n}; where xi takes values either 1 or 0 which represents the selection or rejection
of the ith item.

In recent years, many heuristic algorithms have been employed to solve KP01 problems:
an ant colony optimization algorithm for KP01 proposed in [6] proposed ; a modified the param-
eters of the ant colony optimization model to adapt itself to KP01 problems proposed in [7]; a bi-
nary particle swarm optimization based on multi-mutation strategy to solve the knapsack problem
proposed in [8] ; a quantum-inspired evolutionary algorithm for KP01 proposed in [9]; a schema-
guiding evolutionary algorithm to solve KP01 problems proposed [10]; a global harmony search
algorithm to solve KP01 proposed in [11]; a genetic algorithm (GA) for KP01 proposed in [12];
an improved GA with a dual population for KP01 proposed in [13]; a schema-modified operator
to adjust the distribution of the population can be found in [10], an artificial chemical reaction
optimization for KP01 proposed in [14].

Although many KP01 problems have been solved successfully by these methods, the
research on them is still important, because some new and more difficult KP01 problems hidden
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in the real world have not yet been solved. Many algorithms provide possible solutions for some
KP01 problems, but they may lose their efficiency on solving these problems due to their own
disadvantages. For example, some methods proposed recently can only solve KP01 problems
with very low dimension, but they may be unavailable to solve KP01 problems with high dimension.

Given the above consideration, we designed an particle swarm optimization with greedy
strategy to solve KP01. The particle swarm optimization has a good searching ability that shows
excellent operation in two important features of optimization metaheuristics: intensification and
diversification[8, 15]. Beside, the greedy strategy in this research is used in one phase of repair
function, but in another phase a randomly method is used which is proposed in [9]. The repair
function mentioned in the paper adopts two advantages, the first is to make the algorithm have
fast convergence by using a greedy strategy. The experimental results demonstrate the proposed
algorithm is superior.

The rest of this paper is organized in sections: section 2. present previous algorithm for
KP01, section 3. briefly gives the original framework of particle swarm optimization. Section 4.
present the binary particle swarm optimization. Constraint handling techniques are described in
section 5.. We survey the behavior of particle swarm optimization and compare the simulated
results of the PSO in section 6.. We conclude this paper and suggest potential future work in
section 7..

2. Related Works
2.1. Artificial chemical reaction optimization algorithm (ACROA)

The ACROA is a heuristic method proposed by Alatas in [16]. It inspired from the chemical
reaction process. In the chemical reaction process, the system tend toward the highest entropy
and the lowest enthalpy. The chemical reactions possess efficient objects, states, process, and
events that can be designed as a computational method. Enthalpy or potential energy for mini-
mization problem and entropy for maximization problem can be utilized as objective functions for
the interested problem [16, 17].

3. Particle swarm optimization
The PSO conducts searches using a population of particles, a population of particles is

randomly generated initially. The standard particle swarm optimizer maintains a swarm of particle
that represent the potential solutions to problem on hand. Suppose that the search space is D-
dimensional, and the position of i th particle of the swarm can be represented by a D-dimensional
vector, xi=(xi1, ..., xid, ..., xiD). The velocity of the particle xi can be represented by another D-
dimensional vector vi=(vi1, ..., vid, ..., viD). The best position previously visited by the i th particle is
denoted as pi=(pi1, ..., pid, ..., piD). In essence, the trajectory of each particle is updated according
to its own flying experience as well as to that of the best particle in the swarm. The basic PSO
algorithm can be described as:

vk+1
i,d = w.vki,d + c1.r

k
1 .(p

k
i,d − xk

i,d) + c2.r
k
2 .(p

k
g,d − xk

i,d) (2)

xk+1
i,d = xk

i,d + vk+1
i,d (3)

where vki,d is d th dimension velocity of particle i in cycle k ; xk
i,d is the d th dimension position of

particle i in cycle k ; pki,d is the d th dimension position of personal best (pbest) of particle i in cycle
k ; pkg,d is the d th dimension position of global best particle (gbest) in cycle k ; w is the inertia
weight; c1 is the cognitive weight and c2 is a social weight; r1 and r2 are two random values
uniformly distributed in the range of [0,1][8].

The pseudocode of the PSO is given in the algorithm 1.
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Algorithm 1: PSO algorithm
Input: Initial parameters
Output: optimal solution

1 for each particle do
2 Initialize particle

3 While maximum iterations or minimum error criteria is not attained for each particle do
4 Calculate fitness value
5 if the fitness value is better than its peronal best then
6 set current value as the new pBest

7 Choose the particle with the best fitness value of all as gBest
8 for each particle do
9 Calculate particle velocity according equation (2)

10 Update particle position according equation (3)

11 return

Figure 1. Sigmoid function used in BPSO

4. Binary particle swarm optimization
The binary particle swarm optimization algorithm was introduced by Bansal and Deep to

allow the PSO algorithm to operate in binary problem spaces [18]. It uses the concept of velocity
as a probability that a bit (position) takes on one or zero. In the BPSO, Eq. (2) for updating the
velocity remains unchanged, but Eq. (3) for updating the position is re-defined by the rule

xk+1
i,d =

{
0 if rand() ≥ S(vk+1

i,d )

1 if rand() < S(vk+1
i,d )

where S(.) is the sigmoid function for transforming the velocity to the probability as the following
expression:

S(vk+1
i,d ) =

1

1 + e(v
k+1
i,d )

(4)

Fig. 1 shows the sigmoid function using in BPSO.

5. Handling Constraints
The present by binary string sometimes make the solution violate the constraint. There

are two common techniques that are penalty and repair function are used to handle it. In the first
method, a penalty coefficient ratio with violated value is used to add to the fitness value. Through
the iterations, the solutions with larger fitness have more change to reproduce, and otherwise [11].
Although, this method can help the algorithm can find the sufficient solution, but it do not helpful
improve the quality of the solution. Following, two techniques are presented in details.

5.1. Penalty function
The KP01 is maximization problem. The value of the position is equal to

∑n
i=1 xipi when

the solution is not violated. Otherwise, a penaltyFactor is used to decrease the fitness of the
violate position. In this research, we use penaltyFactor = 100. The fitness function is described
in algorithm 2.
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Algorithm 2: Fitness function
Input: Solution x
Output: Fitness

1 Fitness =
∑n

i=1 xipi − penaltyFactor ∗max(0,
∑n

i=1 xiwi − C)
2 return Fitness

5.1.1. Greedy

The repair operator is based on repeated random selection until the knapsack constraints
are met, although this may consume a lot of CPU time in some cases. Conversely, the traditional
greedy strategy has some other drawbacks in the knapsack problem and is analyzed in [12]. In
this paper, a new repair operator is used and it depends on both the greedy strategy and random
selection [19]. The advantage of this repair procedure is the balance between CPU time cost and
not getting stuck in local optima. The items are sorted according to the profit-to-weight ratio pi/wi

(i = 1, 2,. . . , n) so that they are not increasing. It means that:

pi
wi
≥ pj

wj
, for i < j.

This repair operator consists of two phases. The first phase (called ADD) examines each
variable in decreasing order of pj/wj and changes the variable from zero to one as long as
feasibility is not violated. The second phase (called DROP) examines each variable in increasing
order of pj/wj and changes the variable from one to zero if feasibility is violated. The aim of the
DROP phase is to obtain a feasible solution from an infeasible solution, whilst the ADD phase
seeks to improve the fitness of a feasible solution. The pseudo-code for the repair operator is
given in Algorithm 3.

Algorithm 3: Repair operator
Input: Solution x
Output: Solution x

1 % ADD phase
2 gap← C −

∑n
i=1 xiwi

3 i← 1
4 while (gap > 0) and (i ≤ n) do

5 if (gap ≥ wi) then
6 xi ← 1
7 gap← gap− wi

8 i← i+ 1

9 % DROP phase
10 over ←

∑n
i=1 xiwi − C

11 i← n
12 while (over > 0) and (i ≥ 1) do
13 if (over ≤ wi) then
14 xi ← 0
15 over ← over − wi

16 i← i− 1

17 return x
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Table 1. The dimension and parameters of five test problems.

Instance Dimension Parameters (q, C, p)

f1 4 q = (6, 5, 9, 7), C = 20, p = (9, 11, 13,15)

f2 10 q = (30, 25, 20,18, 17, 11, 5, 2, 1, 1), C = 60, p= (20, 18,
17, 15, 15, 10, 5, 3, 1, 1)

f3 7 q = (31, 10, 20, 19, 4, 3, 6), C = 50, p = (70, 20, 39, 37, 7,
5, 10)

f4 5 q = (15, 20, 17, 8, 31), C = 80, p = (33, 24, 36, 37, 12)

f5 20 q = (84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14, 48,
70, 96, 32, 68, 92), C = 879, p = (91, 72, 90, 46, 55, 8, 35,
75, 61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40, 44)

Table 2. The detailed information of the optimal solutions.

Instance Opt.solution x∗ Opt.value
f(x∗)

Value of constraint
g(x∗)

f1 (1,1,0,1) 35 -2

f2 (0,0,1,0,1,1,1,1,0,0) 50 0

f3 (1,0,0,1,0,0,0) 107 0

f4 (1,1,1,1,0) 130 -20

f5 (1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,0,1,1,1) 1025 -8

6. Simulation Results
In this section, we use BPSO and BPSOG for binary particle swarm optimization with

penalty constraint and greedy constraint techniques, respectively. The ACROA use the greedy
constraint.

The performance of BPSOG algorithm is extensively investigated by a large number of
experimental studies. Nine 0-1 knapsack instances are considered to testify the validity of the
BPSOG.

All the algorithms are implemented in matlab 2014a. The test environment is set up on a
laptop with core i5 M520 CPU at 2.4 GHz, 4G RAM, running on Windows 8.1.

6.1. The performance of three algorithms on solving 0-1 knapsack problems with small
dimension sizes

In this section, five test functions collected from [11] are used. In Table 1, four test func-
tions with dimension are 4, 10, 7, 5, and 20, respectively. Table 2 describes the optimal solutions
of each function.

The experiment for these five test functions is run 25 independent times. To extend study
the performance of BPSOG, four strong correlated instances with large dimension are also used.

6.2. The performance of three algorithms on solving 0-1 knapsack problems with large
dimension sizes

To test the performance of BPSOG on KP01 with large dimension, it is compared with
both BPSO and ACROA on the 0-1 knapsack problem. In these test cases, strongly correlated
sets of data are considered. The weights wi, respective prices pi and the knapsack capacity C
are calculated as follows:

wi = rand(1, 10); (5)
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Table 3. Experimental results: the number of items 50, 100, 500 and 1000, the maximum number
of function evaluation 100000, the number of runs 25.

Instances Algorithms Best profit Worst
profit

Average
profit

stDev

ACROA 1536 1507 1528.70 6.10

50 BPSO 1533 1485 1501.20 17.64

BPSOG 1536 1536 1536.00 0.00

ACROA 2927 2855 2893.76 18.73

100 BPSO 2876 2792 2827.92 19.73

BPSOG 2978 2977 2977.96 0.20

ACROA 14775 14428 14582.96 102.22

500 BPSO 14152 13908 14017.44 56.61

BPSOG 15369 15234 15298.24 37.18

ACROA 28840 27961 28257.48 192.94

1000 BPSO 27332 27044 27173.92 88.74

BPSOG 30050 29712 29819.76 81.17

Figure 2. The convergence curves of BPSO and BPSOG on the kp01.

pi = wi + 5, i = 1, 2, . . . , n; (6)

C =
1

2

n∑
i=1

wi; (7)

where rand(1, 10) generates an integer in [1, 10] uniformly at random.
We do experiment on four test instances with 50, 100, 500 and 1000 items. Fig. 2

shows the convergence curves of the best profits of BPSO and BPSOG in the four instances. The
BPSOG shows better diversification and intensification when it is fast convergence and finds out
the better profit value compared with BPSO.

It indicates the global search ability and the convergence ability of BPSOG. BPSOG out-
performed BPSO and ACROA in terms of convergence rate and profit amount.

As shown in Figs. 2, the BPSOG displays no premature convergence in average profits
throughout the iterations. The BPSO show premature convergence compared with BPSOG in 500
items test instances. The BPSOG shows better diversification and intensification when it is fast
convergence and finds out the better profit value compared with BPSO.

Table 3 shows the experimental results of the instances. We adopt the same termination
criterion, and the function evaluation limit is set to 100000, for all the test. For all the instances,
the BPSOG yields superior results compared with that of BPSO and ACROA. The series of ex-
perimental results demonstrate the superiority and effectiveness of BPSOG. In comparison with
BPSO and ACROA; the experimental results show that BPSOG outperforms the other algorithms
in both solution quality and computing time. The reason for this superior performance of BPSOG
is that our proposed algorithm has a good search ability and a greedy repair operator.

The ACROA is coded as describing in [14]. ACROA there is only parameter reactantNum
and it is set to 10. There are many possible PSO parameter setting. In this study, the parameters
for BPSO and BPSOG are setting as: inertia weight w = 2, local weight c1 = 2, global weight
c2 = 2.
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7. Conclusion
In this paper, a new algorithm has been proposed based on the binary particle swarm

optimization with a greedy to solve 0-1 knapsack problem efficiently. Two constraint techniques
based on penalty factor and greedy strategy is proposed to improve the efficiency of the proposed
algorithm. The simulation results on five state of the art benchmark instances and strong cor-
related data sets demonstrate that the proposed algorithm has superior performance compared
with previous algorithms. The new approach provides better quality solutions when solve large
scale instances.
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