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People with the hearing problems have different listening preferences and 

characteristics in hearing loss. So, hearing aids need algorithms that provide 

amplification based on frequency, so that the hearing-impaired persons can 

use hearing aids comfortably for a long duration. In this paper, a new 

algorithm is proposed for hearing aids in order to compensate for 

sensorineural and conductive hearing loss using discrete cosine transform 

(DCT). DCT coefficients of the input audio signal are multiplied with 

uniformly resampled and recursively modified audiogram values to 

compensate for hearing loss. This algorithm comprised of 4 stages namely 

precomputation to calculate gain values from audiogram, DCT, gain 

adjustment, and inverse DCT. In the above stated stages except 

precomputation, each stage requires only one matrix multiplication, which 

makes the proposed algorithm computational efficient. Performance of the 

proposed algorithm is compared with uniform filter banks, non-uniform filter 

banks, variable filter bank and reconfigurable filter banks. The algorithm is 

tested using audiograms with four different hearing loss cases. It is proved 

that the proposed algorithm provides less complexity, minimized delay and 

better matching with all types of audiograms, further, it also avoids 

degradation of audio signal due to sampling rate conversions in variable and 

reconfigurable filter banks. 
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1. INTRODUCTION 

Elderly people may not hear properly due to damaged nerve fibers and sensory cells of the inner 

ear [1]. Hearing aid may be used to compensate for this disability. The hearing aid is an electro acoustic 

device that amplifies sound signals to compensate for hearing loss. However, characteristics of hearing loss 

vary from person to person based on the hearing thresholds. It is considered that, normal hearing is between  

-10 to 20 dB, the mild hearing loss occurs between 20 to 40 dB, moderate is between 40 to 55 dB, moderately 

severe is between 55 to 70 dB and severe is 70 to 90 dB or profound greater than 90 dB [2], [3]. With a 

sensorineural hearing loss, one might lose only a certain band of frequency [4]. Thus, Normal hearing aid 

uniformly amplifies all frequencies in audio signals, but it needs to amplify only the sounds that can’t be hear 

by hearing-impaired, if not the louder sounds become unbearable [5]. Therefore, in hearing aids, a particular 

band of frequencies of audio signals are subjected for suitable gain adjustment based on an audiogram to 

make the person understand the speech. 

https://creativecommons.org/licenses/by-sa/4.0/
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In the present scenario, the research is carried on in the implementation of a signal processing 

algorithm to compensate for different types of hearing losses. Current studies focus on filter bank structures 

with less computational complexity in order to reduce the hardware complexity and also to increase the speed 

of operation. Foremost, and mostly used filter banks are uniform filter bank [6]-[8] and nonuniform filter 

bank [9]-[11]. Over the past decade, the researchers implemented distinguished efficient variable filter bank 

structures [12], [13] and reconfigurable filter banks [14]-[20] to get better matching with an audiogram and to 

reduce the computational complexity of filter banks.  

Considerably better match between the frequency response of the hearing aid and audiogram is 

achievable if a greater number of bands are assigned for a uniform and non-uniform filter bank. But a few 

drawbacks can be observed such as delay, power consumption, and the size of the hearing aid increase with 

the increase in the number of bands. In case of uniform and non-uniform filter banks one should compromise 

on either size and delay or matching error. To achieve better matching error with smaller delay and size filter 

bank structure should vary with type of the audiogram. Whereas, in uniform and non-unifrom filter banks the 

filter bank structure is fixed for all types of audiograms. To overcome these drawbacks, reconfigurable filter 

banks are introduced. In a reconfigurable filter bank the number of subbands in each band varies based on 

some parameters which gives different structures for different types of audiograms. Even in reconfigurable 

filter banks a shortcoming is observed, that it uses interpolation and decimation of filter coefficients and/or 

input signal to convert the sampling rate, which results in signal degradation and also, aliasing effect may 

occur due to sampling rate conversion. To overcome this hindering, the present research proposes a new 

technique in which the gains are adjusted in the frequency domain using DCT.  

In this technique, DCT coefficients are multiplied with uniformly re-sampled and recursively 

modified audiogram values to adjust gain in frequency domain, after gain adjustment the frequency domain 

signal is converted back to time domain using inverse DCT. Audiogram values are re-sampled at uniform 

intervals of frequency and they are modified to get minimum matching error. This precomputation is 

performed for each audiogram before loading gain values into the hearing aid. The proposed DCT based 

algorithm is better when compared to fixed filter banks and reconfigurable filter banks. This is better in terms 

of complexity as it has only 3 matrix multiplications to perform gain adjustment in the frequency domain. It 

gives better matching error as it uses recursive modifications of audiogram values based on matching error. 

This DCT based technique need preprocessing to get gain values from audiogram which is not required in 

filter bank structures that is the only disadvantage of the proposed technique. Audiogram preprocessing is 

performed before loading the gain values into the processor. So, it won't affect the speed of the hearing aid 

system. 

The proposed algorithm provides a simple solution to compensate for the hearing loss without any 

filter banks and sampling rate conversions. Totally 3 stages are needed for the whole process i) finding DCT 

for the input audio signal, ii) gain adjustment and iii) inverse DCT. The proposed algorithm is tested using 

audiograms with four different hearing loss cases such as mild hearing loss at high frequencies, mild to 

moderate hearing loss at low frequencies, moderate hearing loss at middle frequencies and mild conductive 

hearing loss. It is noted that the proposed algorithm provides less complexity, less delay and better matching 

with audiogram with all types of audiograms. It also avoids degradation of audio signal due to sampling rate 

conversions that are used in variable and reconfigurable filter banks. 

The paper is organized as follows: Section 2 deals with the implementation of the proposed DCT 

based algorithm. Section 3 discusses the precomputation to find the gain values from audiogram. In section 4, 

design examples and performance evaluation proposed algorithm are tested with audiograms with four 

different hearing loss cases. Section 5 brings in experimental results and analysis. Finally, the conclusion is 

drawn in section 6. 

 

 

2. PROPOSED DCT BASED ALGORITHM 

In this proposed technique, the audio signal is transformed to the frequency domain using DCT to 

amplify the audio signal as per the above requirement. The commonly used transform domain approaches are 

based on DCT [21]. DCT is used to convert the data into a sum of cosine wave trays of different frequencies. 

As the DCT coefficients are arranged in ascending order with respect to their corresponding frequencies, it is 

very easy to adjust the gains. Uniformly re-sampled and recursively modified audiogram values are 

multiplied with the DCT coefficients of the audio signal to perform the gain adjustment. Audiogram  

re-sampling is discussed in the precomputation section of this paper. Figure 1 represents the block diagram of 

the proposed algorithm. As per the block diagram, input audio signal sensed by microphone is given to 

analog to digital converter (ADC) which converts the analog audio signal into a digital audio signal. Then, 

that digital signal is transformed into the frequency domain using DCT transform. Output of the DCT block 

is DCT coefficients. Further, in the gain adjustment block DCT coefficients are multiplied with uniformly  
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re-sampled and recursively modified audiogram values. Then, inverse DCT transforms the amplified DCT 

coefficients into time domain. Finally, digital to analog converter (DAC) is to convert the digital auditory 

compensated signal to analog and given to the audio speaker. 

Figure 2 (a) explains the working procedure of the proposed algorithm. Consider the sampling 

frequency of the input audio signal Fs=16 kHz. In order to apply 80-point DCT on input signal 80 input 

samples need to be stored in the buffer. Then, apply 80-point DCT to the input samples stored in buffer to 

convert the time domain signal into frequency-domain. Later, in Figure 2 (b) the DCT coefficients are 

multiplied with uniformly re-sampled and recursively modified audiogram values to adjust gain values. Thus, 

to convert the amplified signals back to time-domain, apply 80-point inverse DCT. Now the output is time 

domain audio signal after gain adjustment. 
 

 

 
 

Figure 1. Block diagram for proposed algorithm 
 

 

  
(a) (b) 

 

Figure 2. These figures are; (a) working procedure of the proposed algorithm, and (b) modifying audiogram 

values recursively 

 

 

3. PRECOMPUTATION 

This section discusses how audiogram values are re-sampled and modified recursively in order to 

find the gain values that are needed to be adjusted in frequency domain. 

 

3.1.   Audiogram re-sampling 

Graph in Figure 3 (a) represents the audiogram values for the hearing loss case with mild hearing 

loss at mid frequency. Graph in Figure 3 (b) is the uniformly re-samples audiogram values at 100 Hz that 

mean sampling interval in frequency domain is 100 Hz. From the audiogram in Figure 4 (a), it is observed 

that the audiogram is recorded at non-uniform frequencies. In order to get uniformly sampled audiogram 

values from the above audiogram, it is needed to be re-sampled at uniform intervals of frequency. This can be 

implemented by a simple computer application by the audiologist before programming the digital hearing 

aid. Interpolation is needed for re-sampling of an audiogram and interpolated samples should be an average 

of previous and next sample values. As the audiogram is recorded at non-uniform frequencies it may require 

non-uniform interpolation; for example, if the new sampling interval in frequency domain is 100 Hz that 
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means if the audiogram needs to be re-sampled at every 100 Hz then between 500 Hz and 1000 Hz 4 samples 

need to be interpolated, whereas between 4000 Hz and 8000 Hz 39 samples are to be interpolated. This  

non-uniform re-sampling of the audiogram is explained in the equation. 

 
 

 
(a) 

 

 
(b) 

 

Figure 3. These figures are; (a) audiogram values, and (b) uniformly re-sampled audiogram values. 

 

 

In (2) F(k) contains the frequencies at which the audiogram is recorded. In (1), G(k) contains the 

gain values in the audiogram corresponding to the frequencies defined in the F(k). N is the index of the 

current interpolating sample among the N number of samples. N is the number of samples to be interpolated 

between (k-1)th and kth samples of the audiogram. Fd is the frequency difference between two int-erpolated 

samples (new uniform sampling interval in frequency domain) Fd =100. Elements in Gn(n,k) are expanded 

into a single vector of size 80 for Fd=100. 
 

𝐺𝑛(𝑘,𝑛) =  𝐺(𝑘 − 1) +
[𝐺(𝑘)−𝐺(𝑘−1)]𝑛

𝑁
 (1) 

 

where: 
 

𝑁 =  𝑟𝑜𝑢𝑛𝑑 [
𝐹(𝑘)−𝐹(𝑘−1)

𝐹𝑑
] (2) 

 

𝐹(0) = 𝐺(0) = 0 

 (3) 
 

3.2.   Recursive modification of audiogram values 

The proposed algorithm can be implemented directly but the matching error between audiogram and 

frequency response of the designed system is very high in some cases like moderate sensorineural hearing 

loss. To minimize this matching error, modification of gain values (audiogram re-sampled values) using a 

recursive algorithm is proposed. In this algorithm, the weighted matching error is recursively added to the 

uniformly re-sampled audiogram values. This process may be repeated till the matching error is reduced to 

minimum level. The number of iterations and the weight values depend on the type of audiogram. By trial 

and error, it is observed that the weight value is in between 0.1 and 1. Gain values are loaded into the hearing 

aid after re-sampling and modification. To generate modified gain values for the given audiogram this 
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algorithm is implemented on PC. Changes in matching error concerning the number of iterations and weight 

is explained in detail in the section V experimental results and analysis.  

The working procedure for recursively modifying audiogram gain values is shown in Figure 2 (b).  

In this process, gain values from audiogram are subjected to the uniformly re-sampling block to obtain 

uniformly re-sampled audiogram values. These gain values are recursively modified based on the matching 

error, if matching error is less than predefined threshold value then it undergoes one more iteration. Gain 

modification in this algorithm implies updating gain values with the weighted matching error 
 

 

4. DESIGN EXAMPLES AND PERFORMANCE EVALUATION 

The idea of the proposed algorithm for hearing aid is examined by using some examples. The 

performance of the proposed algorithm is evaluated using audiograms with four types of hearing loss cases. 

Based on levels of hearing thresholds, hearing losses are categorized as mild, moderate, moderately severe, 

severe and profound. Hearing loss cases like severe and profound may not be compensated using a hearing 

aid [22]. 

 

4.1.   Example 1: Audiogram for mild hearing loss at high frequencies 

The audiogram for mild hearing loss at high frequencies is shown in Figure 4 (a). The right ear 

hearing thresholds represented by 'O' are considered for compensation. According to the audiogram gain 

values are 5, 5, 5, 5, 35, 5 dB. Gain values are given to the re-sampling and recursively modification block, 

then obtained 80 uniformly sampled gain values at the output. Thus, these 80 gain values are provided to gain 

adjustment block. Gains are multiplied with the DCT coefficients of the audio signal in the gain adjustment 

block. After gain adjustment, apply inverse DCT to convert amplified DCT coefficients back to time domain. 

Figure 5 (a) shows the audiogram values and the frequency response of the hearing aid system. Figure 6 (a) 

represents the matching error between the re-sampled audiogram and the frequency response of the hearing 

aid system. Matching error is the difference between re-sampled audiogram values and the frequency 

response of the hearing aid system. From the above Figures 5 (a) and 6 (a) and Table 1, it is clear that the 

proposed algorithm performs better in terms of maximum matching error and delay, when compared with 

filter bank techniques. Maximum matching error is the maximum difference between audiogram and 

frequency response of the hearing aid system. From Table 2 the proposed DCT based algorithm gives 0.49 

dB matching error at 20 iterations and with weight 0.7. 

 
 

Table 1. Comparison of the proposed algorithm with the filter bank structures  

in [10], [11], [15], [23], [17], [19] 
Filter bank Example 1  Example 2 Example 3 Example 4 

Number 

of side 

bands 

Maximum 

Matching 

Error (dB) 

Delay 

(ms) 

Numbe

r of 

side 

bands 

Maximum 

Matching 

Error (dB) 

Delay 

(ms) 

Number 

of side 

bands 

Maximu

m 

Matchin

g Error 

(dB) 

De

lay 

(m

s) 

Number 

of side 

bands 

Maximum 

Matching 

Error (dB) 

Delay 

(ms) 

Direct 

design 

8  6.39  4.3  -  -  -  -  -  -  8  5.86  4.3 

[10]  10  9.61  15.7  8  3.2  5.7  8  9.2 15

.7 

 10  3.67  5.7 

[11]  16  2.10 12.8  -  -  -  -  -  -  -  -  - 

[15]  8  4.82  29  -  -  -  -  -  -  7  2.67  25 

[23]  7  5.63 12.1  -  -  -  -  -  -  7  1.84  2.1 

[17]  10  2.84  6.6  12  1.51  12  13  2.72  

18 

 11  1.49  12 

[19]  6  2.84 15.7

5 

 12  1.49  12 13 2.72  18  7  1.36 1.09 

Proposed 

algorithm 

-  1  7.4 - 0.88  7.4  - 1.87 7.

4  

-  0.15  7.4 

 

 

4.2.   Example 2: Audiogram for mild to moderate hearing loss at low frequencies 
According to the audiogram shown in Figure 4 (b) the gain values are 45, 35, 20, 10, 5, 10 

respectively. Figure 5 (b) represents the audiogram values and the frequency response of the hearing aid 

system. Figure 6 (b) represents the matching error. From Figures 5 (b), 6 (b), and Table 1 it is clear that the 

proposed algorithm performs better in terms of maximum matching error and delay, when compared with 

filter bank techniques. DCT based algorithm gives 0.88 dB matching error at 20 iterations and with  

weight 0.3. 
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4.3.   Example 3: Audiogram for moderate hearing loss at middle frequencies 
According to the audiogram shown in Figure 4 (c) the gain values are 10, 20, 40, 50, 20, and 10 

respectively. Figure 5 (c) shows the audiogram values and the frequency response of the hearing aid system. 

Figure 6 (c) represents the matching error. From the above results, it is clear that the proposed DCT based 

algorithm gives 1.87 dB matching error at 20 iterations and with weight 0.4 
 

4.4.   Example 4: Audiogram for mild conductive hearing loss 

According to the audiogram shown in Figure 4 (d) the gain values are 25, 25, 25, 35, 25, and 30 

respectively. Figure 5 (d) shows the audiogram values and the frequency response of the hearing aid system. 

Figure 6 (d) represents the matching error. It is clear from the above stated Figures 4 (d), 5 (d), 6 (d), and 

Table 1 that the proposed algorithm performs better when compared with all filter bank techniques. From 

Table 2 the proposed DCT based algorithm gives 0.15 dB matching error at 20 iterations and with weight 1. 

From the above examples, it is evident that the DCT based auditory compensation is simple to implement and 

has only 80 multipliers in each of three stages namely DCT, gain adjustment and inverse DCT. The matching 

error is minimum when compared with the fixed filter bank and the reconfigurable filter bank 
 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 4. Audiogram for; (a) Mild hearing loss at high frequencies, (b) Mild to moderate hearing loss at low 

frequencies, (c) Moderate hearing loss at mid frequencies, and (d) Mild conductive hearing  

loss [10], [17], [19] 
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(a) (b) 

  
(c) (d) 

 

Figure 5. Audiogram values and the frequency response of hearing aid for; (a) mild hearing loss at 

highfrequencies, (b) mild to moderate hearing loss at low frequencies, (c) moderate hearing loss at 

midfrequencies, and (d) mild conductive hearing loss 

 

 

Table 2. Maximum matching error for different hearing loss cases for given weights and the number 

ofiterations 

Audiogram No. of iterat-ions 
Maximum matching error for given weight 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Example 1 0 -11.27 -11.27 -11.27 -11.27 -11.27 -11.27 -11.27 -11.27 -11.27 -11.27 

5 -11.03 -10.67 -10 -9.2 -8.34 -7.4 -6.62 -5.82 -5.1 -4.44 

10 -10.63 -9.18 -7.56 -6.05 -4.73 -3.59 -2.6 -1.74 -1.28 -0.95 

15 -9.95 -7.59 -5.44 -3.7 -2.32 -1.36 -0.93 -0.65 -0.59 0.7 

20 -9.18 -6.14 -3.76 -2.01 -1.07 -0.67 0.49 0.7 0.76 0.72 

Example 2 0 -9.03 -9.03 -9.03 -9.03 -9.03 -9.03 -9.03 -9.03 -9.03 -9.03 

5 -6.43 -4.85 -3.63 -2.71 2.54 2.91 3.73 4.69 6.07 6.58 

10 -4.88 -2.77 1.98 2.45 2.22 -1.74 -3 -3.67 2.13 6.17 

15 -3.71 1.95 1.82 0.97 -1.68 -1.35 3.68 5.52 4.79 6.33 

20 -2.8 1.68 0.88 -1.06 1.37 1.62 -3.53 -3.74 6.49 -3.64 

Example 3 0 -14.48 -14.48 -14.48 -14.48 -14.48 -14.48 -14.48 -14.48 -14.48 -14.48 

5 -10.9 -8.88 -7.3 -6.14 -5.08 -4.22 -3.45 4.6 7.11 9.55 

10 -8.87 -6.06 -4.08 2.75 4.53 5.43 5.19 -6.16 -9.53 -12.5 

15 -7.34 -4.06 2.97 3.73 2.95 -5.31 -6.69 -6.38 16.17 -11.32 

20 -6.03 -2.52 3.14 1.87 -4.53 4.12 12.53 15.9 20 -199 

Example 4 0 -2.89 -2.89 -2.89 -2.89 -2.89 -2.89 -2.89 -2.89 -2.89 -2.89 

5 1.89 1.9 1.86 1.77 1.64 1.48 1.3 1.1 0.92 0.75 

10 1.89 0.75 1.47 1.16 0.88 0.68 0.54 0.45 0.4 0.35 

15 1.83 1.47 1.04 0.71 0.52 0.41 0.34 0.28 0.24 0.21 

20 1.73 1.18 0.73 0.49 0.37 0.29 0.24 0.2 0.17 0.15 
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(a) (b) 

  
(c) (d) 

 

Figure 6. Matching error for; (a) mild hearing loss at high frequencies, (b) mild to moderate hearing loss 

atlow frequencies, (c) moderate hearing loss at mid frequencies, and (d) mild conductive hearing loss. 
 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

Matching errors for different types of audiograms with the different number of iterations and 

weights are shown in the Table 2. From the Table 2, it is clear that the matching error changes with the 

number of iterations and weight. In the case of mild hearing loss at high frequency (example 1) better 

matching can be observed at weight greater than or equals to 0.7. In the case of mild to moderate hearing loss 

at low frequency and moderate hearing loss at middle frequency (example 2 and 3) better matching can be 

observed at weight between 0.3 and 0.7. Whereas in conductive hearing loss case, better matching can be 

observed at weight equals to 1. In all cases matching error reduces with an increase in the number of 

iterations. 

 By analyzing Table 2 we can observe that for all cases matching error is better at 20 iterations. If 

hearing loss is at high frequency weight should be between 0.7 and 0.9. In case of low frequency hearing loss 

weight should be between 0.3 and 0.6. From example 3 in case of middle frequency weight should be 

between 0.4 and 0.7. For conductive hearing loss weight should be 1. 

 The proposed algorithm is tested using an audio signal for the audiogram with mild hearing loss in 

high frequency as shown in Figure 4. The frequency-domain representation of the input audio signal and the 

amplified signals are shown in Figure 7 (a). Thus, it is clear that the gain is maximum at the frequencies 

greater than 2000 Hz and the gain is changing with the frequency concerning the audiogram. From  

time-domain waveforms shown in Figure 7 (b), it is clear that signals with high frequency are amplified with 

high gain values and low-frequency components are amplified with smaller gain values. 

 

5.1.   Delay analysis 

The proposed algorithm comprises three stages DCT, gain adjustment and inverse DCT. Before 

loading gain values into the hearing aid, Audiogram is re-sampled and modified. The proposed algorithm 

requires a buffer which is needed to compute the 80-point DCT. Total delay is the delay due to buffer plus 

delay of three matrix multiplications. According to [24], matrix multiplication with length 80 takes 0.8 ms, 

three such multiplications are needed for the proposed algorithm, so total delay due to matrix multiplications 

is tm=2.4 ms. According to the (4) proposed algorithm takes 5 ms delay due to the buffer size of 80 at the 
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input before applying DCT as shown in Figure 2 (a). From (5) the total delay between input and output signal 

is 7.4 ms. 

 

𝑇𝑏 =
𝑁

𝐹𝑠
 (4) 

 

where N is the size of the buffer in this case N=80, and Fs sampling frequency=16000 Hz. Therefore,  

Tb =5ms total delay. 

 

𝑇 =  𝑇𝑏 + 𝑇𝑚 =  5 + 2.4 =  7.4 𝑚𝑠 (5) 

 

5.2.   Computational efficiency 
To reduce the power consumption and delay hearing aid algorithm should be computationally 

efficient [25]. In the proposed algorithm DCT and IDCT takes more computations. One dimensional DCT 

and IDCT requires 2Nlog2(N) number of additions and multiplications, as shown Figure 7 [26]. So, 80-point 

DCT and IDCT takes 1120 number of multiplications and additions. To adjust the gain values in frequency 

domain 80 multiplication are needed. To perform the proposed algorithm on 80 samples, 1200 

multiplications and 1120 additions are required. Total 14 additions and 15 multiplications are needed for one 

sample. In [19], the number of multipliers are 67 including all subbands, from this it is clear that multiplier 

complexity is reduced by 77.61% 
 

 

 
 

(a) (b) 
 

Figure 7. Input and output of proposed hearing aid algorithm; (a) frequency domain representation and 

(b) time domain representation 

 

 

6. CONCLUSION 

In the present research, a DCT based auditory compensation using uniformly re-sampled and 

recursively modified audiogram values is implemented. The proposed algorithm provides a simple solution to 

compensate for the hearing loss without any filter banks and sampling rate conversions. Totally three stages 

are needed for the whole process: i) Finding DCT for the input audio signal, ii) Gain adjustment and iii) 

Inverse DCT. DCT coefficients of the audio signal are multiplied with uniformly re-sampled and recursively 

modified audiogram values to adjust the gains in frequency domain. The performance of the proposed 

algorithm is compared with different types of filter banks namely uniform filter bank nonuniform filter bank, 

variable filter bank and reconfigurable filter bank structures. The proposed algorithm is tested for different 

types of hearing loss cases like mild hearing loss at high frequencies, mild to moderate hearing loss at low 

frequencies, moderate hearing loss at middle frequencies and mild conductive hearing loss. From the above 

test, it is illustrated that the proposed DCT based algorithm provides better matching between the frequency 

response of hearing aid and audiogram. It is achieved with minimum delay and computational complexity. 
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