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 This article explores the measurement of temperature in transient states, 

utilizing the principles of heat transfer and thermal-electrical metaphor. The 

study focuses on the nonlinear thermal resistances present in various locations 

within a distribution transformer, while taking into account variations in oil 

physical variables and temperature loss. Real-time data obtained from heat 

run tests on a 250-MVA-ONAF cooled unit, conducted by the transformer 

manufacturer, is used to verify the thermal designs. The observations are then 

compared to the loading framework of the IEC 60076-7:2005 system. The 

findings of this research provide a better understanding of temperature 

measurement in transient states, particularly in distribution transformers, and 

can be applied to the design and development of more efficient and reliable 

transformer systems. 
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1. INTRODUCTION 

The significant proportion of infrastructure investment in generation and distribution power stations 

is characterize by power transformers. Moreover, the transformer is one of the costliest elements of an energy 

grid as the power transformer disruptions have a significant economic effect on the operation of the 

transmission grid. Identifying their status is thus important for achieving the objectives of optimizing return on 

investment and reducing the overall costs related to the operation of the transformer. The warm heating rate is 

amongst the most model aspects controlling the average lifespan of a transformer. Among the most important 

metrics in evaluating the life of power transformer is the winding warm temperature, as the highest aging rate 

happens at the highest point that encounters the greatest temperature. In addition, for the transformer to have a 

healthy average lifespan, the warm temperature must blow up the allowed maximum amount. 

It is commonly acknowledge that for a 6 °C rise in temperature, the insulation loss roughly doubles 

[1]. An effective warm temperature estimation is thus critical for both suppliers and users. There are a few 

ways to calculate the temperature; the first is to use fiber optical heating elements located at the windings' that 

anticipated the warmth. Thermal sensors mounted to the bottom of the fiber optics are normally mount between 

the isolated connector and the sprocket while their impulses are emit from the tank through the optical fiber. 

From over decades, major changes resolve the fiber optic being far too brittle and sensitive handling is need. 

https://creativecommons.org/licenses/by-sa/4.0/
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Precise calculation of warm temperature can be achieve from using this process. The IEEE and IEC loading 

manuals [2], [3] used to measure the temperature of the warm using heat-run experiment data and analytical 

variables. In addition, the temperature of the transformer rely on the exact failures in the transformer produced. 

This implies that the different transformer root and wind losses are important for deciding the winding intensity. 

The IEEE C.57.120 [4], [5] models can measure transformer losses. Even so, the real losses are required to 

determine the actual wind level, for example, the losses should be measure based on data. Iqteit and Yahya [6] 

described an automated transformer loss calculation, which requires a comprehensive measurement operation. 

Fuchs et al. [7] also constructed an enhanced real time tracking system for transformer damages, differentiating 

among iron core and copper losses. In addition to measuring the iron core, researchers incorporate eddy current 

and hysteresis loses and then use ohmic wind and stray losses to assess the conduction loss. Nevertheless, 

another such distinction among ohmic wind and stray losses is important since the stray losses arise in various 

parts of the transformer [8] and hence have only a slight influence on the intensity of the winding. 

Consequently, the temperature is primarily influence by losses in ohmic winding [9]–[11]. 

Figure 1 provides a simple thermal management system for power transformers, for which oil intensity 

within the windings is supposed to rise linearly from start to end, while the temperature differential here 

between pipe oil and the winding coil is steady during the winding phase [12], [13]. The change in the warmth 

temperature is greater than the change in the concentration of the coil at the tip of the wind, which can see in 

Figure 1 whenever the changes due to stray losses are factor into the equation. Even so, this conventional 

method of measuring temperature s has found to be insufficient in accordance with the real data recorded by 

fiber optic sensors [14], [15]. Blume et al. [16], [17] noted that there's still a time difference between the rising 

in top-oil temp as well as the rising in duct oil temp under dynamic loading. The consequence of this effect is 

that the wind hotspot rate is greater than the “IEEE loading guide clause 7” method, which is expected. 

It was introduced in [16] that calculations to accommodate for the oil duct temps, the difference in 

stator winding with temp, the difference in oil viscosity, the impact of the tap direction, as well as the difference 

in atmospheric temp (temp) as during load period, that were overlooked in the system of “Clause 7”. These 

updated calculations have been used in the “IEEE loading guide” [3] as option to the hotspot temperature 

measurement procedure termed as the “Annex G method”. In this article, a quantitative analysis was perform 

to measure the hotspot temperature amongst the two techniques specified in the IEEE loading guide [3]. In key 

findings of continuous load, load demand pattern and short-period overload scenarios, four transformers with 

various cooling mechanisms of “oil natural air natural (ONAN), oil natural air forced (ONAF), oil forced air 

forced (OFAF), and oil directed air forced (ODAF)”, the measurements of whom are provide in the appendix 

section, are being used to test the two approaches. Events of ONAF and OFAF measurement have been 

confirmed by thermal experiments and [16], [17] calculations. A MATLAB/simulink software was used to 

analyze the hotspot temperature and the consequential loss-of-life. 

 

 

 
 

Figure 1. Basic thermal diagram inside the transformer tank [6] 

 

 

2. TRANSFORMER THERMAL MODELS 

The sources from [4]–[8], and [18]–[24] discuss earlier stuff performed in this field of transformer 

thermal modeling. For all the temperature measurements and wind hotspot forecasts, which have been the IEC 

and IEEE scientific formulae, the normal approaches followed [18], [19] are inadequate for today's industry 

competency [20], [21]. Furthermore, basic temperature rise predictions, which have been conducted even now 

days by the traditional scientific formulae, are not just useful indicators for direct temp calculation or emulation. 

In an approach to strengthen the precision, further advanced models are now being updated with IEEE and IEC 
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loading guidelines aimed at a fair analysis of the oil temp within the winding, taking into account changes in 

winding resistance, oil viscosity and oil inertia. The energy balance formula will describe a thermal process. 

 

𝑞 × 𝑑𝑡 = 𝐶𝑡ℎ × 𝑑𝜃 +
𝜃−𝜃𝑎𝑚𝑏

𝑅𝑡ℎ
 × 𝑑𝑡 (1) 

 

The given equation includes several variables such as q, Cth, , Rth, and amb. These variables represent 

the heat generation, thermal capacitance, temperature, thermal resistance, and ambient temperature, 

respectively. The formula can be interpreted as (2). 

 

𝑞 = 𝐶𝑡ℎ ×
𝑑𝜃

𝑑𝑡
+
𝜃−𝜃𝑎𝑚𝑏

𝑅𝑡ℎ
  (2) 

 

Then, when the describtion a small electronic RC circuit as shown in Figure 2 makes a formula based on both 

the first principle of Kirchhoff and Ohm. 

 

𝑖 = 𝐶𝑒𝑙 ×
𝑑𝑢

𝑑𝑡
+

𝑢

𝑅𝑒𝑙
 (3) 

 

The (3) consists of four distinct variables, i, 𝐶𝑒𝑙, 𝑅𝑒𝑙, and u, which represent key components of the 

electrical system, including electrical current, electrical capacitance, electrical resistance, and electrical 

voltage, respectively. Merely, we achieve the comparison among electrical and thermal mechanisms by 

contrasting (3) and (2) as shown in Table 1. Figure 3, the analog thermal circuitry for the electrical process has 

provided. 
 

 

  
  

Figure 2. An electrical RC circuit Figure 3. The analogous thermal circuit 

 

 

Table 1. Thermal-electrical analogy 
Thermal Electrical 

Generated heat 𝑞 Current 𝑖 
Temperature 𝜃 Voltage 𝑢 

Resistance 𝑅𝑡ℎ Resistance 𝑅𝑒𝑙 
Capacitance 𝐶𝑡ℎ Capacitance 𝐶𝑒𝑙 

 

 

2.1.  The non-linear thermal resistance 

The nonlinear oil thermal resistance, 𝑅𝑡ℎ−𝑜𝑖𝑙 (𝑚
2K)/W, in accordance with the findings of energy 

transfer the corresponding formula is express in (4). 

 

𝑅𝑡ℎ−𝑜𝑖𝑙 =
1

ℎ×𝐴
=
∆𝜃𝑜𝑖𝑙

𝑞
 (4) 

 

In the (4), h represents the heat transfer coefficient, A is the area, ∆𝜃𝑜𝑖𝑙 corresponds to the oil temperature 

gradient, and q indicates the amount of heat generated by the relevant losses. The natural flow of convection 

oil across longitudinal, leaned and vertical sheets and tubes can be determined by the following integral 

approach on the basis of heat transfer theory [14]–[16]. 

 

𝑁𝑢 = 𝐶 × [𝐺𝑟 × 𝑃𝑟]
𝑛 (5) 

 

The coefficients C and n depend on whether the oil circulation is laminar or turbulent, and they are obtained 

empirically. The Nusselt number (𝑁𝑢), Prandtle number (𝑃𝑟), and Grashof number (𝐺𝑟) describe in (3) to (6). 
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𝑁𝑢=
ℎ×𝐿

𝑘
 (6) 

 

𝑃𝑟 =
𝑐𝑜𝑖𝑙×𝜇

𝑘
 (7) 

 

𝐺𝑟 =
𝐿3×𝜌𝑜𝑖𝑙

2 ×𝑔×𝛽×(∆𝜃𝑜𝑖𝑙)

𝜇2
 (8) 

 

Where the L represents the characteristic dimension of the system, which could be the length, width, or 

diameter of the transformer. The symbol g stands for the gravitational constant, k denotes the thermal 

conductivity of the transformer oil, 𝜌𝑜𝑖𝑙 is the density of the oil, 𝛽 represents the oil thermal expansion 

coefficient, 𝑐𝑜𝑖𝑙 is the specific heat of the oil, μ represents the viscosity of the oil, and ∆𝜃𝑜𝑖𝑙 stands for the oil 

temperature gradient (K). The continuity equation is achieve by supplementing the (6) to (8) into (5). 

 

ℎ×𝐿

𝑘
=C× [(

𝑐𝑜𝑖𝑙×𝜇

𝑘
) × (

𝐿3×𝜌𝑜𝑖𝑙
2 ×𝑔×𝛽×(∆𝜃𝑜𝑖𝑙)

𝜇2
)]
𝑛

 (9) 

 

Including all transformer isolation oils, it's indeed usually correct that the temp difference of the 

operating temp is far greater than many of the other oil variables [18]–[20], [25]. It is also possible to substitute 

all physicochemical characteristics of the oil except perhaps the viscosity in (9) with a standard. Even so, if the 

effect of all oil variables needs to be weight, the foregoing actions should take. The (10) for the thermal 

conductivity will be estimate by the following: 

 

ℎ = 𝐶1 × (∆𝜃𝑜𝑖𝑙 ×
𝜌2×𝛽×𝑐𝑜𝑖𝑙×𝑘

(1−𝑛)
𝑛

𝜇
)

𝑛

 (10) 

 

where 𝐶1 is assumed to be a constant, and is now expressed as (11). 

 

𝐶1 = 𝐶 × [𝑔 × 𝐿
(
3𝑛−1

𝑛
)]
(𝑛)

 (11) 

 

As well as the temp difference of all oil variables is shown by the corresponding equation [20], [21]. 

 

𝜇 = 𝐴1 × 𝑒
[

𝐴2
𝜃𝑜𝑖𝑙+273

]
 (12) 

 

𝑐𝑜𝑖𝑙 = 𝐴3 × 𝐴4𝜃𝑜𝑖𝑙 (13) 

 

𝜌𝑜𝑖𝑙 = 𝐴5 × 𝐴6𝜃𝑜𝑖𝑙 (14) 

 

𝑘 = 𝐴7 × 𝐴8𝜃𝑜𝑖𝑙 (15) 

 

𝛽 = 𝐴9 (16) 

 

Table 2 lists the nine conditions for the two structural component oils. 

 

 

Table 2. Insulation oil constants [18], [20] 
Oil/constant Transformer oil Oil/constant Transformer oil 

A1 0.13573x10-5 A6 -0.659 

A2 2797.3 A7 0.124 

A3 1960 A8 -1.525x10-4 

A4 4.005 A9 8.6x10-4 

A5 887   

 

 

2.2.  The top-oil temp model 

As a thermal chain, Figure 4 offers the top-oil temp model. Centered on the principle of heat flow and 

thermal-electrical analogy [1]–[3], [14]. Where, the total heat generated by losses in a transformer is 
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represented by 𝑞𝑡𝑜𝑡 , with 𝑞𝑓𝑒  indicating the heat generated by no-load losses and 𝑞𝑙  representing the heat 

generated by load losses. The equivalent thermal capacitance of the transformer oil is denoted by 𝑐𝑡ℎ−𝑜𝑖𝑙 , and 

𝜃𝑜𝑖𝑙  represents the top oil temperature. The non-linear oil to air thermal resistance is represented by 

𝑅𝑡ℎ−𝑜𝑖𝑙−𝑎𝑖𝑟 , and 𝜃𝑎𝑚𝑏 represents the ambient temperature. Two basic heating elements reflect the heat 

produced by certain no-load and load transformer falls and the atmospheric temp is described as a value 

obtained of temp [1], [2]. The nonlinear system seen in Figure 3 for the thermal system is: 

 

𝑞𝑓𝑒 + 𝑞𝑙 = 𝐶𝑡ℎ−𝑜𝑖𝑙 ×
𝑑𝜃𝑜𝑖𝑙

𝑑𝑡
+
(𝜃𝑜𝑖𝑙−𝜃𝑎𝑚𝑏)

𝑅𝑡ℎ−𝑜𝑖𝑙−𝑎𝑖𝑟
 (17)  

 

if we replace the non-linear heat transfer formula (4) with (17), the corresponding model is solved. 

 

𝑞𝑓𝑒 + 𝑞𝑙 = 𝐶𝑡ℎ−𝑜𝑖𝑙 ×
𝑑𝜃𝑜𝑖𝑙

𝑑𝑡
+
(𝜃𝑜𝑖𝑙−𝜃𝑎𝑚𝑏)

1

ℎ×𝐴

 (18)  

 

After which, by replacing the thermal conductivity variables for formula (10), h, the differential equation is 

modified to, 

 

(𝑞𝑓𝑒 + 𝑞𝑙) ×
(

𝜇

𝜌2×𝛽×𝑐𝑜𝑖𝑙×𝑘
(1−𝑛)/𝑛)

𝑛

𝐶1×𝐴
=
(

𝜇

𝜌2×𝛽×𝑐𝑜𝑖𝑙×𝑘
(1−𝑛)/𝑛)

𝑛

𝐶1×𝐴
× 𝐶𝑡ℎ,𝑜𝑖𝑙 ×

𝑑𝜃𝑜𝑖𝑙

𝑑𝑡
+ (𝜃𝑜𝑖𝑙 − 𝜃𝑎𝑚𝑏)

1+𝑛(19) 

 

after that, the parameter can be described as (20)-(24). 

 

𝜇 = 𝜇𝑝𝑢 × 𝜇𝑟𝑎𝑡𝑒𝑑 (20) 

 

𝜌 = 𝜌𝑝𝑢 × 𝜌𝑟𝑎𝑡𝑒𝑑 (21) 

 

𝛽 = 𝛽𝑝𝑢 × 𝛽𝑟𝑎𝑡𝑒𝑑 (22)  

 

𝑐 = 𝑐𝑝𝑢 × 𝑐𝑟𝑎𝑡𝑒𝑑   (23) 

 

𝑘 = 𝑘𝑝𝑢 × 𝑘𝑟𝑎𝑡𝑒𝑑 (24)  

 

As well as the parameters that follow, the measured thermal non-linear instance, 𝑅𝑡ℎ−𝑜𝑖𝑙−𝑎𝑖𝑟,𝑟𝑎𝑡𝑒𝑑, the 

measured temp of the top oil rises above the ambient temp, ∆𝜃𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑: 

 

∆𝜃𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑 = (𝑞𝑓𝑒 + 𝑞𝑙)𝑟𝑎𝑡𝑒𝑑 × 𝑅𝑡ℎ−𝑜𝑖𝑙−𝑎𝑖𝑟,𝑟𝑎𝑡𝑒𝑑 (25) 

 

𝑇ℎ𝑒 𝑟𝑎𝑡𝑒𝑑 𝑡𝑜𝑝 − 𝑜𝑖𝑙 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝜏_(𝑜𝑖𝑙, 𝑟𝑎𝑡𝑒𝑑).  
 

𝜏𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑 = 𝑅𝑡ℎ−𝑜𝑖𝑙−𝑎𝑖𝑟,𝑟𝑎𝑡𝑒𝑑, × 𝐶𝑡ℎ−𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑 (26) 

 

The proportion of load losses to no-load losses at nominal current, R, 

 

R=
𝑞𝑙

𝑞𝑓𝑒
 (27) 

 

and the load factor, K. 

 

K=
𝐼

𝐼𝑟𝑎𝑡𝑒𝑑
 (28) 

 

Then expression (19) is simplified to its exact from (29). 

 

1+𝑅+𝐾2

1+𝑅
× (

𝜇𝑝𝑢

𝜌𝑝𝑢
2 ×𝛽𝑝𝑢×𝑐𝑜𝑖𝑙,𝑝𝑢×𝑘𝑝𝑢

(1−𝑛)/𝑛)

𝑛

× ∆𝜃𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑 = (
𝜇𝑝𝑢

𝜌𝑝𝑢
2 ×𝛽𝑝𝑢×𝑐𝑜𝑖𝑙,𝑝𝑢×𝑘𝑝𝑢

(1−𝑛)/𝑛)

𝑛

× 𝜏𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑 ×
𝑑𝜃𝑜𝑖𝑙

𝑑𝑡
+

(𝜃𝑜𝑖𝑙−𝜃𝑎𝑚𝑏)
1+𝑛

∆𝜃𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑
𝑛  (29) 
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2.3.  The hot-spot temp model 

The comparison of non-linear opposition here between protective coating surface and the wind 

surface, the hotspot temp method, which would be centered on the top oil temp will be established. The 

framework is founded on the principle of traditional energy transfer. The hot-spot temp model is also depicted 

as a spectral network, comparable to the traditional heat transfer practice for the top-oil temp framework and 

the non-linear heat capacity as Figure 5 shows [1], [2]. 

 

 

  
  

Figure 4. The top-oil temp model Figure 5. The hot-spot temperature model 

 

 

The parameters in the figure include 𝑞𝑤𝑑𝑛, which represents the heat generated by winding losses, 

𝐶𝑡ℎ−𝑤𝑑𝑛, which is the thermal capacitance of the winding, 𝜃ℎ𝑠, which is the hot-spot temperature, 𝑅𝑡ℎ−ℎ𝑠−𝑜𝑖𝑙, 
which is the nonlinear thermal resistance between the winding and the oil, and 𝜃𝑜𝑖𝑙, which is the temperature 

of the top oil. The vibrational wind is determined using an expression for oil thermal conductivity. 

 

𝑅𝑡ℎ−ℎ𝑠−𝑜𝑖𝑙 = 𝑅𝑡ℎ−𝑤𝑑𝑛 + 𝑅𝑡ℎ−𝑖𝑛𝑠𝑢𝑙 + 𝑅𝑡ℎ−𝑖𝑛𝑠𝑢𝑙−𝑜𝑖𝑙  (30)  

 

The thermal resistances used in the model include the winding thermal resistance 𝑅𝑡ℎ−𝑤𝑑𝑛, winding insulation 

thermal resistance 𝑅𝑡ℎ−𝑖𝑛𝑠𝑢𝑙, and non-linear winding insulation to oil thermal resistance 𝑅𝑡ℎ−𝑖𝑛𝑠𝑢𝑙−𝑜𝑖𝑙. By 

comparing the resistances provided in (30), the properties of the transformer can be analyzed: 

 

𝑅𝑡ℎ−𝑖𝑛𝑠𝑢𝑙−𝑜𝑖𝑙 ≫ 𝑅𝑡ℎ−𝑤𝑑𝑛 (31) 

 

𝑅𝑡ℎ−𝑖𝑛𝑠𝑢𝑙−𝑜𝑖𝑙 ≫ 𝑅𝑡ℎ−𝑖𝑛𝑠𝑢𝑙 (32) 

 

for the warm conditions recorded on the insulation's outermost layer twisted across the conductors [22], [23]. 

The critical value for the nonlinear wind to thermal conductivity of oil is therefore: 

 

𝑅𝑡ℎ−ℎ𝑠−𝑜𝑖𝑙 =
1

ℎ×𝐴
 (33) 

 

for both the top oil temp framework, the expression (27) is identical to (4), so the coefficient for the temp 

profile, h, is completely equivalent to the temp profile in (10). 

 

h= 𝐶1 × (∆𝜃𝑜𝑖𝑙 ×
𝜌2×𝛽×𝑐𝑜𝑖𝑙×𝑘

(1−𝑛)
𝑛

𝜇
)

𝑛

 (34) 

 

In which all the parameters of the oil are reassessed at the top temp of the oil and ∆𝜃ℎ𝑠 is now the hot-

spot to top-oil temp gradient. The nonlinear system is shown Figure 4 for the thermal circuitry is: 

 

𝑞𝑤𝑑𝑛 = 𝐶𝑡ℎ−𝑤𝑑𝑛 ×
𝑑𝜃ℎ𝑠

𝑑𝑡
+
(𝜃ℎ𝑠−𝜃𝑜𝑖𝑙)

𝑅𝑡ℎ−ℎ𝑠−𝑜𝑖𝑙
 (35) 

 

if the non-linear thermal conductivity model replaced (34), with (35), the corresponding model is solved. 

 

𝑞𝑤𝑑𝑛 = 𝐶𝑡ℎ−𝑤𝑑𝑛 ×
𝑑𝜃ℎ𝑠

𝑑𝑡
+

(𝜃ℎ𝑠−𝜃𝑜𝑖𝑙)
1

ℎ×𝐴

 (36) 

 

After which, by replacing the thermal conductivity expression, (34) with (36), the dynamic model is 

modified to:  
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𝑞𝑤𝑑𝑛 ×
(

𝜇

𝜌2×𝛽×𝑐𝑜𝑖𝑙×𝑘
(1−𝑛)/𝑛)

𝑛

𝐶1×𝐴
=
(

𝜇

𝜌2×𝛽×𝑐𝑜𝑖𝑙×𝑘
(1−𝑛)/𝑛)

𝑛

𝐶1×𝐴
× 𝐶𝑡ℎ−𝑤𝑑𝑛 ×

𝑑𝜃ℎ𝑠

𝑑𝑡
+ (𝜃ℎ𝑠 − 𝜃𝑜𝑖𝑙)

1+𝑛(37) 

 

The average hot-spot non-linear to top-oil thermal conductivity, 𝑅𝑡ℎ−ℎ𝑠−𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑, The measured hot-spot 

temp rises above the temp of the top oil, ∆𝜃ℎ𝑠,𝑟𝑎𝑡𝑒𝑑, as shown in (38). 

 
∆𝜃ℎ𝑠,𝑟𝑎𝑡𝑒𝑑, = 𝑞𝑤𝑑𝑛,𝑟𝑎𝑡𝑒𝑑 × 𝑅𝑡ℎ−ℎ𝑠−𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑 = 𝐻 × 𝑔𝑟  (38) 

 

Whereas the hot-spot factor H and the rated average winding to average oil temp gradient 𝑔𝑟 are defined in 

reference [24]. The rated winding time constant 𝜏𝑤𝑑𝑛,𝑟𝑎𝑡𝑒𝑑,, is: 

 

𝜏𝑤𝑑𝑛,𝑟𝑎𝑡𝑒𝑑, = 𝑅𝑡ℎ−ℎ𝑠−𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑 ,× 𝐶𝑡ℎ−𝑤𝑑𝑛,𝑟𝑎𝑡𝑒𝑑 (39) 

 

𝑝𝑤𝑑𝑛,𝑝𝑢(𝜃ℎ𝑠) = 𝑝𝑑𝑐,𝑝𝑢 × (
𝜃ℎ𝑠+𝜃𝑘

𝜃ℎ𝑠,𝑟𝑎𝑡𝑒𝑑+𝜃𝑘
) + 𝑝𝑒𝑑𝑑𝑦,𝑝𝑢 × (

𝜃ℎ𝑠,𝑟𝑎𝑡𝑒𝑑+𝜃𝑘

𝜃ℎ𝑠+𝜃𝑘
) (40) 

   

where, 𝑃𝑑𝑐,𝑝𝑢(𝜃ℎ𝑠) and 𝑃𝑒𝑑𝑑𝑦,𝑝𝑢(𝜃ℎ𝑠) The activity of the DC and eddy drops is defined as a temp function, the 

DC losses vary with the temperature directly, while the eddy losses vary with the temp inverse proportion. 𝜃𝑘 

It is the loss adjustment temperature variable, equivalent to 225 for aluminum and 235 for copper. It implies 

that the definitive formula is: 

 

{𝑘2 × 𝑝𝑤𝑑𝑛,𝑝𝑢(𝜃ℎ𝑠) } × (
𝜇𝑝𝑢

𝜌𝑝𝑢
2 ×𝛽𝑝𝑢×𝑐𝑜𝑖𝑙,𝑝𝑢×𝑘𝑝𝑢

(1−𝑛)/𝑛)

𝑛

× ∆𝜃ℎ𝑠,𝑟𝑎𝑡𝑒𝑑 = (
𝜇𝑝𝑢

𝜌𝑝𝑢
2 ×𝛽𝑝𝑢×𝑐𝑜𝑖𝑙,𝑝𝑢×𝑘𝑝𝑢

(1−𝑛)/𝑛)

𝑛

× 𝜏ℎ𝑠,𝑟𝑎𝑡𝑒𝑑 ×
𝑑𝜃ℎ𝑠

𝑑𝑡
+
(𝜃ℎ𝑠−𝜃𝑜𝑖𝑙)

1+𝑛

∆𝜃ℎ𝑠,𝑟𝑎𝑡𝑒𝑑
𝑛

 (41) 

 

the effect of capacitors that may optimize the maximum electrical power saving is shown in [26], where [27] 

calculates the transformer minimum energy loss. 

 

 

3. SIMULATION MODEL 

In MATLAB/simulink, the thermal coefficients are patterned. The coefficients are solved 

simultaneously using the system of Runge-Kutta. The requisite variables for the model are based on data 

obtained from the standard heat run test carried out by the supplier of the transformer. Each one phase the 

formula of the top oil model (29) is resolved by K, 𝜇𝑝𝑢, 𝜌𝑝𝑢, 𝛽𝑝𝑢, 𝑐𝑜𝑖𝑙,𝑝𝑢, 𝑘𝑝𝑢𝑎𝑛𝑑 𝜃𝑎𝑚𝑏 are the input variable 

while 𝜃𝑜𝑖𝑙 The output vector, although both are time constants, is t. Figure 6 presents a schematic diagram of 

the thermal model for measuring temperature during transient states in a distribution transformer. The applied 

top oil design is demonstrated in Figure 6(a).  

As seen in the condensed Figure 6(b), the measured top oil temp is the input atmospheric temp for the 

hot spot method. Each one phase the formula of the top oil model (29) is resolved by K, 

𝜇𝑝𝑢, 𝜌𝑝𝑢, 𝛽𝑝𝑢, 𝑐𝑜𝑖𝑙,𝑝𝑢, 𝑘𝑝𝑢, 𝑃𝑤𝑑𝑛,𝑝𝑢(ℎ𝑠) 𝑎𝑛𝑑 𝜃𝑜𝑖𝑙 are the input variable while 𝜃ℎ the output vector, although both 

are time constants, is t. And use the block diagram seen in Figure 7, the applied top oil design is demonstrated.is 

the output variable which all are functions of time, t.  

 

Where Q1 =
1+𝑅+𝐾2

1+𝑅
× (

𝜇𝑝𝑢

𝜌𝑝𝑢
2 ×𝛽𝑝𝑢×𝐶𝑜𝑖𝑙,𝑝𝑢×𝑘𝑝𝑢

(1−𝑛)
𝑛

)

𝑛

× ∆𝜃(𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑)  

 

Q2 =
1

(

 
 𝜇𝑝𝑢

𝜌𝑝𝑢
2 ×𝛽𝑝𝑢×𝐶𝑜𝑖𝑙,𝑝𝑢×𝑘𝑝𝑢

(1−𝑛)
𝑛

)

 
 

𝑛

×𝜏(𝑜𝑖𝑙,𝑟𝑎𝑡𝑒𝑑)

  

 

𝑄3 = 𝑘2 × 𝑃𝑤𝑑𝑛,𝑝𝑢(𝜃ℎ𝑠) × (
𝜇𝑝𝑢

𝜌𝑝𝑢
2 ×𝛽𝑝𝑢×𝐶𝑜𝑖𝑙,𝑝𝑢×𝑘𝑝𝑢

(1−𝑛)
𝑛

)

𝑛

× ∆𝜃(ℎ𝑠,𝑟𝑎𝑡𝑒𝑑)  
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(a) (b) 

  

Figure 6. The schematic diagram model: (a) block diagram of top oil model and (b) simplified diagram of 

the thermal model 

 

 

 
 

Figure 7. Block diagram of hot spot model 
 

 

4. SIMULATION RESULATS 

This section presents the temperature results obtained from three different transformer modules and 

various types of tanks during various load tests. These results were obtained using equations (29) and (41) and 

were compared to the IEC 60076-7:2005 loading guide method. The data used in this analysis was derived 

from the normal heat training session conducted by the transformer company. 

 

4.1.  Transformers with external cooling 

Winding temperature restricts the loading of the transformer, so the temperature of the power 

transformer must maintain beyond a certain boundaries prescribed by regulatory requirements for maximum 

load and normal ambient temperature. The inrush current temperature is not standardized, and the decentralized 

control is usually the winding's elevated temperatures portion, named the winding hot spot temperature. The 

insulated temperature is the key element in the ageing of the transformer. The sheet separation is translocated 

with the temperature and time reflecting the end of the insulated materials' operation, which is known as the 

terminal phase of the transformer. 
 

 

Table 3. The load steps for the 250 MVA transformer 
Time period (minutes) Load 

0.0-187.4 1.0 

187.4-364.9 0.6 

364.9-503.4 1.5 

503.4-710.0 0.3 

710.0-735.0 2.1 

735.0-750.0 0.0 

 

 

Figure 8 shows the rated impedances for the 250 MVA transformer, which were 230±8 x 1.5 

percent/118/21 kV. Figure 8(a) and Figure 8(b) illustrate the load steps for the transformer as presented in 

Table 3. The oil flow through the 118 kV and 230 kV windings was directed in a zigzag pattern by oil directing 

circles. The top-oil temperature is presented in Figure 9. 
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(a) (b) 

  

Figure 8. Load steps and hot-spot temperature of the 250 MVA ONAF-cooled transformer:  

(a) load steps and (b) hot-spot temperature of the 118 kV winding 

 

 

 
 

Figure 9. The top-oil temperature of the 250 MVA ONAF-cooled transformer 

 

 

5. CONCLUSION 

This article analyzes an effort by the established thermal electric comparison approach to analyze the 

specific hot-spot temperature physical analysis for more detailed temperature measurements during load 

variations. The specific thermal model for the top-oil is often analyzed by the thermal electrical analogy 

approach used, taking into account the influence of atmospheric temperature on the top-oil temperature. The 

constants (n) used to define the spectral gradient for the top oil numerical simulation model and the hot spot 

thermal model are crucial for different cooling mechanisms and transformer architectures. These models were 

defined in the equations used throughout this research. In the numerical simulation, both oil variable 

modification and loss variance with temperature are taken into consideration. The findings acquired by the 

numerical simulation take into consideration of all variations in oil physical variables and the difference in loss 

with temperature is in fair accordance with the findings plotted by the thermal model. The results stated that, 

it is worth noting that the IEC 60076-7:2005 loading guide method results less well with the results obtained 

by thermal model. 
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