
TELKOMNIKA, Vol. 11, No. 8, August 2013, pp. 4633~4638 
e-ISSN: 2087-278X 
      4633 

  

Received January 13, 2013; Revised May 19, 2013; Accepted May 29, 2013 

A Switched IMM Estimator based on the Model 
Probability Cumulant 

 
 

Guang-Nan Zhang*1, Jin-Long Yang2 
1Department of Computer Science, Baoji University of Arts and Science, Baoji 721007, P. R. China,  

Ph: 09173364310 
2School of Electronic Engineering, Xidian University, Xi’an 710071, P. R. China, ph: 09173364310 

*Corresponding author, e-mail: zgn_2003@163.com 
 
 

Abstract 
Taking into account the disadvantage of the potential loss of accuracy due to the 

overmodeling at these nonmaneuvering times in the interacting multiple model (IMM) method, an 
improved IMM algorithm based on the Viterbi technique and the model probability cumulant is 
proposed. First, select one or two optimal models from the model set to enhance the model utilization 
rate. Then, judge the variation of the target motion state according to the maneuvering detection 
mechanism based on the model probability cumulant, and finally switch the different IMM methods. 
Simulation results show that the proposed method has an enhanced performance in tracking a 
maneuvering target. 
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1. Introduction 

The interacting MM (IMM) algorithm [1] is a popular suboptimal method for the 
maneuvering target tracking, where multiple models with different structures or processing noise 
levels are used to describe the target motion and the final estimate is obtained by a weighted 
sum of the estimates from every filter of the different models. Nevertheless, It has the 
drawbacks of an unnecessary amount of computations when the target is not maneuvering and 
the potential loss of accuracy due to the overmodeling at these nonmaneuvering times. For this 
problem, the reweighted IMM (RIMM) method proposed in [2] is based on the incorporation of 
the alternating expectation condition maximization method into the IMM method. Although it can 
enhance the performance of the IMM method, its weight calculations is more complicated with 
high computational load. Variable structure MM (VSMM) method [3] can decrease the 
computational cost and avoid the potential loss of accuracy. However, this method need some 
priori information to select an admissible model set at any given time. Recently, the extended 
Viterbi IMM (IMM-EV) algorithm is proposed in [4], which have an improved performance for a 
maneuvering target tracking with moderate computational cost. However, the selection of the 
number of the optimal model will decide the performance of the IMM-EV algorithm, and the 
number is hard to be determined without some prior information.  

To solve the aforementioned problem, an improved IMM algorithm based on the IMM-
EV method is proposed in this letter. Firstly, the optimal model is selected in the model set 
according to the Viterbi technique. Then, judge the variation of the target motion state according 
to the maneuvering detection mechanism based on the model probability cumulant, and finally 
switch the different IMM methods. Simulation results show that the proposed method has an 
enhanced performance in tracking a maneuvering target. 

 
 

2. Extended Viterbi IMM Method 
Extended Viterbi (EV) algorithm is a dynamic programming algorithm, which is used to 

solve the decoding problem of the hidden Markov model by forward iteration. Recently, this 
method has been widely used in the fields of target tracking, data association and 
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communication [4-8]. In order to select the optimal model among the model set of the IMM 
method, extended Viterbi technique is combined with the IMM algorithm, referred to as IMM-EV 
algorithm in [4]. The steps are simply described as follows. 

Given n  models, and an integer m  with 1 m n  . Let the initial model probability be 

0 ( ) jj  , 0 1j  , 1,...,j n , and 
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Step 3: Parallel filter. Mixed state estimates 0
1ˆ j

kx  and state error covariance matrices 
0

1
j

kP  are used to calculate predicted state | 1ˆ j
k kx  and covariance | 1

j
k kP  matched the model j

kM . 

Then calculate the update state | 1ˆ j
k kx  and covariance | 1

j
k kP , respectively. 

Step 4: Calculate model probability. 
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Where ( ) [ ; 0, ]j j

k k kj N  v S  is the likelihood function. 
| 1ˆj j j

k k k k k  v z H x  is the innovation 

with zero mean and covariance j
kS . Extended Kalman filter (EKF) [9] is employed to achieve 

the passive maneuvering target tracking in this letter. 
Step 5: Calculate the mixture probability of the m  best models. 
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Remarks. In the IMM-EV algorithm, we define the IMM-EV1 ( 1m  ) and the IMM-EV2 

( 2m  ) algorithms by the different value of m . The difference of these two methods is that the 
IMM-EV1 method has a better performance in tracking an uniform motion target, and its 
performance will decrease seriously when tracks a maneuvering target. While the IMM-EV2 has 
a better performance in tracking a maneuvering target, its performance will decline seriously 
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and inferior to the IMM-EV1 method when tracks a uniform motion target. In summary, the IMM-
EV1 method is more suitable for an uniform motion target tracking, while the IMM-EV2 method 
is more suitable for a maneuvering target tracking.  
 
 
3. Improved IMM-EV Algorithm 

To solve the aforementioned problem, we propose an improved IMM-EV algorithm, 
referred to as switched IMM-EV (SIMM-EV) algorithm based on a new maneuvering detection 
mechanism. The proposed method can switch the IMM-EV1 method and IMM-EV2 method 
correctly, i.e., implement the IMM-EV1 method when the target takes an uniform motion, 
otherwise, implement the IMM-EV2 algorithm.  

As known, model probability reflects the real motion feature of the maneuvering target 
in the IMM filtering. The model probability will change markedly when the target motion mode 
changes, and there will be a short-term model transition. But several intervals later, the model 
probability will tend to a stable value. In order to accurately determine the real motion mode of 
the maneuvering target, define the model probability cumulant as: 

 

1

( , ) ( )
k

k i
d

i k d

k i   

  

                                                            (5) 

 
Where ( )i  denotes the model probability which plays a main role at time i ,   denotes the 

decay factor with 0 1  , and d  denotes the number of the time interval. As can be seen in 
Equation (5), multi-scan model probabilities are considered, which are used to avoid the 
incorrect judgement of the real motion mode due to the sudden change of a single-scan model 
probability. 

The variation of the model probability cumulant between the L  intervals is defined as: 
 

| ( , ) ( , ) |L d dk L k                                                       (6) 

 
Where L  is a given constant, and it is an integer time of the sampling period. 

If L   , we can determine that the motion mode of the target changes in the time 

interval [ ,  ]k L k  and the minimum of l  can be further computed according to Equation (7). 

Then the time k l  can be considered as the accurate change time of the motion mode. 
 

| ( , ) ( , ) |d dk l k      ，1 l L                                               (7) 

 
The steps of the proposed algorithm are described as follows：  

Step 1: Initialization. Set the initial parameters , d , L  and the initial model 

probability 0 ; 

Step 2: Implement the IMM-EV1 method, and the EKF method [7] is employed for the 
passive tracking system; 

Step 3: Calculate the model probability cumulant of the model playing a main role 
according to Equation (6), and judge whether the target motion mode makes a change; 

Step 4: If the target motion mode remain unchanged, keep the previous filter method, 
and go up to step 3. Otherwise, go to step 5; 

Step 5: Calculate the accurate change time k l  of the motion mode according to 
Equation (7); 

Step 6: Judge the change of the target motion mode. If the motion mode change from 
the uniform motion to a maneuvering motion, initialize the parameters in IMM-EV2 method and 
implement this method from the time k l . Otherwise, initialize the parameters in IMM-EV1 and 

implement this method from the time k l . Modify the estimated states between the time k l  

and k , go up to step 3. 



                       e-ISSN: 2087-278X 

TELKOMNIKA Vol. 11, No. 8, August 2013:  4633 – 4638 

4636

4. Simulations 
To verify the effectiveness of the proposed algorithm, referred to as SIMM-EV 

algorithm, consider a single maneuvering target tracking example by a multiple passive tracking 
system, and compare the proposed algorithm SIMM-EV with the IMM, IMM-EV1 and IMM-EV2 
algorithms. 

Assume that the initial state of a target is x0=[1900m 0m/s 0m/s2 10000m -150m/s 
0m/s2]T, and the target takes a uniform motion in the first 25 seconds. Then starts to take 

uniform accelerated motions with the acceleration ( , )x ya a =(5, 5) m/s2 and ( , )x ya a =(-15, -10) 

m/s2, lasting 21 seconds and 8 seconds, respectively. Finally, the target takes a uniform motion. 
In this simulation, the sampling period is 1T s , sampling 100 times in all. 

In the tracking scenario, three models are employed, one constant velocity (CV) model 

with standard error w =5m of process noise and two constant acceleration (CA) models with 

standard error 1w =5m and 2w =50m of process noise. The measurements are obtained from 

three fixed bearing-only sensors which located at (1000-4000)m, (5000-2000)m, and (5000-

11000)m, respectively. The measurement equation is described as ( )
k

i i
k m k kh z x v , where 

i
kz  denotes the measurement of the i th sensor. ( ) arctan i

k

i

k S
m k

k S

y y
h

x x

 
    

x  denotes the 

measurement function with km =1, 2, 3. i
kv  denotes the measurement noise of the i th sensor, 

and  20,j
k N  vv � . kw  and i

kv  are unrelated with each other. Set the standard error of the 

measurement noise as 1mrad v . Let the length of the smooth window (the number of the 

time interval) be 8d  , and decay factor be 0.8  , 5L  . 100 Monte Carlo runs are 

performed. The initial model probability is 0μ =[0.8, 0.1, 0.1], and the model transition probability 

is: 
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Figure 1 shows the comparison of the position RMSE of the four algorithms, it is clear 

that the SIMM-EV algorithm has the similar accuracy to the IMM-EV1 when the target takes a 
uniform motion among the time intervals [1s, 25s] and [53s, 100s], and the accuracy is higher 
than the IMM-EV2 algorithm. When the target takes a maneuvering motion among the time 
intervals [26s, 52s], the SIMM-EV algorithm has the similar accuracy to the IMM and IMM-EV2 
methods, and has a higher accuracy than the IMM-EV1 method. The reason is that the 
proposed algorithm can adaptively switch the IMM-EV1 and the IMM-EV2 methods, the IMM-
EV1 method plays a important role when the target takes a uniform motion, otherwise, the IMM-
EV2 method will be performed to tracking the maneuvering target. Moreover, we can also 
conclude that the tracking accuracy of the IMM-EV2 method is slightly higher than the IMM 
method, because the IMM-EV2 method includes the optimal model selection operator which can 
reduce the competition among the models. Although the IMM-EV1 has a better performance 
when the target takes a uniform motion, its performance will decline seriously when the 
maneuver occurred to the target. 

Figure 2 shows the comparison of the velocity RMSE of the four algorithms. Table 1 
illustrates the comparison of the accuracy of the four algorithm at different time intervals. We 
can also conclude that the proposed algorithm can switch the IMM-EV1 and IMM-EV2 method 
effectively, and has a better performance than the other methods. 

Figure 3-6 show the model probabilities of the four algorithms. As can be seen, the 
SIMM-EV algorithm has the same model probability to the IMM-EV1 method at the two uniform 
motion stages, and to the IMM-EV2 at the maneuvering motion state. It is indicate that the 
proposed algorithm can adaptively switch the two methods. However, the proposed algorithm 
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has a little disadvantage, it is that the model switched time is slightly deviation to the real time of 
the maneuver occurred. 

Table 2 illustrates the comparison of the average run-time of each simulation. It is clear 
that the computational cost of the SIMM-EV algorithm is slightly higher than the IMM-EV1 and 
IMM-EV2 methods due to the switch step of the two methods. The IMM method has the lowest 
computational cost. Table 3 shows the accuracy comparison of the four algorithms under the 
different measurement noises. As can be seen that the position RMSE increase with the 
increase of the measurement noise, but the SIMM-EV algorithm is superior to the other three 
methods, which shows that the proposed has a better performance than the other methods in 
tracking a maneuvering target. 

 
 

 
 

 

Figure 1. Position RMSE Figure 2. Velocity RMSE 
 

 
 

 

Figure 3. Model Probability of IMM-EV1 
 

Figure 4. Model Probability of IMM-EV2 

 
 

 

Figure 5. Model Probability of IMM Figure 6. Model Probability of SIMM-EV 
 
      

Table 1. Average RMSE of the Position at Different Motion Stage (m) 
Algorithm Uniform (1~25s) Accelerate (26~52s) Uniform (53~100s) 

IMM 8.6317 10.8997 8.1077 

IMM-EV1 7.9242 12.7317 7.5884 

IMM-EV2 8.4341 10.8079 7.9532 

SIMM-EV 7.9398 10.6607 7.5337 
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Table 2. Average Run-time. 
Algorithm IMM IMM-EV1 IMM-EV2 SIMM-EV 

Run-time (s) 0.0624 0.0645 0.0687 0.0868 

 
 

Table 3. Average RMSE of the Position under Different Measurement Noise (m) 

 
Measurement noise (mrad) 

0.7 0.8 0.9 1 2 3 

IMM 6.5728 7.3854 8.0829 8.9925 16.9221 23.5160 

IMM-EV1 6.6283 7.4527 8.1373 9.0710 16.9309 24.2351 

IMM-EV2 6.4908 7.2990 7.9483 8.8442 16.5125 22.9338 

SIMM-EV 6.3752 7.0893 7.6300 8.4745 15.4020 20.9784 

 
 

5. Conclusion 
 In this letter, in order to improve the performance of the IMM algorithm, the Viterbi 

technique is used to solve the overmodeling problem at the nonmaneuvering times. We 
proposed a SIMM-EV algorithm, which can switch the IMM-EV1 and IMM-EV2 methods 
correctly according to the maneuvering detection mechanism based on the model probability 
cumulant. Simulation results show that the proposed method has an enhanced performance in 
tracking a maneuvering target. 
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