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Abstract
In this paper, we have addressed the issue of the sparse compression complexity for the speech

signals. First of all, this work illustrated the effect of the signal length on the complexity levels of Matching
Pursuit (MP) and Orthogonal Matching Pursuit (OMP) algorithms. Also, this paper introduced a study of
possibility to reduce that complexity by exploiting the shared atoms among the contiguous speech compres-
sions. By comparing the shared atoms levels and a threshold level induced by an analytic model based on
the both the central and non-central hyper-geometric distributions, we proved the ability of the shared atoms
criterion to detect if there is biasing towards a subspace of atoms or not, and to decide if the biasing occurs
due to the redundancy in the dictionary of atoms, or due to the redundancy in the signal itself. Moreover, we
suggested a subspace bias-based approaches for complexity reduction called ”Atoms Reuse” and ”Active
Cluster”. Both methods exploits the higher levels of the shared atoms to reduce the compression complexity
by reducing the search space during the pursuit iterations.
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1. Introduction
Nowadays, one of the efficient signal representations is the sparse modeling. This type

of signal decomposition has recently received extensive research interest across several com-
munities including signal processing, information theory, and optimization [1, 2, 3]. Also, these
representations have found successful applications in data interpretation, source separation, sig-
nal de-noising, coding, classification, recognition, and many more [4]. In sparse representation,
the signal can be constructed by elementary waveforms chosen in a family called a dictionary
[5]. The dictionary elements are called atoms that may be orthogonal or non-orthogonal [6]. The
over-completed dictionaries whose atoms are larger than bases are needed to build sparse repre-
sentations of complex signals [7]. But choosing is difficult and requires more complex algorithms.

Letting Φ denotes a dictionary matrix of size M × N (where typically M < N ) and y
denotes a signal vector in RM . The goal of sparse decomposition algorithms such as Matching
Pursuit (MP) [8], Orthogonal Matching Pursuit (OMP) [9], Optimized Orthogonal Matching Pursuit
(OOMP) [10], Backward-Optimized Orthogonal Matching Pursuit BOOMP [11], and others is to
recover a coefficient vector x ∈ RN with roughly k < M nonzero terms so that Φx equals y exactly
or approximately.

y ' Φx (1)

Actually, the aforementioned greedy algorithms and others are mainly concerned with
decomposing a single vector sparsely regardless of the signal is a unique vector or splitted to
many vectors. Naturally, the long signals such as speech signals should be splitted to F frames
or vectors indexed by Yj before the coding process. So, the sparse approximation of a signal
Y ∈ RM×F will be ΦX such that X ∈ RN×F and Xj represents the sparse decomposition of
vector Yj . This can be written in the following form[

Y1 Y2 · · · YF
]
' Φ

[
X1 X2 · · · XF

]
(2)
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It is intuitively obvious that, the computational complexity of (2) is larger than that of (1)
due to the signal length. So, in this research, we initiate a new trend in the complexity reduction,
whose main idea is to resize the dictionary of atoms during the pursuit iterations. The intended
sub-dictionary is the subspace of atoms at which the sparse compressions biases towards it. So,
in this work, we try to exploit some of the F vectors to detect that if the sparse compressions
biases to a subspace of atoms or not. In other words, the signal under consideration may live in
the span of a subspace of Φ. This subspace biasing may occur due to the redundancy nature of
the speech signal, or due to the redundancy nature of Φ.

The main contribution of this paper is introducing a new criterion so-called the ”Shared
Atoms” that can be monitored during the successive sparse compressions and then we can decide
if there is subspace biasing or not. Finally, this paper is organized as follows. Section 2. studies the
effect of the signal length on the complexity levels of MP and OMP algorithms. Section 3. reviews
the related works on enhancing the pursuit algorithms complexity. Section 4. will study the shared
atoms criterion from a probability standpoint illustrating its expected levels and bounds. Section
5. will illustrate the indications of the shared atoms and how we can benefit from it in achieving
a satisfied complexity levels. Section 6. contains experimental results. Finally, conclusions are
provided in Section 7..

2. Sparse Compression Complexity
Since the pursuit algorithms don’t consider the splitting process, it will handle each vector

independently. So, it is logic to say that there are three complexity levels. The first level is called
the ”iteration-based complexity” and depends on the atom choice methodology. The second level
is called the ”sparsity-based complexity” and depends on the sparsity level k or the number of
nonzero elements. Both complexity levels are considered fixed per each independent decompo-
sition if and only if the sparse modeling arguments are identical such as the sparsity level k and
the dictionary size N . Finally, The third complexity level is due to the overall decomposition of the
F vectors, and in this case the computational complexity depends on F .

Generally, the time complexity T of any pursuit algorithm could be denoted asO(Ǵ) where
the function Ǵ represents the fastest growing term in another function G(F,M,N, k). According to
the rule of the big O notation and for a positive constant ε the upper bound of T can be obtained
as follows [12]:

T ≤ εǴ (3)

Usually, the function G represents the number of the elementary arithmetic operations in
the algorithm such as the multiplications GΠ and the additions GΣ . According to this definition
the function G could be represented as follows:

G(F,M,N, k) =

F∑
j=1

k∑
i=1

(G
(i)
Π +G

(i)
Σ )j (4)

This representation of G means that, during the decomposition of vector Yj , both G
(i)
Π

and G(i)
Σ represent the number of the elementary operations at the ith iteration. Table 1 summa-

rizes the key procedures of the two most common algorithms {MP, OMP} and their parameters
{G(i)

Π , G
(i)
Σ }. As shown in the table, for MP algorithm, the computation complexity at the iteration i

focuses on the procedure ΦT ri−1. This procedure calculates the correlation between the residual
error ri−1 of the previous iteration and the N elements of Φ. For ri−1 ∈ RM and Φ ∈ RM×N , the
correlation process requires N vector multiplications and each vector multiplication consists of M
elementary products and M − 1 additions. As illustrated in the Table 1, both G

(i)
Π and G

(i)
Σ can

be written as M(N + 1) + N and M(N + 1) − N respectively. By substituting into (4) we obtain
GMP =

∑F
j=1

∑k
i=1

[
2M(N + 1)

]
j
. Finally, the function G can be written in the form

GMP = 2FkMN

[
1 +

1

N

]
(5)
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Procedure Routine Subroutine
MP OMP

G
(i)
Π G

(i)
Σ G

(i)
Π G

(i)
Σ

Atom Sel.

ΘN×1 = ΦT ri−1 MN (M − 1)N − −
or

Θ(i) = ΦT(i)ri−1 − − M
(N−i+1)−1

M−1
(N−i+1)−1

ϕi = argmax|Θ| N 0 N − i+ 1 0

r̂i−1

〈ri−1, ϕi〉ϕi M 0 − −
or

Φi(Φ
T
i Φi)

−1ΦTi ri−1

Ģ = ΦTi Φi − − Mi2 (M − 1)i2

A = Ģ−1 − − i3 i3 − 2i2 + i

B = ΦiA − − Mi2 M(i2 − i)
C = BΦTi − − M2i M2(i− 1)

D = Cri−1 − − M2 M2 −M
Err Update ri = ri−1 − r̂i−1 0 M 0 M

Table 1. {G(i)
Π , G

(i)
Σ } for MP and OMP

As shown in (5), the fastest growing term consists of the multiplication FkMN . So, the time
complexity of MP can be represented in terms of the big O notation by TMP = O(FkMN). If we
keep F out of TMP the result is similar to the proved complexity expressions for the MP algorithm
in [13] and [14].

Unlike MP, the computation complexity of OMP at the iteration i is distributed among the
atom selection and the coefficients update procedures. Note that, we got GΠ and GΣ for the
Gram matrix inverse Ģ−1 from [15] . As shown in the Table 1, at the ith iteration, the algorithm
updates two sets simultaneously Φ(i) and Φi such that Φ(i) = Φ(i−1) − {ϕi−1}, Φi = Φi−1 ∪ {ϕi}
and the initial sets are Φ(1) = Φ and Φ0 = ∅, where ∅ refers here to the empty set and ϕi refers to
the selected atom at the iteration i. By substituting the values of G(i)

Π and G(i)
Σ into (4) we obtain

GOMP approximately in the form

GOMP ≈ 2FkMN

[
1 +

M

N

]
(6)

As shown in (6), the fastest growing term consists of the multiplication FkMN . So, the time
complexity of OMP can be represented in terms of the big O notation by TOMP = O(FkMN).

3. Related Work
Over the last years, many methods being made in regards to reducing the complexity

levels of the sparse pursuit algorithms. The majority of these approaches can be categorized
into four groups. There are fast transformation-based methods, clustering-based methods, matrix
factorization-based methods and optimization-based methods.

In fast transformation-based methods, the pursuit algorithm exploits the fast computations
property of the Fast Fourier Transforms (FFT)[16], or the Fast Wavelet Transforms (FWT)[17]. The
basic idea behind this trend is to use pre-structured dictionaries whose atoms are theoretically
based, such as Fourier bases and wavelets. The fast transform algorithms reduces the number of
elementary multiplications in matrix-vector product of ΦT ri−1 from MN to NlogM . Although pre-
structured dictionaries lead to fast sparse compressions, they are limited in their ability to sparsify
the signals they are designed to handle. Furthermore, most of those dictionaries are restricted to
signals of a certain type, and cannot be used for a new and arbitrary family of signals of interest.
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In clustering-based methods, the approaches exploit the correlation property among the
atoms of Φ. Due to the over-completeness of Φ, there are highly correlated atoms that have
similar properties. So, by means of clustering the similar atoms be grouped in a cluster and this
procedure reduces the search time in those clusters. For example, the author in [18] proposed
an efficient dictionary organization technique. This technique groups similar atoms together, and
represent them by a unique element called molecule. Applying clustering recursively on atoms
and molecules yields a hierarchical tree structure, which can be exploited to design a search
algorithm with greatly reduced complexity.

To speed up the processing of matrix operations such as the inverse of gram matrix
Ģ = ΦTi Φi (see Table 1), there are different matrix factorization-based methods can be used for
that purpose. The Cholesky-based OMP [19] and QR-based OMP [20] use the Cholesky and
QR factorization methods respectively to reduce the complexity of Ģ−1. The basic idea behind
Cholesky factorization is to decompose a Hermitian, positive-definite matrix Ģ into the product of
a lower triangular matrix ĢL and its conjugate transpose ĢT

L. While the basic idea behind QR
factorization is to decompose a real, square matrix into the product of an orthogonal matrix Q and
an upper triangular matrix R.

In optimization-based methods, the approaches try to speed up the orthogonal projection
process needed by the OMP algorithm to update the coefficients. As depicted in Section 2.,
the difference in complexity between MP and OMP algorithms is concentrated in the coefficients
update procedure that requires to solve ri−1 = Φib, where b is the vector of unknown coefficients.
The original OMP solves this problem using the least squares method b = (ΦTi Φi)

−1ΦTi ri−1. Fast
solvers for the linear equations had been exploited to approximate the orthogonal projection of
the least squares method, for example, the author in [21] replaced the least squares method by
another fast approaches such as the gradient, the conjugate gradient [22] and the approximate
conjugate gradient methods.

4. Subspace Bias-based Efficient Sparse Compression
As shown in the literature review, all efforts that had been made to reduce the computa-

tional complexity ignored the nature of the signal under consideration. In this paper, we will study
the possibility to exploit the redundancy nature of the speech signal and the dictionary to make
an efficient sparse compression. We seek to use a criterion called the ”Shared Atoms” to work as
a biasing monitor that detect if there is biasing towards a subspace of atoms or not, and decide if
the biasing occurs due to the redundancy in the dictionary of atoms, or due to the redundancy in
the signal itself or due to both.

4.1. Shared atoms
Assume that Φ = {ϕn;n ∈ Γ} is a dictionary of atoms, Γ is a set of indices. Let Γ(j) and

Γ(j+ψ) be two support sets or subsets of Γ consisting of the nonzero elements indices in Xj and
Xj+ψ respectively such that ψ is the neighborhood degree to the index j. Then, the indices of the
shared atoms among ΦXj and ΦXj+ψ can be described as

Γ(j) ∩ Γ(j+ψ) = {ϕn;n ∈ Γ(j)and n ∈ Γ(j+ψ)} (7)

Let C(ψ) be the cardinality of the intersection set in (7) or the number of the shared atoms, and
given by

C(ψ) = |Γ(j) ∩ Γ(j+ψ)| (8)

Also, this cardinality can be expressed as ‖Xj � Xj+ψ‖0 where the notation � stands for the
Hadamard (or elementwise) product of two vectors. Let kj and kj+ψ be the number of the non
zero elements in Xj and Xj+ψ respectively or the number of the elements in Γ(j) and Γ(j+ψ)

respectively, then the maximum value of C(ψ) can be obtained when Γ(j) ⊆ Γ(j+ψ) or Γ(j+ψ) ⊆ Γ(j).
And the minimum value can be obtained when Γ(j) ∩ Γ(j+ψ) = ∅. Mathematically, this can be by
0 ≤ C(ψ) ≤ inf{kj , kj+ψ}. If kj = kj+ψ = k, then we have 0 ≤ C(ψ) ≤ k. To estimate the
value of C(ψ), let P (C(ψ) = θ|Γ(j)) denotes the probability of θ shared atoms among ΦXj and
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ΦXj+ψ, given the subset Γ(j) with cardinality kj . Then the expected value of C(ψ) is given by
EC(ψ) =

∑kj+ψ
θ=0 θP (C(ψ) = θ|Γ(j)).

4.1.1. Unbiased case

For a redundant Φ consisting ofN atoms, assume that allN atoms have the same chance
during the selection procedure, i.e. they are chosen uniformly and somewhat randomly without
replacement. Then the expected value of C(ψ) can be expressed in terms of the central hyper-
geometric distribution

EC(ψ) =

kj+ψ∑
θ=0

θ

(
kj
θ

)(
N−kj
kj+ψ−θ

)(
N

kj+ψ

) (9)

So, the expected value is expressed by EC(ψ) =
kj+ψkj
N . For the case kj = kj+ψ = k, we have

EC(ψ) = k2

N , and the probability to obtain the upper bound of C(ψ) is given by P (C(ψ) = k|Γ(j)) =

1
/(
N
k

)
. This probability reaches its maximum value when N = k but this condition is not practical.

For any sparse compression, the number of atoms N must be greater than the dimension of the
signal M which is naturally greater than k. On the other side, the probability of zero shared atoms
is given by P (C(ψ) = 0|Γ(j)) =

(
N−k
k

)/(
N
k

)
, and this probability reaches its maximum value for

the condition N � k.

4.1.2. Biased case

Assume each atom in Γ(j) has the weight ω1, and each atom in Γ − Γ(j) has the weight
ω2. Then, the expected value of C(ψ) can be expressed in terms of the Wallenius non-central
hyper-geometric distribution [23]

EC(ψ) =

kj+ψ∑
θ=0

θ

(
kj
θ

)(
N − kj
kj+ψ − θ

) 1∫
0

[
f(t)

]θ
dt (10)

where,

f(t) =
1− tω/µ

(1− t1/µ)−kj+ψ
, ω =

ω1

ω2
, ”Odds Ratio” (11)

µ = ω(kj − θ) + (N − kj − kj+ψ + θ) (12)

As illustrated in [24], the expected value of the Wallenius distribution is approximated by solution
EC(ψ) to (

1−
EC(ψ)

kj

)
=

(
1−

kj+ψ − EC(ψ)

N − kj

)ω
(13)

For the case of equal iterations, the Equation (13) can be rewritten as follows(
1−

EC(ψ)

k

)
=

(
1−

k − EC(ψ)

N − k

)ω
(14)

From (14) we can obtain the bounds of EC(ψ) at the bounds of ω. When ω tends to infinity, i.e.,
ω1 � ω2 then the right-hand side (RHS) term equals 0 because the variable within the brackets is
less than 1, and then EC(ψ) equals k. But for ω ≈ 0, i.e., ω2 � ω1, the RHS term equals 1, and
then EC(ψ) equals 0.
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5. The Indications of C(ψ) And The Benefits
One of the main conclusions of Section 4.1. was that, as long as the redundant dictionary

Φ consisting of finite number of atoms N , there is inherent shared atoms among the successive
compressions (ΦXj ,ΦXj+1) regardless of the redundancy in the signal and the dictionary. Before
experiments are conducted to measure C(ψ), this section will illustrate the indications of the
shared atoms according to its level and its dependency on ψ.

5.1. Probable levels of C(ψ)
From Equation (13), we can conclude the probable levels of C(ψ) according to the odds

ratio ω as follows

EC(ψ) =
kj+ψkj
N

, ω = 1EC(ψ) >
kj+ψkj
N

, ω > 1EC(ψ) <
kj+ψkj
N

, ω < 1 (15)

The proof of (15) is given in (A). As shown, one of the probable levels of C(ψ) is the hyper-
geometric mean kjkj+ψ/N . This level is considered a special case and indicates that all N atoms
of Φ are in use and there is no bias to any subset of atoms. The most important level of C(ψ)
is that at which the shared atoms are greater than kjkj+ψ/N . In this case, the shared atoms
indicates that there is somewhat bias to a subset of atoms in the space Φ.

5.2. Compression complexity and C(ψ)
The bias property of C(ψ) may lead us to two different trends in the compression com-

plexity reduction. The first trend is called ”Atoms Reuse”, and the second is called ”Active Cluster”.
To justify the importance of measuring C(ψ), let us illustrate the enhancement levels in complexity
which may get them if we have benefited from C(ψ).

5.2.1. Atoms Reuse

Like the contiguous pixels in image signal, the contiguous speech frames may have com-
mon features. If the atoms in Φ have the ability to describe different signal features, then we can
expect that the level of C(ψ) are greater than the threshold level kjkj+ψ/N , and there are δ atoms
can be reused among the contiguous speech compressions.

Proposition 1: Assume kj = kj+ψ = k, if the MP algorithm is forced to select δ atoms from
the current support set Γ(j) in the next compression, then the relative enhancement in complexity
reaches up to δ

k (1− k
N ). As for the OMP algorithm, the relative enhancement in GOMP is slightly

less than that in GMP and depends on the signal dimension M .
The proof is given in (B) and (C).

5.2.2. Active Cluster

If C(ψ) is greater than kj+ψkj/N regardless of ψ, then we can say that there is biasing
towards different subsets of atoms, and there is an active subspace Φ′ ⊂ Φ.

Definition: In this paper, we will define the efficiency of the space Φ by η =
kjkj+ψ/C(ψ)

N
Proposition 2: Assume kj = kj+ψ = k, if there are F ′ frames must be compressed before detect-
ing the active cluster Φ′ with cardinality |Φ′| = N ′, such that the remainder frames (F − F ′) are
compressed using the subspace Φ′. Then the relative enhancement in the complexity reaches
to (1 − α)(1 − λ1β), and (1 − α)(1 − λ2β) for MP and OMP respectively, where α, β, λ1 and λ2

represent the ratios F ′

F , N ′

N , 1+1/N ′

1+1/N and 1+M/N ′

1+M/N respectively. The proof is given in (D) and (E).
Note that, in this paper we do not care about how we select the N ′ atoms from the dictionary, but
we consider only its effect on the relative complexity.

6. Experimental Results
After declaring the importance of C(ψ) in the Subsections 5.2.1. and 5.2.2., in this section

we will present a set of experiment results. The intention of these experiments is to illustrate the
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Figure 1. Exp.(1). C
k vs. k

M = 0.1, ..., 0.9

Table 2. Exp.(1). ω vs. k
M

k
M

No bias MP OMPlevel
0.1 1 0.853 1.015
0.2 1 1.013 1.009
0.3 1 0.991 0.94
0.4 1 0.993 0.995
0.5 1 0.962 0.975
0.6 1 0.924 0.963
0.7 1 0.939 0.982
0.8 1 0.917 0.986
0.9 1 0.927 1.007

ability of the shared atoms criterion to detect the existence of the subspace biasing and to show
the impact of the signal redundancy and the dictionary redundancy on the biasing levels. All ex-
periments use the most common sparse algorithms MP and OMP and were designed in MATLAB
environment using the sparse compression toolbox. Also, all simulations use the ISOLET speech
database [25], and the main parameters of the sparse compressions are M = 100, pre-structured
dictionary with N = 512 and finally the sparsity level k ranges from 10 to 90 nonzero elements. To
facilitate comparison, we have normalized k and C(ψ) by dividing all them by their maximum level
M and k respectively.

6.1. Experiment 1: Bias of Γ(j+ψ) to a random set Γ(r)

In this experiment, the set Γ(j) is replaced with another set Γ(r) whose k elements are
uniformly selected from the whole elements of the dictionary Φ. So, the function C will represent
the cardinality of Γ(r) ∩ Γ(j+ψ). Figure (1) illustrates that, the average values of C(ψ) are approx-
imately identical to the expected values determined by the central hyper-geometric distribution,
and this result indicates that there is no bias towards the randomly selected subsets Γ(r). We
used the t − test for comparing the means and the result showed that the values of sig parame-
ter are greater than 0.05 and equal 0.886, 0.975 for MP and OMP respectively which scientifically
means that the variability is not significantly different. Note that, we can obtain the bias level ac-
cording to the value of the odds ratios ”ω” that can be obtained directly from Equation (14) to be
ω =

log(1−Ck )

log(1− k−CN−k )
. As evidenced by Table 2, the odds ratio converges to the ”No bias” level or 1 for

all k/M values. This result illustrated that, there is no bias to any randomly selected k atoms.

6.2. Experiment 2: Bias of Γ(j+ψ) to Γ(j)

In the second experiment we will try to measure C(ψ) in two cases. In first case, we will
measure it when the positions of Yj in the matrix Y are left unchanged. In this case, the function
C(ψ) takes into considerations the chronological order of frames. On the contrary, in the second
case, we will measure the shared atoms when the positions of Yj in Y are changed to ignore the
effect of the chronological order of speech frames, and to check the efficiency of the space of
atoms. In both cases, we chose the fifth order polynomial for fitting the measurements of C(ψ) for
ψ = 1 to 50.

Figure (3) illustrates that, the chronological order of Yj has a great effect on C(ψ). For
the first case, C(ψ) degrades as ψ increases. Also, it is noted that C(1) is the maximum value
which means that the largest shared atoms occurs among the adjacent decompositions. This
case is in stark contrast to the second case, as shown in Figure (4), the values of C(ψ) tends to
constant levels for all values of ψ. This result illustrates the absence of the chronological order of
Yj and its effect on C(ψ). It is also interesting to note that all values of C(ψ) are larger than the
central hyper-geometric threshold level k2/N which means that the odds ratios of the Wallenius
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Figure 2. Exp.(2), case 2. η vs. k
M = 0.1, ..., 0.9

Table 3. Exp.(2), case 2. ω vs. k
M

k
M

No bias MP OMPlevel
0.1 1 5.278 4.936
0.2 1 3.425 3.239
0.3 1 2.707 2.604
0.4 1 2.312 2.258
0.5 1 2.057 2.039
0.6 1 1.874 1.896
0.7 1 1.732 1.816
0.8 1 1.618 1.78
0.9 1 1.521 1.786

distribution are greater than 1. Table 3 shows the odds ratio levels for the second case results.
The values of the odds ratios proved that, the bias property is clearly visible at the low levels of
k/M , but the odds ratios are slightly more than the ”No bias” level at the higher sparsity levels.
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Figure 3. Exp.(2), case 1: C/k vs. ψ = 1, ..., 50
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(b) k/M = 0.3
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Figure 4. Exp.(2), case 2: C/k vs. ψ = 1, ..., 50

The results of both cases confirmed that, there are two types of subspace biasing. First
type of bias is called ”ψ−based bias”, and this bias makes C(ψ) to change slightly with respect to
ψ. While the other type is called ”Φ′−based bias”, and this bias makes C(ψ) to have significant
values greater than k2/N regardless of ψ. Finally, Figure (2) shows the dictionary efficiency η for
different values of k/M . As shown in the figure, the pre-structured dictionary have efficiencies
ranges approximately from 20% to 70%.

6.3. Experiment 3: Speech redundancy and shared atoms
As illustrated in the results of the second experiment, the suggested criterion C(ψ) refers

to a little bias to the contiguous support set, and this result is logic because the pre-structred
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Table 4. Exp.(3). ω vs. k/M

k
M

No bias MP OMP
level C(1) Ceo C(1) Ceo

0.1 1 8.52 19.2 8.09 20.72
0.2 1 4.83 8.18 4.45 8.69
0.3 1 3.51 5.01 3.24 5.27
0.4 1 2.82 3.63 2.62 3.78
0.5 1 2.41 2.89 2.25 2.97
0.6 1 2.13 2.42 2.04 2.49
0.7 1 1.93 2.11 1.9 2.24
0.8 1 1.77 1.9 1.84 2.11
0.9 1 1.65 1.74 1.83 2.06

atoms ”wavelet basis” are local descriptors. So, in this experiment we will try to remeasure the
shared atoms among the highly correlated frames. We will use a channel splitting technique in
[26] to extract two highly correlated frames instead of the sequential splitting procedure used in
the previous experiment. To extract two highly correlated frames based on the idea [26], we will
split the signal Y ∈ RM×F to two signals, even samples signal Y e ∈ RM×dF2 e, and odd samples
signal Y o ∈ RM×dF2 e. The corresponding sparse coefficients matrices will be Xe ∈ RN×dF2 e and
Xo ∈ RN×dF2 e respectively. In this experiment we will measure the average values of Ceoi such
that Ceoi = ‖Xe

i �Xo
i ‖0. Note that, Xe

i and Xo
i are the column vectors in Xe and Xo respectively.

Figure (5) illustrates the effect of speech splitting on the level of the shared atoms. As
depicted in figure, the even-odd splitting method increases the shared atoms significantly at the
low sparsity level. But, at the higher levels of k/M the values of C/k converges slightly to that
levels of the second experiment.

As for the effect of the even-odd splitting on the biasing levels, Table 4 illustrates that the
redundancy among the contiguous speech samples increased the odds ratios significantly at the
lower sparsity levels.

7. Conclusions and Future works
In this research, a particular attention was paid to the sparse compression complexity of

the speech signal. In the first part of this paper, we illustrated the effect of the signal length F on
the computational complexity G. As shown in Section 2., the complexity levels increased linearly
from O(kMN) to O(FkMN). If we look deeply into the multiplication term FkMN , we can see
that F , k and M are unchangeable parameters. For this reason, we have sought to exploit the
redundancy of the dictionary and the redundancy of the signal itself to resize Φ according to the
biasing of the sparse compressions towards a subspace of atoms.

In this paper we have suggested two subspace bias-based approaches that resize the
dictionary during the iterations either by forcing the algorithm to select some atoms from the
last support set such as in the ”Atoms Reuse” approach, or by ignoring some atoms from the
whole dictionary Φ such as in the so-called ”Active Cluster” approach. Since both approaches
are applicable if there is somewhat biasing towards subspace of atoms, in this research, we do
not care about applying the approaches, but we considered only how to detect the biasing. So,
we have suggested the ”Shared Atoms” criterion that can be measured through the successive
compressions and then we can decide if there is biasing towards a subspace of atoms or not
according to the gap between the measured level and the analytic level k2/N .

Through the experimental results of Section 6., we have concluded that the suggested
criterion have the ability to detect the subspace biasing. Also, it was evident that the biasing ap-
pears significantly at the lower sparsity levels and partially disappear at the higher levels. More-
over, the odds ratios illustrated that the biasing levels due to the dictionary redundancy ranges
approximately from 2 to 5 for k

M ≤ 60%. But, for the signal redundancy, it ranges from 2 to 20 for
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k
M ≤ 60%. These results encouraged us to extend the research in the future to implement the
approaches and to study the impact of the dictionary resizing on the final approximation error and
on the quality of the speech signal. Furthermore, we seek to join between the unknown elements
of the active subspace Φ′ and the union of different shared atoms, and to join between the number
of those elements and the measured efficiency η of the dictionary.
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A Proof of EC(ψ) Levels
For ω = 1, we can rewrite (13) as follows

EC(ψ)

kj
=
kj+ψ − EC(ψ)

N − kj
⇒ EC(ψ)

(
1 +

kj
N − kj

)
=
kjkj+ψ
N − kj

∴ EC(ψ) =
kjkj+ψ
N

(16)

For ω > 1, and (N − kj) > (kj+ψ − EC(ψ)), we have(
1−

kj+ψ − EC(ψ)

N − kj

)ω
<

(
1−

kj+ψ − EC(ψ)

N − kj

)
(17)

The LHS in (17) equals 1− EC(ψ)

kj
. So, EC(ψ) >

kjkj+ψ
N . As for ω < 1, and (N−kj) > (kj+ψ−EC(ψ)),

we have EC(ψ) <
kjkj+ψ
N

B Atoms Reuse And GMP Enhancement
Let ΦM×k1 = {ϕn;n ∈ Γ(j)} denotes the first search space for Yj+1 decomposition and

the MP algorithm will select δ atoms from that space. Also, let ΦM×N2 = {ϕn;n ∈ Γ} denotes the
second search space required to get the remainder k − δ atoms of Yj+1 decomposition. Recall
(4) and let F = 1 then function G can be written as follows:

GMP =

δ∑
i=1

[
2M(k + 1)

]
+

k−δ∑
i=1

[
2M(N + 1)

]
(18)

So, GMP = 2kM(δ + N) + 2M(k − Nδ). Assume Ge denotes the enhancement in complexity,
then Ge can be written as the following ratio:

Ge =
G(M,N, k, δ = 0)−G(M,N, k, δ)

G(M,N, k, δ = 0)
(19)

By substitution, we obtain Ge =

(
δ
k

)(
1− k

N

)(
1+ 1

N

) , and for large N , we obtain Ge ≈ δ
k

(
1− k

N

)
.

C Atoms Reuse And GOMP Enhancement
Let ΦM×k1 = {ϕn;n ∈ Γ(j)} denotes the first search space for Yj+1 decomposition and

the OMP algorithm will select δ atoms from that space. Also, let Φ
M×(N−δ)
2 = {ϕn;n ∈ Γ \ Γ(δ)},
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where Γ(δ) refers to the indices of the δ atoms, denotes the second search space required to
get the remainder k − δ atoms of Yj+1 decomposition. Unlike MP algorithm, forcing δ atoms in
OMP compression affects only on the atom selection procedure. Assume that G(AP )

OMP denotes the
complexity of Atom selection Procedure, and G(OP )

OMP denotes the complexity of Other Procedures.
So, we can rewrite (19) for OMP as follows

Ge =
G

(AP )
OMP (δ = 0)−G(AP )

OMP (δ 6= 0)

G
(AP )
OMP (δ = 0) +G

(OP )
OMP (δ = 0)

(20)

The denominator in (20) represents the overall complexity of the OMP that is stated in (6). The
value of G(AP )

OMP (δ) can be obtained from the following summation

G
(AP )
OMP (δ) = 2M

[ δ∑
i=1

(k − i+ 1) +

k∑
i=δ+1

((N − δ)− i+ 1)

]
G

(AP )
OMP (δ) = 2M

[
δ2 +N(k − δ)− k(k − 1)

2

]
(21)

For δ = 0, we have

G
(AP )
OMP (δ = 0) = 2M

[
Nk − k(k − 1)

2

]
(22)

By substituting (21), (22) and (6) in (20), we obtain Ge =

(
δ
k

)(
1− δ

N

)(
1+M

N

) .

D Active Cluster and GMP Enhancement
Let F ′ = αF denotes the required frames that should be compressed to detect the active

atoms N ′, where α represents the ratio F ′

F . So, The MP algorithm will use the space Φ for
compressing the frames Y1 till YF ′ . But, for the other frames YF ′+1 till YF , it will use the shrink
space Φ′. In this case, we can rewrite (5) as follows

GMP = 2kM

[ F ′∑
j=1

N(1 +
1

N
) +

F∑
j=F ′+1

N ′(1 +
1

N ′
)

]

GMP = 2FkMN

[
1 +

1

N

][
α+ λ1β(1− α)

]
(23)

where β = N ′

N , λ1 = 1+1/N ′

1+1/N . The enhancement in GMP can be obtained as follows

Ge =
GMP (α = 1)−GMP (0 ≤ α < 1)

GMP (α = 1)
= (1− α)(1− λ1β) (24)

E Active Cluster and GOMP Enhancement
Like the MP algorithm, the OMP will use the space Φ for compressing the frames Y1 till

YF ′ . But, for the other frames YF ′+1 till YF , it will use the shrink space Φ′. In this case, we can
rewrite (6) as follows

GOMP = 2kM

[ F ′∑
j=1

N(1 +
M

N
) +

F∑
j=F ′+1

N ′(1 +
M

N ′
)

]
= 2FkMN(1 +

M

N
)

[
α+ λ2β(1− α)

]
(25)
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where λ2 = 1+M/N ′

1+M/N . The enhancement in GOMP can be obtained as follows

Ge =
GOMP (α = 1)−GOMP (0 ≤ α < 1)

GOMP (α = 1)
= (1− α)(1− λ2β) (26)
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