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ABSTRACT

We propose the feature selection method based on the dependency between features
in an unsupervised manner. The underlying assumption is that the most important
feature should provide high dependency between itself and the rest of the features.
Therefore, the top m features with maximum dependency scores should be selected,
but the redundant features should be ignored. To deal with this problem, the objective
function that is applied to evaluate the dependency between features plays a crucial
role. However, previous methods mainly used the mutual information (MI), where the
MI estimator based on the k-nearest neighbor graph, resulting in its estimation de-
pendent on the selection of parameter, k, without a systematic way to select it. This
implies that the MI estimator tends to be less reliable. Here, we introduce the least-
squares quadratic mutual information (LSQMI) that is more sensible because its tuning
parameters can be selected by cross-validation. We show through the experiments that
the use of LSQMI performed better than that of MI. In addition, we compared the pro-
posed method to the three counterpart methods using six UCI benchmark datasets. The
results demonstrated that the proposed method is useful for selecting the informative
features as well as discarding the redundant ones.
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1. INTRODUCTION
Feature selection aims to select the most informative subset of features to capture the structure of

the original data. It usually appears as a pre-processing step for various tasks such as classification [1], [2],
clustering [3]-[5], data mining [6], resulting in better results. In a supervised scenario, the idea is to select
the features that are the most relevant to the class labels [7], [8]. However, in this paper, we focus on an
unsupervised feature selection that is more difficult to achieve than the supervised feature selection due to the
absence of the class labels [9]-[14]. In unsupervised manner, feature selection is important as it helps improve
the performance as well as reduce the computational time of clustering [15]-[19]. Moreover, unsupervised
feature selections may be used for various purposes such as visualization and pre-processing step for supervised
learning [7], [15], [20]. Unsupervised feature selection can be divided into two categories, namely wrapper
method and filter method [10], [15]. Many existing methods of unsupervised feature selection are based on the
wrapper method such that the selected features are dependent on the specific clustering algorithm. The main
drawbacks of the wrapper method are its computational complexity and limited use with a particular clustering
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algorithm. In this paper, we focus on the filter method which evaluates the important features without using
any clustering algorithm [21]-[25]. Thus, the filter method is more general and useful than the wrapper method.
We review some existing unsupervised feature selection methods relating to our work as follows.

Laplacian score (LS) [10] is based on Laplacian Eigenmap and locality preserving projection. For
each feature, the Laplacian score is estimated using the nearest neighbor graph. If it is a good feature, its
LS tends to be small. The LS is based on the observation that, two data points are probably related to the
same cluster if they are close to each other. The drawbacks of this method are that there is no systematic
way to tune the number of nearest neighbor k or Gaussian width, and the redundant features are not observed.
multi-cluster feature selection (MCFS) [11] selects the features while preserving the cluster structure of the
data. The authors proposed to use multiple eigenvectors of graph Laplacian, which are defined on the affinity
matrix of data points to capture the multi-cluster structure of data. The algorithm performs especially well
when the number of selected features is small (e.g., <= 50). However, it performs best when the number of
used eigenvectors is equal to the number of clusters, but in an unsupervised manner, the number of clusters
remains unknown. Moreover, we observed through the experiments that this method tends to be sensitive to
noise features. Unsupervised feature selection based on mutual information (UFSMI) [9] is derived from the
observation that good features share information in common, and noisy features are less correlated with the
other features. Mutual information (MI) is then used as the objective function to capture the shared information
between a feature and the rest of features, and they choose the first m features that achieve the higher mutual
information. The higher level of noise leads to a smaller average value of the score function because the
addition of noise reduces the mutual information between features. The desired property of the feature selection
algorithm aims at removing noisy features. However, the estimation of MI is less reliable as it is computed
using the k-nearest neighbor graph. Thus, its performance is based on the tuning parameter, k, resulting in that
a subset of the selected features may not be the best.

All methods mentioned above including several existing methods such as [12]-[14] are based on the
k-nearest neighbor graph or other tuning parameters, and there is no systematic way to choose such parameters
(i.e., k). In addition, they did not observe the redundant features. Therefore, in this paper, we would like to deal
with these problems. Our idea is inspired by [9] as they proved that a good feature is expected to be dependent
on the rest of features. However, the method did not take the redundancy of features into account, and thus
may not produce an optimal feature subset. Moreover, in [9], they used the mutual information (MI) as their
dependent measure, and the MI is estimated based on the k-nearest neighbors which lacks of the systematic
way to choose the appropriate k. So that the estimation of MI tends to be less reliable. In order to solve these
problems, we propose to apply the L2-distance variant of MI called the quadratic mutual information (QMI)
[26], where the least-square method is used to approximate QMI [27]. Therefore, the used parameters can be
obtained automatically by cross-validation. The contribution of this paper is a novel method of unsupervised
feature selection based on the least-squares quadratic mutual information (LSQMI), which is powerful for
selecting the most important features as well as rejecting the redundant features. In the experimental results,
we show that the LSQMI is more reliable than MI. In addition, we demonstrate that the proposed method is
promising through the experimental results on six UCI machine learning repositories.

The rest of paper is organized as follows. In section 2, we review the least-square quadratic mutual
information and its normalization. We describe the proposed method in section 3. The experimental setup and
results are shown in section 4. In section 5, we provide the conclusion.

2. THE LEAST-SQUARE QUADRATIC MUTUAL INFORMATION
In this section, we first review the least-square quadratic mutual information (LSQMI) [27] that can

be used to measure a statistical dependence among features. As LSQMI is ranged from 0 to ∞, we need to
normalize LSQMI to [0,1] range. We then review the normalization of LSQMI [28] that is finally used as the
objective function for our proposed unsupervised feature selection method.

2.1. LSQMI estimation
Suppose that we are given a set of {(xi,yi)}ni=1 independently drawn from a joint probability dis-

tribution with density p(x,y). Here, x ∈ Rn is a featrue vector and y ∈ Rn×(d−1) is the rest of feature
vectors, where n denotes the number of samples and d denotes the number of features. The quadratic mutual
information (QMI) [26] between x and y is defined as
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QMI :=

∫∫ (
f(x,y)

)2
dxdy,

where

f(x,y) := p(x,y)− p(x)p(y),

and p(x) and p(y) denote the marginal densities ofx and y, respectively. In LSQMI [27], the density difference
f(x,y) is modeled as

g(x,y) =

n∑
`=1

θ`K(x,x`)L(y,y`),

where K(x,x`) and L(y,y`) are kernel functions for x and y, respectively. Then, θ = (θ1, . . . , θn)
> is

learned by least-squares as

min
θ

∫∫ (
g(x,y)− f(x,y)

)2
dxdy.

An empirical and regularized version of the above optimization problem is given as

θ̂ := argmin
θ

[
θ>Hθ − 2θ>ĥ+ λθ>θ

]
,

where λ ≥ 0 is the regularization parameter, andH and ĥ are defined as

H`,`′ :=

∫
K(x,x`)K(x,x`′)dx

∫
L(y,y`)L(y,y`′)dy, (1)

ĥ` :=
1

n

n∑
i=1

K(xi,x`)L(yi,y`)−
1

n2

n∑
i,j=1

K(xi,x`)L(yj ,y`).

In this paper, we use the Gaussian kernel for both K(x,x`) and L(y,y`) as both x and y are continuous:

K(x,x`) := exp
(
−‖x− x`‖2

2σ2

)
,

L(y,y`) := exp
(
−‖y − y`‖2

2σ2

)
,

so that the integral inH (1) can be computed analytically as

H`,`′ = (πσ2)dx/2 exp

(
−‖x` − x`‖2

4σ2

)
× (πσ2)dy/2 exp

(
−‖y` − y`′‖2

4σ2

)
.

Thus, the solution θ̂ can be obtained as

θ̂ = (H + λI)−1ĥ,

where I denotes the identity matrix. Finally, the least-squares quadratic mutual information (LSQMI) is given
by

Q̂MI := max(0, 2θ̂
>
ĥ− θ̂

>
Hθ̂).
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2.2. The normalisation of LSQMI
As LSQMI is ranged from 0 to∞, we here normalize it as follow:

N̂QMI :=
Q̂MI(x,y)

max(Q̂MI(x,x), Q̂MI(y,y))
. (2)

The higher N̂QMI indicates the more information shared between the feature x and the rest of features y, while
it is closed to zero if the feature x is a noise feature. We assume that the values of Q̂MI(y,y) and Q̂MI(x,x)

are larger than zero and that of Q̂MI(x,y), because they are the dependency of themselves. Now, the range of
N̂QMI is [0, 1]. However, in practice, N̂QMI may be higher than 1.

3. THE PROPOSED UNSUPERVISED FEATURE SELECTION METHOD
In an unsupervised scenario, the objective function that is used to evaluate the important feature is

very important. However, the objective function of the existing methods tends to be less reliable because its
approximation depends on the parameters included in the objective function, and there is no automatic way to
choose those parameters. In this paper, we propose an unsupervised feature selection by using a more reliable
objective function called the least-squares quadratic mutual information (LSQMI). The benefits of LSQMI are
that the parameters needed in the objective function can be chosen by cross validation, and it is less sensitive
to noises and outliers that may cause the estimation of the selected criteria unreliable [26], [27]. The proposed
method is described as follows.

Given a set of n samples denoted as {xi}ni=1, where each sample xi consists of d features (i.e.,
xi = {f1, . . . , fd}), our goal here is to select the most m informative features from d features, while the
redundant features should be discarded. To address this problem, we apply the LSQMI [27] as our criteria for
both selecting the most m important features as well as ignoring the redundant ones. Let fj ∈ Rn be the jth

feature, and f\j ∈ Rn×(d−1) be all features excluding fj . To select the important but not redundant features,
our proposed algorithm is shown in Algorithm 1.

Algorithm 1 The unsupervised feature selection with least-squares quadratic mutual information (UFSLSQMI)
Input: A set of features, {f1, ..., fd}, fj ∈ Rn, the number of needed features, m, and a threshold, τ .
Output: A subset of selected features, S = {f∗1 , . . . , f∗m}.

1: S ← ∅
2: for j = 1, . . . , d do
3: compute N̂QMI (Equation (2)) between fj and f\j
4: end for
5: sort features {f1, ..., fd} according to their N̂QMI in descending order resulting in {f∗1 , ..., f∗d }
6: S ← {S ∪ f∗1 }
7: k ← 1
8: for j = 2, . . . , d do
9: if (k < m) then

10: if (
N̂QMI(f∗j ,f∗\j)

N̂QMI(f∗j−1,f
∗
\j−1

)
< τ) then

11: S ← {S ∪ f∗j }
12: k ← k + 1
13: end if
14: else
15: break
16: end if
17: end for

The inputs of the algorithm are a set of features, {f1, ..., fd}, the number of needed features, m, and
a threshold, τ . While the output is a subset of selected features S = {f∗1 , . . . , f∗m}. The algorithm starts by
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computing the normalisation of LSQMI as (2) for all features (lines 2 - 4). Then, the features are sorted in
descending order according to their score (line 5). Lastly, the features are selected according to the ranking;
a feature with the highest score is firstly selected and the feature with the second high score is then selected
and so on. However, the redundant features are ignored by discarding the feature that has the normalisation
of LSQMI score closed to the previous one. In other words, if the ratio of the current score and the previous
one is higher than the given threshold τ , (line 10), the feature according to the smaller score is ignored. The
algorithm is repeated until the m features (lines 8 - 17) are obtained.

The performance of the proposed method depends on the parameters used for approximating the
LSQMI. However, thanks to the least-squares method, we can choose the appropriate parameters by cross-
validation method. Although the selected features are also depended on the threshold τ , we show you through
the experiments that our objective function well defines the redundant features and the noise features. In other
words, if two features are redundancy, their LSQMI scores tend to be closed to each other, and if a feature is
the noise feature, the LSQMI score tends to be small.

4. RESULTS AND DISCUSSION
In this section, we demonstrate the effectiveness of the proposed unsupervised feature selection. We

compared the proposed method with three competitive methods, including UFSMI [9], LSFS [10], and MCFS
[11]. All methods are based on the k-nearest neighbor, and here we set k = 5 for all methods as their default
setting. For MCFS, there is another parameter that is the number of eigenvectors, and we set this parameter at
5 as the same reason. For the proposed method, the threshold τ is set at 0.95.

The competitive methods including the proposed method rank the features according to the criteria to
select the top m features. This means that the objective function mainly affect a subset of selected features.
Thanks to the reliability of LSQMI, our method considers not only the importance of features but the redun-
dancy also. Therefore, in the experiment setups, we firstly show you that our objective function is effective for
selecting the important features as well as discarding the redundant features on the synthetic data. Secondly,
we illustrate the clustering performance after feature selection using six UCI benchmark datasets to confirm
the usefulness of our proposed method.

4.1. Synthetic data
In the first experiment, we would like to demonstrate the reliability of the LSQMI comparing to the

competitive methods. Specifically, we would like to show you that the LSQMI is more reliable for evaluating
both the informative feature and the redundant features. To do so, we conducted a synthetic data of 3 clusters
with 3-dimensionality illustrated in Figure 1. We generated 100 instances with standard deviation = 1 for each
class. Figure 1 (a)-(c) shows that the 3rd feature is the most important for underlying clusters, while the 1st

feature and the 2nd feature are redundancy, because they have the same mean.
Therefore, if we would like to choose two features (i.e., m = 2), the first selected one should be the

3rd feature, and the second one may be the 1st feature or the 2nd feature. In other words, the set of selected
features should not be the 1st feature and the 2nd feature, because they can capture only 2 clusters of the
original data as shown in Figure 1 (a).

(a) (b) (c)

Figure 1. Relationship between features in the synthetic data: (a) Feature 1 vs. Feature 2, (b) Feature 1 vs.
Feature 3, (c) Feature 2 vs. Feature 3
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We ran all methods using this toy data, where each method was repeated 10 times with different
random data. We found that UFSMI performs the worst, because the 3rd feature was not selected 4 times. LS
missed selecting the 3rd feature 1 time, while the proposed method and MCFS always selected the 3rd feature.
The average scores between each feature and the rest features obtained from each objective function are shown
in Table 1, showing that our objective function, N̂QMI, tends to be more sensible than other ones. As can be
seen, the N̂QMI score between the 3rd feature and the rest features is significantly highest, while the N̂QMI
scores according to the 2nd feature and the 1st feature are close to each other. In contrast to other objective
functions, the scores according to each feature are almost the same for all features. Notice that the scores of
LS showing in Tables 1 and 2 are the scores of (1 − Laplacian score) for each feature. Thus, as same as other
objective functions, the feature with larger score is more important.

Table 1. The average scores over 10 runs between the feature j and the rest of the features obtained from
different objective functions using the synthetic data

Objective functions feature 1 feature 2 feature 3
LS 0.9935 0.9934 0.9936
MI -9.3682 -9.3771 -9.3730
MCFS 0.7330 0.8010 0.9848
N̂QMI 0.7424 0.7404 1.9034

Table 2. The average scores over 10 runs between the feature j and the rest of the features obtained from
different objective functions after adding the noise feature (feature 4)

Objective functions feature 1 feature 2 feature 3 feature 4
LS 0.9821 0.9818 0.9801 0.9704
MI -8.1727 -8.1980 -8.2047 -8.8783
MCFS 0.6872 0.7244 0.8226 0.9997
N̂QMI 0.3331 0.3415 0.8952 0.0167

Next, we added a noise feature (the 4th feature) with mean = 0 for all clusters and standard deviation
= 1 into the above toy data. We ran the experiment 10 times for each method again, and the results show
that our method outperforms other methods including MCFS. Moreover, MCFS performs the worst in this
experiment as it always selected the 4th feature, while the other three methods never selected the 4th feature.
The average scores of each method are shown in Table 2, confirming that N̂QMI is more reliable than other
objective functions. Notice that MCFS works well if the number of used eigenvectors is equal to the number
of clusters; however, in an unsupervised scenario, we do not know the actual number of clusters.

4.2. UCI datasets
Here, we evaluated the clustering performance after feature selection using six UCI benchmark datasets,

namely Abalone, Sonar, Glass, Pima, Heart, and Cancer datasets. For each dataset, the number of clusters (c),
the number of features (d), and the number of samples (n) are shown in Figure 2. For each run, we randomly
chosen 90% samples from each dataset, then we performed feature selection. Finally, we performed clustering
by the k-means algorithm; we ran the k-means algorithm 10 times with random initialization and chose the
best solution with the minimum error rate. The clustering accuracy is evaluated. The results of each dataset are
shown in Figure 2, showing the average accuracies over 10 runs at different number of seleced features, m.

The results indicate that the proposed method (i.e., UFSLSQMI) almost performs better than the
counterpart approaches. However, we cannot say that the proposed method is the best. Because, in practice,
there is no method that works well for all data. Moreover, it is hard to explain the reasons why it works or it
does not work. What we can say is that the proposed method can be an alternative for solving unsupervised
feature selection problem that may work well for your data.

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 3, June 2021 : 1619 – 1628



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 r 1625

(a) (b)

(c) (d)

(e) (f)

Figure 2. The average of clustering accuracies over 10 runs on UCI datasets: (a) Abalone (c=10 ,d=8 ,
n=2493), (b) Sonar (c=2 ,d= 60, n=188), (c) Glass (c=6 ,d=9 , n= 193), (d) Pima (c= 2,d= 8, n= 692), (e) Heart

(c=2 ,d=13 , n=244), (f) Cancer (c=2 ,d=9 , n=615)

4.3. Discussion
In the experiments, we compared the proposed unsupervised feature selection method with the other

filter methods. All methods including the proposed method select the informative features from the rank of
features according to the scores of the objective function. This means that the objective function plays an
important role for this task. We discuss here each objective function as follows. Firstly, Laplacian score (LS) is
computed by constructing of a nearest neighbor graph with the specific-defined number of nearest neighbors,
k. This is the reason why the Laplacian score feature selection does not always perform well. In addition, as
can be seen in the experiments on toy data (Table 1 and Table 2), the Laplacian scores of the most important
feature and the noise feature are not significantly different from each other, this may cause the rank of features
relating to the important features is unreliable.

Unsupervised feature selection with least-squares quadratic mutual information (Janya Sainui)
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Secondly, the mutual information (MI) is also computed based on the k-nearest neighbors graph. The
results in Tables 1 and 2 demonstrate that this MI score does not describe the difference between the informative
feature and the noise feature well. In other words, as same as LS, the MI scores of the important feature and
the noise feature are not significantly different from each other.

Thirdly, the MCFS score is also computed based on the k-nearest neighbor graph such that the suitable
k effects the good score. Not only the parameter k, the MCFS score also needs the number of used eigenvectors
that makes the MCFS score depend on these two parameters. As can be seen in the experiment on toy data
with noise feature, the MCFS score of noise feature is unreliable; however, if we change the number of used
eigenvectors to be 2 instead of 5, the MCFS score of noise feature becomes more reliable. This confirms that
the MCFS score heavily depends on the number of used eigenvectors.

Lastly, the proposed method utilizes the LSQMI that approximates by least-square method so that the
cross-validation can be included, resulting in that the estimator of QMI is sensible. As can be seen in Tables
1 and 2, the normalized LSQMI describe the structure of the original data as well; the LSQMI is highest if
the feature is the most important as the 3rd feature of the toy data; in contrast, the LSQMI is smallest if the
feature is the noise feature that provides no information about data like the 4th feature. The main drawback of
the proposed method is the time complexity that is higher than other methods because of the cross-validation
process.

To sum up, the main problem of the filter based unsupervised feature selection methods is lacking of
the ability to automatically choose the parameters included in their objective function so that the approximation
of the objective function may be unreliable. Thus, we here propose to use the LSQMI for unsupervised feature
selection, that is not only reliable for evaluating the important features but also for ignoring the redundant
features.

5. CONCLUSION
The goal of feature selection is to select a subset of features in order to reduce the dimensionality of

the original data, while the structure of data should be preserved. There are two main points that are important
in order to achieve this goal. Firstly, we need to select the most informative features underlying preserving the
structure of the original data. Secondly, we have to remove the redundant features because they do not provide
more information about data. However, the existing approaches may not select the important features because
the use of unreliable objective functions. Moreover, they do not ignore the redundant features. In this paper, we
focus on these two points by exploring the reliable objective function that is the most important for evaluating
the informative features as well as the redundant features in an unsupervised manner. Specifically, we propose
to use the least-squares quadratic mutual information (LSQMI) as the objective function to select the valuable
features excluding the redundant features. The benefit of LSQMI is that the needed parameters can be chosen
by cross validation resulting that the estimation of the objective function will be more reliable, while most of
the other objective functions lack of the systematic way to choose their parameters. Through the experiments,
we show that the LSQMI can be used to determine the important features including the redundant feature as
well.

REFERENCES
[1] S. B. Kotsiantis, ”Feature selection for machine learning classification problems: a recent overview,”

Artificial Intelligence Review, vol. 42, no. 1, pp. 157–176, 2011, doi: 10.1007/s10462-011-9230-1.
[2] J. Cai, J. Luo, S. Wang, and S. Yang, ”Feature selection in machine learning: a new perspective,” Neuro-

computing, vol. 300, pp. 70-79, 2018, doi: 10.1016/j.neucom.2017.11.077.
[3] L. Talavera, C. Nord, and J. Girona, ”Dependency-based feature selection for clustering symbolic data,”

Intelligent Data Analysis, vol. 4, no. 1, pp. 19-28, 2000, doi: 10.3233/IDA-2000-4103.
[4] V. Roth and T. Lange, ”Feature selection in clustering problems,” Advances in Neural Information Pro-

cessing Systems, vol. 16, pp. 473–480, 2004.
[5] Ma. Dash, K. Choi, P. Scheuermann, and H. Liu, ”Feature selection for clustering—a filter solution,”

2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, pp. 115-122, doi:
10.1109/ICDM.2002.1183893.

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 3, June 2021 : 1619 – 1628



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 r 1627

[6] S. Visalakshi and V. Radha, ”A literature review of feature selection techniques and applications: Review
of feature selection in data mining,” IEEE International Conference on Computational Intelligence and
Computing Research, 2014, pp. 1-6, 2014, doi: 10.1109/ICCIC.2014.7238499.

[7] J. Tang, S. Alelyani, and H. Liu, ”Feature selection for classification: a review,” Data classification:
Algorithms and applications, CRC Press, pp. 37–64, 2014.
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