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Abstract 
The chaotic system plays an important role in information communication, electrical equipment, 

computer cryptography and so on. In this paper, four new high-dimensional complex hyperchaotic systems 
are found. A new overlaying regularity to generate a new high-dimensional complex hyperchaotic system 
is found by overlaying a series of low-dimensional chaotic system with the Duffing chaotic system. The 
regularity to generate high-dimensional complex hyperchaotic system is analyzed. The features of chase 
space maps and Lyapunov exponents’ maps are analyzed. The results of theoretical analysis and 
experiment show that new systems having strong chaotic features. 
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1. Introduction 
The theory of relativity, the chaotic phenomenon and the quantum mechanics are three 

important scientific discoveries in the 20th century [1]. The chaotic phenomenon is widespread in 
information communication field [2]. There often were some noises in the electrical equipment 
and communication [3]. Those noises were some uncertain messy output waveform [4]. In the 
past, they were generally considered to be due to the circuit to generate self-excited oscillation 
and noises. In fact, in many cases, the circuit was in a chaotic state. Therefore, to understand 
the chaotic phenomenon and its produced regularity in electrical equipment and communication 
has important significance [5]. Because the outputs of chaotic system is very sensitive to the 
changes of initial conditions and has the andrandom characteristics that encryption required, it 
has become an important branch of researching for the information security [6].  

To any chaotic information encryption, the higher dimension it has, the better security it 
has. Now, only a few of five-dimensional complex chaotic systems have been found. By adding 
the state feedback controller on low-dimensional chaotic systems, some five-dimensional 
hyperchaotic systems are generated. For example: in 2009, Huaqing Li added state feedback 
on the three-dimensional Lorenz system to generate a five-dimensional Lorenz hyperchaotic 
system [7]. In 2010, Feng Han added state feedback on the three-dimensional Lu chaotic 
system to generate a five-dimensional Lu hyperchaotic system [8]. In 2011, Lu Huang added 
state feedback on the three-dimensional Chen chaotic system to generate a five-dimensional 
Chen hyperchaotic system [9]. In this paper, we will study how to generate a six-dimensional 
complex hyperchaotic system and explore the law to generate high-dimensional complex 
hyperchaotic system. The result of this study will further reveal the operation mechanism of the 
high-dimensional hyperchaotic oscillation circuits. The result of this research will has practical 
significance in cryptography, communication, electronic and electrical equipments. 
 
 
2. New Duffing-Lorenz Chaotic System 
2.1. The Form of the Duffing-Lorenz Chaotic System 

Duffing system has rich nonlinearity dynamics characteristics [10]. It is one of the 
commonly used system in information transmit field. Duffing system is as the following:  
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D and e are real constants. The form of the Lorenz system is as the following: 
 

 














czxyz

yxzbxy

xyax







                                                                                                   (2) 

 
The parameters of  a~c are real constants. Equation (1) and Equation (2) are overlaid 

into a new Duffing-Lorenz complex hyperchaotic system: 
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The parameters of  a~g are real constants. 

 
2.2. Phase Space 

The phase spaces of Duffing Lorenz complex hyperchaotic system are shown in Figure 
1. 
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(b) 
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Figure 1. Phase Space Pictures (a) x-y, (b) x-z, (c) x-u, (d) x-v, (e) x-w 

      
 
2.3. Lyapunov Exponent Analysis 

In the baseline parameters of a=10, b=8/3, c=28, d=-2.5, e=0.6, f=-8, g=9.7, x=1, y=1, 
z=1, u=1, v=1, w=1 and dt=0.005, the Lyapunov exponents [11] with the parameters change are 
shown in Figure 2(a)-(g). 
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(a) (b) (c) 
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(e)  
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Figure 2. Lyapunov Pictures (a) a change, (b) b change, (c) c change, (d) d change, (e) e change, 

(f) f change, (g) g change 
 
 

The results of the experiment show the steady state, the chaotic state and the hyper 
chaotic state when the parameters change of  the Duffing-Lorenz chaoteic system. When there 
are two positive Lyapunov exponents in the same time, the system of Duffing-Lorenz complex 
chaotic is in the hyperchaotic state. 
 
2.4. Power Spectrum Analysis 
 

 

Figure 3. System Time-domain Waveform 
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7. Conclusion 
Now, the five-dimensional complex hyperchaotic systems have been built by adding the 

feedback controller to a three-dimensional chaotic system. In this paper, there are three new 
six-dimensional complex hyperchaotic systems and a new four-dimensional complex 
hyperchaotic system to be found. A new overlaying regularity is found by overlaying a series of 
low-dimensional chaotic system and the Duffing chaotic system to generate a new high-
dimensional complex chaotic system. The results of theoretical analysis and experiment reveal 
the relationship between the low-dimensional chaotic system and the high-dimensional complex 
hyperchaotic system. The result of this research has practical significance to analyze and 
design the high-dimensional chaotic system in communication, electrical equipment, computer 
cryptography and so on. 
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