
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 22, No. 3, June 2021, pp. 1529~1539

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v22.i3.pp1529-1539  1529

Journal homepage: http://ijeecs.iaescore.com

Parallel implementation of maximum-shift algorithm using

OpenMp

Atheer Akram AbdulRazzaq1, Qusay Shihab Hamad2, Ahmed Majid Taha3
1-3Businesses Informatics College, University of Information Technology and Communications, Baghdad, Iraq

3Soft Computing and Data Mining Center, Universiti Tun Hussein Onn, Johor Malaysia Universiti Teknologi Malaysia

(UTM), Malaysia

Article Info ABSTRACT

Article history:

Received Oct 23, 2020

Revised Apr 29, 2021

Accepted May 3, 2021

 String matching is considered as one of the center issues within the field of

computer science, where there are numerous computer applications that

supply the clients with string matching services. The increment within the

number of databases which are created and protected in numerous computer

gadgets had impacted researchers with the slant towards getting robust

techniques in tending to this issue. In this study, the Maximum-Shift string

matching algorithm is chosen to be executed with multi-core innovation

through the utilization of OpenMP paradigm, in order to decrease the

successive time, and increment the speedup and efficiency of the algorithm.

The deoxyribonucleic acid (DNA), protein and the English text datasets are

utilized to test the parallel execution that influences the Maximum-Shift

algorithm execution when utilized with multi-core environment. The results

demonstrated that the execution is affected by the performance between the

parallel and consecutive execution of Maximum-Shift algorithm by data

type. The English text appeared ideal comes about within the parallel

execution time as compared to other datasets, whereas the DNA database set

appeared the most elevated comes about when compared to other data types

in terms of speedup and efficiency capabilities.

Keywords:

Database types

Efficiency

Maximum-shift algorithm

OpenMP directive

Parallel execution time

Speedup

This is an open access article under the CC BY-SA license.

Corresponding Author:

Atheer Akram Abdul Razzaq

Businesses Informatics College

University of Information Technology and Communications

Baghdad, Iraq

Email: athproof@uoitc.edu.iq

1. INTRODUCTION

The categorization of parallel handling is subordinate upon the way of the association between the

components of processing, and is categorized into two fundamental structures. These structures are the

distributed memory and shared memory. In parallelization, disseminated memory computers compatibility

data amid the transmission and gotten of messages through the communication arrange. In any case, within

the parallelization of shared memory computers (processors of multicore and frameworks of multiprocessor),

they have a common get to of shared memory. OpenMp is considered the foremost utilized application

programming interface (API) for the parallel handling of shared memory. It may be a collection of run-time

library schedule, mandates and develops, and OpenMP Environment Factors which are bolstered by the

frameworks of multi-core, processors of shared memory, and the compilers and clusters. Moreover, the

OpenMp does not require the administration of threads because it is subordinate upon certain parallelization

programs highlights on the computer frameworks of shared memory [1], [2]. The parallelization algorithm

has to select the parts of parallel that contains it, and it makes the appropriateness between the speed of

https://creativecommons.org/licenses/by-sa/4.0/
mailto:athproof@uoitc.edu.iq

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 3, June 2021 : 1529 - 1539

1530

execution and the parallelization algorithm. Parallel is characterized as the necessity in finding instructions,

chain of instructions, or certain parts of the code that are executed with diverse cores or processors at the

same time [1]. The parallelization of shared memory is utilized in various computer applications such as

intrusion detection systems (IDS) [3], [4] linear algebra [5], string matching algorithms [6]

bioinformatics [7], data mining [8], image classification [9], and Therapeutic picture preparing [10].

This study concentrates on the issues which are related to the execution of the Maximum-Shift

algorithm. Subsequently, the most address is “How to expand the speedup by diminishing the consecutive

time of the Maximum-Shift algorithm by utilizing OpenMP parallel method?” Hence, the sub address of the

main address is “How to demonstrate the execution enhancement of the parallel form of the Maximum-Shift

string matching algorithm compared with its execution of the consecutive?” In this manner, the contribution

of this paper is to examine the appropriateness of parallelization the Maximum-Shift algorithm on multi-core

environment utilizing OpenMP.

2. RELATED WORKS

2.1. Exact string-matching algorithm

String matching is considered as a searching process executed to examine at two limited-lengths of

strings. It can be characterized as exact string matching procedure utilized to discover all occurrences of the

pattern P of length of m (P [1]…. P [m-1]) within the text string T of length of n (T [1]…. T [n-1]), where the

m and n > 0 and the m ≤ n., as well as both of the P and T have the same letter set ∑. [11]. It is

predominantly and broadly utilized in different areas such as web search engine, artificial intelligence [12],

[13], remote sensing, aerial photography, cartography, medical diagnostics [1], computational biology [14],

compilers, and command interpreters [15]. The persistent challenges of string matching include the

duplication of databases each two years, and this affected the speed of computers, which leads to the

increment within the size of memory. Hence, utilize of the effective string-matching algorithms is

fundamental to resolve these issues [11], [12].

There are various exact string matching algorithm in presence, such as the hybrid algorithm between

the Berry-Ravindran and the Skip Search algorithms named as Berry Ravindran Skip Search (BRSS)

algorithm. This algorithm is dependent upon the more superior properties of the original algorithms, where

the skip search algorithm demonstrates favorable performance when it is utilized with small alphabets size.

Meanwhile, the efficiency of the Berry-Ravindran algorithm is in the provision of a long shift during the

searching technique. The preprocessing phase of this algorithm is dependent upon two tables (brBc); table

created from the Berry-Ravindran algorithm, and the second table created is the bucket list. The searching

phase involves the checking of the characters found in the bucket, of which the character is then arranged

between the initial point of the search and the pattern to the location of that character in the bucket. The

comparison is initiated from the left to the right, and when there is a match or a mismatch, the shifting

depends on the bucket shift value being ≥ the bad character. Next, the bucket will use the shift value, and if

the bad character shift ≥ from length of pattern, then the shifting is dependent on the bad character shift [16].

The two-sliding windows algorithm (TSW), depends on the pattern of sliding windows to check the

text simultaneously from the left and right side. This algorithm utilizes two windows, one from the left and

aligned to the text from the left side, and the second is from the right and is aligned to the text from the right

side. The comparison process between the pattern and text occurs from both sides simultaneously, when there

is a mismatch, the shifting will then occur for both of the two sides, from the left side a shift will be executed

to the right, and the right will shift to the left side. The shift operation depends on the Berry- Ravindran shift

technique, which takes two characters consecutively [17], [18].

In addition to this algorithm, another algorithm known as the franek-jennings-smyth (FJS) algorithm

is a hybrid between Knuth-Morris-Pratt (KMP) pattern-matching algorithm and Quick search algorithm,

where there are two stages to this algorithm. Within the to begin with stage there are two steps that are

utilized by the algorithm for comparison. A comparison is made between the text window and the pattern,

where the algorithm procedure depends on the Quick search algorithm. The comparison is started from the

furthest right of the pattern, and when there's a mismatch, the shift depends on quick search implementation.

Otherwise, the FJS will depend on the second stage. Within the second stage, the KMP matching technique

will start a comparison from the left to right, whereas the shift is dependent on the first stage [19], [20].

2.2. Parallel of the exact string-matching algorithms

There are numerous parallel exact string matching algorithms that are implemented to extend the

execution by diminishing the time consumed by the algorithms of the multi cores/ processors. One

illustration of the parallel string matching algorithms that's utilized in security purposes is the Quick search

algorithm utilizing OpenMp and the Pthread (Posix). The proposed strategy is seen to have moved forward

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel implementation of maximum-shift algorithm using OpenMp (Atheer Akram AbdulRazzaq)

1531

the execution of intrusion detection system (IDS), that driven to the improved discovery of the hacker

technique, which transmits the new report to the network administrator to treat the assault [3].

Furthermore, there are hybrid parallel models between MPI and OpenMP utilized with string

matching algorithms such as Baeza-Yates and Regnier, Karp-Rabin, Naive, Zhu-Takaoka, and the Baker-

Bird exact two-dimensional online algorithms. The homogeneous cluster and multicore system were used

with these algorithms to measure the performance. This study elucidated on the improvement in the

performance of the algorithms when databases with big sizes of alphabet were utilized because of the

increase in the mismatches in the processing operation of the algorithms [1].

 There are certain exact string-matching algorithms that utilize the graphics processing unit (GPU),

the Compute unified device architecture (CUDA) such as the Naive, Boyer-Moore-Horspool, Quick-Search

and Knuth-Morris-Pratt algorithms which were utilized with tools of CUDA. Following the comparison of

the sequential and parallel results in all of these algorithms in terms of consumed time when using different

pattern sizes, the number of threads and different databases, it was discovered that the results of parallel

implementation was faster of approximately 24 times than the sequential time when large text and small

pattern size are utilized [21].

3. PROPOSED METHOD

This section contains the points of interest of the Maximum-Shift algorithm that included the

preprocessing and searching phase technique. It explicates the imperative reasons for understanding the

properties of the Maximum-Shift algorithm, as well as checking the behavior of identifying the parts of code

that's time consuming and compute-intensive. Consequently, parallelization can be utilized within the

programming of the OpenMP strategy.

3.1. Maximum-shift algorithm

The Maximum-Shift algorithm is a hybrid algorithm among the Quick search, Zhu-Takaoka, and

Horspool algorithms. It has two phases comprising the preprocessing and searching phase. In the

preprocessing phase, the algorithm depends on two selected good performance functions from Quick search

and Zhu-Takaoka algorithms. The quick search bad character function, which thenceforth will be known as

qsBc, is selected to improve the performance of hybrid algorithm by using maximum shift value (m+1), as

shown in (1), while the Zhu-Takaoka bad character function or known as ztBc, is used in the algorithm to

obtain the maximum shift value of (m-1) and (m), as shown in (2).

 (1)

 (2)

The searching phase of the Maximum-Shift algorithm depends on the left to right comparison

technique from Quick search algorithm, and also depends on the right to left comparison technique of

Horspool algorithm. The comparison operation of this algorithm depends on the comparison of the first two

characters from the rightmost between the text window and the pattern as the first phase. When there is a

match, a comparison is made to the rest of characters from the left-most of the text window and the pattern as

the second phase. If there is a match or a mismatch, then the shifting will depend on the maximum value

between the (m+1) from qsBc function or (m-1) and (m) from ztBc function, (as shown in Figure 1) [22].

3.2. Parallel of maximum-shift algorithm using OpenMP paradigm

This part clarifies the objective of the study pertaining to the parallelization steps of Maximum-Shift

algorithm. It entails the multicore implementation used on the Maximum-Shift algorithm and the performing

of code by using the directives and the library functions of the OpenMP paradigm. Depending on the analysis

of the Maximum-Shift algorithm in the previous part, the costly part in the string matching algorithm is in the

checking of whether the character of the text window matches the character in the pattern [6]. To reduce the

cost of the searching phase that includes the matching operation of the characters in the text window and the

pattern, the parallelization is therefore utilized depending on the OpenMP model.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 3, June 2021 : 1529 - 1539

1532

In the searching phase, the Maximum-Shift algorithm is executed by utilizing the multicore

processing and the programming OpenMP environments. The platform of OpenMP executed in the

programming is dependent upon the division of the whole data to the chunks (blocks) by the Fork operation

and the join processes. The program is initially executed by the thread termed as the master thread, and this

thread distributes the functions to the slave (workers) threads. The parallel Maximum-Shift algorithm

initiates the execution in the serial program using the master thread, and continue up to the searching phase

operation. In this stage, the worker threads are created. The number of threads will be 24 because the

execution utilizes the cluster with one node and 24 cores. Each worker thread implements the searching

phase operations on one block from the data that is divided into blocks, and when the execution is completed,

the result will be transmitted into the master thread. The master thread then collects all of the results by using

join operation process, and will then display the final output (final result). This process will be executed in a

serial program, after the worker threads transmit the results for each data block to the master thread, which

will then be automatically terminated, as shown in Figure 2.

Figure 1. The Maximum-Shift algorithm technique

3.3. Battuta cluster architecture

This study utilizes the Battuta Cluster Architecture, where this cluster is present in the Parallel and

Distributed Processing Lab (PDCC) in the School of Computer Science, Universiti Sains Malaysia (USM).

This cluster possesses one node with 24 cores, 2xIntel Xeon E5-2620 (2.00GHz/ 15MB) and it has (8GB

DDR3 ECC DIMM, 2TB 7200RPM), (Nvidia Tesla Kepler K10 8GB GDDR5 Passive), (2xGigabit LAN

Port/1xIPMI Port), in which case, the operating system of this cluster is Linux (Ubuntu 12.04.5 LTS) and the

softwares that are used in this cluster are the OpenMP, OpenMPI and compute unified device architecture

(CUDA).

3.4. The performance metrics

In this study the proposed algorithm is executed by using the OpenMP paradigm, and the results of

the evaluation of this algorithm are dependent on the metrics that are utilized to compare the results of the

parallel and sequential algorithms, in order to calculate the extent of improvement between them. This study

used metrics consisting of the execution time, speedup, and efficiency [23]. The elapsed time that occurred

between the beginning and ending of the performance of one processor is termed as the sequential time,

while the time consumed between the starting time for the first processor to the finished time to the last

processor is termed as the parallel time. The Ts denotes the sequential execution time, while Tp is the parallel

execution time.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel implementation of maximum-shift algorithm using OpenMp (Atheer Akram AbdulRazzaq)

1533

The speedup is utilized to obtain the advantages of a parallelization operation. The speedup is the

ratio of consumed time between the sequential to the parallel stages. This ratio is calculated by using the

ensuing equation.

Speedup (S) = Ts / Tp (3)

Where the Ts denotes the elapsed time in the sequential stage, Tp denotes the elapsed time in the parallel

stage, and S denotes the speedup. The ratio between the speedup and the number of (processors /cores) is

termed as the efficiency. There are positive and reverse relationship between the number of (processors/

cores) and the speedup in the efficiency. The efficiency increases when the speedup increases. Meanwhile, in

instances when the number of processors increased, consequently the efficiency will be reduced, as indicated

in the ensuing (4).

E = S / P (4)

Where the P denotes the number of (processors / cores), S denotes the speedup, and E denotes the efficiency.

Figure 2. The parallel of maximum-shift algorithm using OpenMP model

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 3, June 2021 : 1529 - 1539

1534

4. THE EXPERIMENTAL RESULTS AND DISCUSSIONS

The major concept of parallelization on the Maximum-Shift Algorithm is for the improvement of the

execution by comparing and measuring the improvement of the parallel to the sequential algorithm. The factors

that are utilized for the evaluation of the performance of the algorithm are the execution time, speedup, and the

efficiency. The standard benchmark databases that are employed in this study are deoxyribonucleic acid (DNA),

Protein, and English text, where these databases are downloaded from the (http://pizzachili.dcc.uchile.cl/texts.html).

The datasets that are utilized in the experiment are different in the alphabet size, where this type is used to analyze

the behaviors of the algorithm in the different sizes of alphabet. The Maximum-Shift Algorithm in both the

sequential and parallel algorithms implemented used the 1GB of data size, with different pattern lengths that are

utilized to evaluate the behaviors of the algorithms. The pattern lengths are 4, 8, 10, 20, 40, 60, 80, 100 characters,

which are selected randomly from text. In this study the numbers of cores utilized are 2, 4, 8, 16, 20, and 24 cores.

4.1. Parallel execution time evaluation

The parallel execution time includes the utilize of different pattern lengths and 1GB data size, as

well as the utilize of different alphabet sizes such as DNA, Protein, and English text. The frame of DNA

dataset can be found within the shape of 4 characters, which alludes to the establishment of chemical of the

cell part, whereas the frame of Protein dataset comprises of 20 amino acids. In the mean time, the English

text dataset can be found within the shape comprising of 100 letter set sorts. The results of the parallel

execution time in the maximum shift algorithm revealed the best performance time in comparison to the

sequential time. However, there is overhead that impacted on the parallelization time.

The overhead increases when the number of cores increases, due to the increase in the

communication time, alongside the increase in the number of cores [24]. Through the use of 1GB data size of

DNA, Protein and English database types as shown in Tables 1, 2, and 3. It is revealed that the parallel

execution time decreased when the number of cores increased in all databases types. The English text dataset

appeared the finest parallel execution time in Maximum-Shift algorithm when compared to DNA and Protein

databases. The respective best parallel results are displayed as takes after: two cores, 164 ms; four cores,

94ms; eight cores, 73 ms; sixteen cores, 73ms; twenty cores, 74; twenty four cores, 77ms. The DNA database

appeared the most noticeably worst parallel execution time in most results are displayed as follows: two

cores, 4854 ms; four cores, 2143 ms; eight cores, 1172 ms; sixteen cores, 816 ms, whereas the Protein

appeared the most worst results when utilizing twenty cores, 767 ms; and twenty four cores, 814 ms. The

DNA got the most exceedingly bad comes about, because it takes a longer time to execute. Usually since the

DNA has small alphabet size, whereas the English text has big alphabet size [25], as shown in Figure 3,

Figure 4, and Figure 5.

Table 1. Sequential execution time and parallel

execution time (ms.) when using

1GB of DNA database

Length of
pattern

Number of Cores

Sequential
2

cores
4

cores
8

cores
16

cores
20

cores
24

cores

4 9694 4854 2143 1172 816 719 737

8 5450 2749 1401 865 528 455 475

10 4079 2075 1266 730 498 475 442
20 3100 1559 782 499 338 352 310

40 2701 1323 700 460 353 408 350

60 3972 980 497 328 254 253 238
80 3834 920 648 324 247 208 242

 100 1470 715 447 261 223 201 171

Table2. Sequential execution time and parallel

execution time (ms.) when using

1GB of Protein database

Length of
pattern

Number of Cores

Sequential
2

cores
4

cores
8

cores
16

cores
20

cores
24

cores

4 5965 3274 1540 1071 791 767 814

8 4200 2134 1098 634 428 363 364

10 3477 1785 909 560 316 333 330
20 1586 785 402 292 183 203 194

40 903 444 256 162 122 130 129

60 539 279 238 133 147 122 122
80 469 242 145 189 122 120 118

100 390 208 123 129 119 121 123

Table 3. Sequential execution time and parallel execution time (ms.) when using 1GB of English database

Length of pattern

Number of Cores

Sequential 2 cores 4 cores 8 cores 16 cores 20 cores 24 cores

4 3867 2258 993 631 407 434 405
8 3055 1530 857 423 272 215 244

10 2647 1127 811 377 212 232 213

20 1058 535 277 180 111 118 114
40 511 296 151 88 79 72 77

60 348 222 122 83 81 72 74

80 300 181 94 77 73 73 74
100 284 164 94 73 73 74 77

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel implementation of maximum-shift algorithm using OpenMp (Atheer Akram AbdulRazzaq)

1535

Figure 3. Evaluations of the parallel time when

using 1GB data size with DNA datatype

Figure 4. Evaluations of the parallel time when using

1GB data size with Protein datatype

Figure 5. Evaluations of the parallel time when using 1GB data size with English text datatype

4.2. The speedup evaluation

As shown in Tables 4, 5, and 6, the speedup of the maximum shift algorithm showed the high

speedup capabilities, with high parallel execution time as compared to sequential execution time. From the

results of speedup, there is little overhead that appeared during the parallel process, as this is due to the

communication time consumed by some of the cores were high, and due to the large data size used.

 The speedup results indicated high speed outcomes when 2 and 4 cores are used, while the speedup

outcome showed a gradual reduction when 8 cores and above are used in the protein database set and in

English text datasets. However, in the DNA database set, the reduction of speedup began when 16 and above

cores were used , as shown in Figures 6, 7 and 8, as well as in Tables 4, 5 and 6. The reason for the low

speedup of protein sequence and English text when compared to the DNA dataset is because of the big

alphabet size of the dataset, which had led to the reduction in the number of shifting in the searching

technique of the maximum shift algorithm. Additionally, it is due to the decrease in the parallel time when

long pattern and increased number of cores are used. All of the mentioned factors resulted in the low speed

up when big alphabet size is used. Meanwhile, the speedup results using the DNA database set is not affected

extensively because it consists of small alphabet size, in addition to the fact that during the searching phase,

there is an increase in the shifting technique, which also led to an increase in elapsed duration time. The best

speedup results are displayed as follows: two cores, 1.77; four cores, 3.98; eight cores, 7.28; sixteen cores,

10.46; twenty cores, 11.87; twenty four cores, 11.58. The most exceedingly bad speedup comes about are

displayed as follows: two cores, 1.4; four cores, 2.02; eight cores, 2.19; sixteen cores, 3; twenty cores, 2.95;

twenty four cores, 2.9, as appeared in Tables 4, 5, 6.

Table 4. The Speedup when using 1GB of DNA

database

Length of

pattern

Number of Cores
2

cores

4

cores

8

cores

16

cores

20

cores

24

cores

4 1.76 3.98 7.28 10.46 11.87 11.58

8 1.75 3.44 5.57 9.12 10.59 10.14
10 1.77 2.90 5.02 7.36 7.72 8.30

20 1.76 3.51 5.51 8.13 7.81 8.86

40 1.70 3.21 4.88 6.36 5.50 6.42
60 1.69 3.34 5.06 6.54 6.59 6.97

80 1.70 2.41 4.83 6.33 7.52 6.46
100 1.74 2.78 4.77 5.58 6.19 7.27

Table 5. The Speedup when using 1GB of Protein

database

Length of

pattern

Number of Cores
2

cores

4

cores

8

cores

16

cores

20

cores

24

cores

4 1.61 3.41 4.91 6.65 6.68 6.46

8 1.68 3.26 5.64 8.36 9.85 9.83
10 1.65 3.25 5.27 9.34 8.87 8.95

20 1.73 3.38 4.65 7.43 6.69 7.01

40 1.7 2.96 4.67 6.2 5.82 5.87
60 1.72 2.02 3.61 3.27 3.93 3.93

80 1.71 2.85 2.19 3.39 3.44 3.5
100 1.72 2.9 2.77 3 2.95 2.9

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 3, June 2021 : 1529 - 1539

1536

Table 6. The Speedup when using 1GB of English database

Length of pattern

Number of Cores

2 cores 4 cores 8 cores 16 cores 20 cores 24 cores

4 1.4 3.17 4.99 7.74 7.26 7.78

8 1.74 3.11 6.29 9.79 12.38 10.91

10 1.66 2.31 4.98 8.85 8.09 8.81
20 1.74 3.36 5.17 8.38 7.88 8.16

40 1.51 2.95 5.07 5.65 6.19 5.79

60 1.41 2.65 3.76 3.85 4.33 4.22
80 1.48 2.85 3.48 3.67 3.67 3.62

100 1.59 2.78 3.58 3.58 3.53 3.39

Figure 6. Evaluations of the speedup when using

1GB data size with DNA datatype

Figure 7. Evaluations of the speedup when using

1GB data size with Protein datatype

Figure 8. Evaluations of the speedup when using 1GB data size with English text datatype

4.3. The efficiency evaluation

As indicated in Tables 7, 8 and 9, the efficiency of the maximum shift algorithm is high when 2, 4,

and 8 cores are used for DNA, Protein and English databases. However, the efficiency began to decrease

when 16 cores and above are used alongside long pattern lengths of 60, 80, and 100. Nevertheless, when the

DNA dataset is utilized, the efficiency began to reduce with the utilization of 20 cores. The reason for the

weaknesses in the efficiency began with the long pattern length, and when 16 cores and above are utilized in

the datasets is because of the overhead that impacted the parallel process. In this experiment, when data size

of 1GB is employed, there is a reduction in the efficiency when the number of cores is increased.

Furthermore, due to the positive relationship between the efficiency and the speedup, the efficiency is

observed to increase when the speedup increased, and vice versa. Due to the mentioned reason, the efficiency

is observed to decrease when 8 cores and core values above 8 cores and long pattern are used. The utilization

of the DNA database showed the highest efficiency outcome in comparison to the Protein and English Text

datatypes, as shown in Figures 9, 10 and 11. The best efficiency results are displayed as takes after: two

cores, 88%; four cores, 99%; eight cores, 91%; sixteen cores, 65%; twenty cores 59%; twenty-four cores

48%. The worst efficiency results are displayed as follows: two cores, 69%; four cores, 50%; eight cores,

27%; sixteen cores, 18%; twenty cores, 14%; twenty-four cores, 12%; as shown in Tables 7, 8 and 9.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel implementation of maximum-shift algorithm using OpenMp (Atheer Akram AbdulRazzaq)

1537

Table 7. The Efficiency when using 1GB of

DNA database

Length of
pattern

Number of Cores

2
cores

4
cores

8
cores

16
cores

20
cores

24
cores

4 87% 99% 91% 65% 59% 48%

8 87% 85% 69% 57% 52% 42%

10 88% 72% 62% 46% 38% 34%
20 88% 87% 68% 50% 39% 36%

40 84% 80% 61% 39% 27% 26%

60 84% 83% 63% 40% 32% 29%
80 85% 60% 60% 39% 37% 26%

100 86% 69% 59% 34% 30% 30%

Table 8. The Efficiency when using 1GB of

Protein database

Length of
pattern

Number of Cores

2
cores

4
cores

8
cores

16
cores

20
cores

24
cores

4 80% 85% 61% 41% 34% 26%

8 83% 81% 70% 52% 49% 40%

10 82% 81% 65% 58% 44% 37%
20 86% 84% 58% 46% 33% 29%

40 85% 73% 58% 38% 29% 24%

60 86% 50% 45% 20% 19% 16%
80 85% 71% 27% 21% 17% 14%

100 85% 72% 34% 18% 14% 12%

Table 9. The Efficiency when using 1GB of English database

Length of pattern

Number of Cores

2 cores 4 cores 8 cores 16 cores 20 cores 24 cores

4 69% 79% 62% 48% 36% 32%
8 86% 77% 78% 61% 61% 45%

10 83% 57% 62% 55% 40% 36%

20 86% 83% 64% 52% 39% 33%
40 75% 73% 63% 35% 30% 24%

60 70% 63% 46% 24% 21% 17%
80 74% 71% 43% 22% 18% 15%

100 79% 69% 44% 22% 17% 14%

Figure 9. Evaluations of the efficiency when using

1GB data size with DNA datatype

Figure 10. Evaluations of the efficiency when using

1GB data size with Protein datatype

Figure 11. Evaluations of the efficiency when using 1GB data size with English text datatype

5. CONCLUSION

This study about uncovers the findings of the parallel executing time, speedup and the efficiency of

the parallel time and comparing that time to sequential time of Maximum-Shift algorithm when utilized with

multi-core technology and OpenMP directive, in addition to the utilization of several datasets with the utilize

of 1GB size databases and pattern lengths of 4 to 100 characters. The parallel maximum-shift algorithm

appeared tall execution capabilities when the OpenMP model is utilized, and when it is compared to

consecutive. The Maximum-Shift algorithm gotten way better comes about with great execution after the

execution of parallelization by the most excellent parallel execution time as compared to successive time, the

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 3, June 2021 : 1529 - 1539

1538

speedup and the effecincy factors. The English text information achieved the ideal comes about in parallel

execution time, in the mean time, the utilization of the DNA database set gotten the most elevated positive

comes about in speedup and in efficiency. As a conclusion, we suggest the multi-core environment as the

appropriate platform for parallelization the Maximum-Shift string matching algorithm. For future work the

Maximum-Shift algorithm may well be enhanced by executing the Maximum-Shift algorithm to other multi

core standards such as Pthread program and multiprocessors models such as MPI, as well can improved the

algorithm by parallelization the preprocessing with searching phase.

REFERENCES
[1] C. S. Kouzinopoulos, P. D Michailidis, and K. G. Margaritis, “Parallel Implementation of Exact Two Dimensional

Pattern Matching Algorithms using MPI and OpenMP,” 9th Hellenic European Research on Computer

Mathematics and its Applications Conference” pp. 1-6, 2009.

[2] Y. Y. Leow, C. Y. Ng, and W.F. Wong, “Generating hardware from OpenMP programs,” Proceedings of IEEE

International Conference on Field Programmable Technology, pp. 73-80, 2006, doi: 10.1109/FPT.2006.270297.

[3] A. Hnaif, A. Mohammad, O. A. Abouabdalla, and S. Ramadass, “Parallel Quick Search Algorithm to Speed Packet

Payload Filtering in NIDS,” Journal of Engineering Science and Technology, vol. 4, no. 2, pp. 1-7, 2008.

[4] A. A. Hasan, N. Abdul Rashid, A. A. Abdulrazzaq, and M. A. Abu-Hashem, “String Matching Algorithms for

Intrusion Detection System A Survey and Taxonomy,” International Journal of Advancements in Computing

Technology, vol. 5, no. 8, pp. 317-333, 2013, doi:10.4156/ijact.vol5.issue8.36.

[5] Jesús Cámara, Javier Cuenca, Luis-Pedro García, and Domingo Giméneza, “Empirical Modelling of Linear Algebra

Shared-Memory Routines Empirical Modelling of Linear Algebra Shared-Memory Routines,” Procedia Computer

Science, vol 18, pp. 110-119, 2013, doi: 10.1016/j.procs.2013.05.174.

[6] N. Hazim, M. A. Sahib Naser, and Zaid G. Ali, “Parallel Quick Search Algorithm for the Exact String Matching

Problem Using OpenMP,” Journal of Computer and Communications, vol. 4, no. 13, pp. 1-11, 2016,

doi:10.4236/jcc.2016.413001.

[7] Nhat-Phuong Tran, Myungho Lee, and Dong Hoon Choi, “Cache Locality-Centric Parallel String Matching on

Many-Core Accelerator Chips,” Hindawi Publishing Corporation, Scientific Programming, vol. 2015, pp. 1-21,

2015, doi: 10.1155/2015/937694.

[8] R. Jin, G. Yang, and G. Agrawal, “Shared Memory Parallelization of Data Mining Algorithms: Techniques,

Programming Interface, and Performance,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 1,

pp. 1-19, 2005, doi: 10.1109/TKDE.2005.18.

[9] M. Hemnani, “Parallel processing techniques for high performance image processing applications,” 2016 IEEE

Students' Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1-4, 2016,

doi: 10.1109/SCEECS.2016.7509316.

[10] K. N. Rai, K. Nath Rai, and V. Kumar Singh, “A Parallel Processing Technique Based on GMO and BCS for

Medical Image Encryption,” International Journal of Innovative Technology and Exploring Engineering (IJITEE),

vol. 9, no. 3, pp. 3418-3427, 2020.

[11] A. Abdulrazzaq, Nur'Aini Abdul Rashid, and A. Majid Taha, “The Enhanced Hybrid Algorithm for the

AbdulRazzaq and Berry-Ravindran Algorithms,” International Journal of Engineering & Technology, vol. 7, no. 3,

pp. 1709-1717, 2018, doi: 10.14419/ijet.v7i3.12436.

[12] A. A. Abdul Razzaq, Nur'Aini Abdul Rashid, A. Ahmed Abbood, and Z. Zainol, “The Improved Hybrid Algorithm

for the Atheer and Berry-Ravindran Algorithms,” International Journal of Electrical and Computer Engineering

(IJECE), vol. 8, no. 6, pp. 4321-4333, 2018, doi: 10.11591/ijece.v8i6.pp4321-4333.

[13] A. A. Hasan, Nur'Aini Abdul Rashid, and A. Akram Abdulrazzaq, “Multi-pattern string matching algorithms

comparison for intrusion detection system,” AIP Conference Proceedings, vol. 1635, no. 1. 2014,

doi: 10.1063/1.4903558.

[14] A. A. Abdulrazzaq, Nur'Aini Abdul Rashid, A. A. Hasan, and M. A. Abu-Hashem, et al., “New Searching

Technique of Hybrid Exact String Matching algorithm,” .International Review on Computers and Software

(I.RE.CO.S.), vol. 11, no. 10, pp. 884-897, 2017, doi: 10.15866/irecos.v11i10.10321.

[15] A. A. Abdulrazzaq, Nur'Aini Abdul Rashid, and M. A. Abu-Hashem, “A New Efficient Hybrid Exact String

Matching Algorithm and Its Applications,” Life Science Journal (Life Sci J), vol. 11, no. 10, pp. 474-488, 2014,

doi: 10.15866/irecos.v11i10.10321.

[16] A. Al-mazroi, “A Fast Hybrid Algorithm for the Exact String Matching Problem,” American Journal of

Engineering and Applied Sciences, vol. 4, no. 1, pp. 102-107, 2011, doi: 10.3844/ajeassp.2011.102.107.

[17] A. Hudaib, R. Al-khalid, D. Suleiman, and M. Abd Alfattah Itriq,“A Fast Pattern Matching Algorithm with Two

Sliding Windows (TSW) A Fast Pattern Matching Algorithm with Two Sliding Windows (TSW),” Journal of

Computer Science, vol. 4, no. 5, pp. 393-401, 2008, doi: 10.3844/jcssp.2008.393.401.

[18] A. Hudaib, D. Suleiman, and A. Awajan, “A Fast Pattern Matching Algorithm Using Changing Consecutive

Characters,” Journal of Software Engineering and Applications (JSEA), vol. 9,no. 8, pp. 399-411, 2016,

doi: 10.4236/jsea.2016.98026.

[19] S. I. Hakak, et al., “Exact String Matching Algorithms: Survey, Issues, and Future Research Directions,” IEEE

Access, vol. 7, pp. 69614-69637, 2019, doi: 10.1109/ACCESS.2019.2914071.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Parallel implementation of maximum-shift algorithm using OpenMp (Atheer Akram AbdulRazzaq)

1539

[20] F. Franek, C. G.Jennings, and W. F. Smytha, “A simple fast hybrid pattern matching algorithm,'” J. Discrete

Algorithms, vol. 5, no. 4, pp. 682-695, 2007, doi: 10.1007/11496656_25.

[21] S. Kouzinopoulos and K. G. Margaritis, “String Matching on a multicore GPU using CUDA,” Conference: PCI

2009, 13th Panhellenic Conference on Informatics, Corfu, Greece, 2009, pp. 1-5, doi: 10.1109/PCI.2009.47.

[22] A. Kadhim and N. A. Abdul Rashid, “Maximum-Shift String Matching Algorithms.” International Conference on

Computer and Information Sciences (ICCOINS),” pp. 6-11, 2014, doi: 10.1109/ICCOINS.2014.6868423.

[23] A. A. Alsaheel, A. H. Alqahtani, and A. M. Alabdulatif, “Analysis of Parallel Boyer-Moore String Search

Algorithm,” Global journal of computer science and technology, vol. 13, no. 1, pp. 1-7 2013.

[24] K. Hamidouche, A. Borghi, P. Esterie, J. Falcou, and S. Peyronnet, “Three High Performance Architectures in the

Parallel APMC Boat,” Ninth International Workshop on Parallel and Distributed Methods in Verification/Second

International Workshop on High Performance Computational Systems Biology, IEEE, pp. 20-27, 2010, doi:

10.1109/PDMC-HiBi.2010.12.

[25] C. S Kouzinopoulos, P. D Michailidis, and K. G. Margaritis, ”Performance Study of Parallel Hybrid Multiple

Pattern Matching Algorithms for Biological Sequences”, In Proceedings of the International Conference on

Bioinformatics Models, Methods and Algorithms, pp. 182-187, 2012, doi:10.5220/0003769801820187.

BIOGRAPHIES OF AUTHORS

Dr. Atheer Akram Abdul Razzaq was born in Baghdad, Iraq. He got his bachelor from Al

Mustansiriya University, Iraq in 2006. He got his M.Sc. from Universiti Sains Malaysia in

2009. He got his Ph.D in High performance computing (Parallel tools and applications) in

2014, School of Computer Sciences, Universiti Sains Malaysia. He is currently a senior

lecturer at the Businesses Informatics College, University of Information Technology and

Communication, Baghdad, Iraq. His main research area is High Performance Computing. His

research interests are in exact string matching algorithms, parallel and distributed processing,

network security, and data mining. He has published numerous papers in string matching,

parallel and distributed processing, network security, and genomic information Processing.

Qusay Shihab Hamad received his bachelor and master degrees in Computer Engineering

from University of Technology, Baghdad Iraq in 2011 and 2014, respectively. Currently, he is

lecturer at University of Information Technology and Communications, Baghdad Iraq.

Research interest: Engineering Optimization, Computational Intelligence, Embedded System.

Dr. Ahmed Majid Taha was born in Baghdad state, Iraq. He received his Bachelors in

software engineering from Al-Rafidain University College, Iraq in 2007. Later he starts his

master degree in computer science in National University of Malaysia (UKM), and graduated

in 2011. Then he directly began his research study to pursue a PhD degree in Artificial

Intelligence in University Tenaga Nasional (UNITEN) in 2014. His research interest includes

data mining, metaheuristics, algorithms and machine learning. He is currently a senior lecturer

at the Businesses Informatics College, University of Information Technology and

Communication, Baghdad, He is also member of Soft Computing and Data Mining Center,

University Tun Hussein Onn Malaysia.

