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 In this paper, the chaotic particle swarm optimization (CPSO) algorithm is 

combined with MATPOWER toolbox and used as an optimization tool for 

attaining solving the optimal reactive power dispatch (RPD) problem, by 

finding the optimal adjustment of reactive power control variables like a 

voltage of generator buses (VG), capacitor banks (QC) and transformer taps 

(Tap) while satisfying some of equality and inequality constraints at the same 

time. CPSO and Simple PSO algorithms will be checked in a large system 

such as IEEE node -118. CPSO and Simple PSO algorithms have been 

implemented and simulated in the MATLAB program, version (R2013b/m-

file). Then compassion these results with the results obtained in the other 

algorithms in the literature like the comprehensive learning particle swarm 

optimization (CLPSO) algorithm. The simulation results confirm that the 

CPSO algorithm has high efficiency and ability in terms of decrease real 

power losses (𝑃𝐿𝑜𝑠𝑠), and improve voltage profile compared with the 

obtained by using the simple (PSO) algorithm and (CLPSO) at light load.  
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1. INTRODUCTION 

Optimal reactive power dispatch (RPD) problem is considered as a complex, non-continous 

problem. The power system involves of generation, transmission and distribution system to provide the 

electric power to the consumers. It is an essential modern problem in the power system operating and control. 

The objective of (RPD) problem is to find the best value of reactive power independent (control) variables so 

as to minimize a certain objective function such as power loss and voltage deviation. The main goals in this 

work are to get minimum power loss, and enhance voltage profile for the system and this goals can be 

achieved through an optimal alteration of the reactive power control variables like, generator voltages value 

(VG), the amount of (VAR) that injected from the capacitor banks (QC) and transformer taps (Tap) settings 

while dealing with equality and inequality constrains at the same time [1]. The electrical loads are not 

constant and vary from hour to hour. Any varying in power demands can lead to higher or lower voltages in 

the system, so it must keep the reactive power devices like (viz. VG, Tap and QC) varying simultaneously 

with the changing in the electric load and voltage [2]. Undeniably, over the last decades, RPD problem plays 

a vital role in the power system operation and control and has recorded an ever-intense interest of the authors 

because of remarkable and great effect on the economic, safe and security operation problem. 

This problem is considered as a branch problem of the optimal power flow (OPF) calculation. 

Carpentier was the first to introduce the model and concept of (OPF) in the early 1960s [3]. Then, many 
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researchers has been working on solving OPF problem by utilizing multi methods and like ant lion optimizer 

(ALO) and integration of the invasive weed optimization (IWO) and Powell’s pattern search (PPS)  

method [4], [5]. Ariantara et al. Using differential evolution (DE) Algorithm for the solution of OPF [6].  

In the past, researchers were presented a lot of researches on (RPD) problem, and presented a 

number of optimization algorithms. These algorithms are classified into two types: conventional optimization 

algorithms and computational optimization algorithms. The concept of conventional algorithm is beginning 

from an initial point. These algorithms contain interior point methods (IPM) [7], linear programing (LP) [8], 

non-linear programming [9] and dynamic programming (DP) [10]. These algorithms have several 

disadvantages such as unable to dealing with complex optimization problem, unable to dealing with problem 

that include very large number of variables, huge calculations, big implementation time and convergence to 

the nearby local optima. So, it becomes essential for finding and developing methods able to avoid these 

disadvantages.  

So, several optimization techniques have been presented in order to avoid these disadvantages of the 

conventional optimization algorithms and these algorithms called computational optimization algorithms and 

the basic concept of these algorithms are beginning from an initial solution swarm like, genetic algorithm 

(GA) [11], gentoo penguin algorithm (GPA) [12], hybrid GA-IPM [13], meleagris gallopavo algorithm 

(MGA) [14], chaotic predator-prey brain storm optimization (CPB) algorithm [15], Gravitational search 

algorithm (GSA) and sine cosine algorithm (SCA) [16], enhanced fruit fly optimization algorithm (EFF) and 

status of material algorithm (SMA) [17] and polar wolf optimization (PWO) algorithm [18] and particle 

swarm optimization (PSO) [19], have been presented for the solution of RPD problem in the literature. From 

all these algorithms, PSO shown great reliability to overcome the drawbacks of the conventional algorithms 

and can easily be applied to multi problems, but it doesn't mean that PSO algorithm doesn't involve any 

disadvantages. Therefore, in solving the non-continuous and complex problems this algorithm is declining to 

the local minima at the premature convergence, on the other hand, also it depends on its parameter settings. 

So, many researchers working for enhance PSO algorithm and prevent that disadvantages by using sundry 

methods and techniques compact with PSO algorithm. Zhang et al. have proposed a two-phase HPSO 

technique to solved the RPD problem [20]. Vlachogiannis et al. have applied (PSO, GPAC-PSO, and LPAC-

PSO) algorithms for reactive power and voltage control [21]. 

In the presented work, simple PSO has been developed to solve the RPD problem for minimizing 

power losses and voltage profile enhancement. So as to enhance the searching quality of the simple PSO 

algorithm and to avoid falling into the local minima and to decrease the calculation time, Chaotic PSO 

(CPSO) is utilized so as to overcome these disadvantages. The chaos greatly helps the CPSO algorithm for 

slip more easily from the local minima because of the special behavior, and strong ability for the chaotic 

theory. Simple PSO and CPSO are applied for solving the RPD problem on IEEE Node-118 system, then the 

simulation results were compared with other algorithm in the literature, like comprehensive learning particle 

swarm optimization (CLPSO). 

 

 

2. PROBLEM FORMULATION 

 In this section, the main goal in this study is to find the best combinations of reactive power 

independent variables so as to decrease the power losses (PLoss) for the system while dealing with numbers of 

equality and inequality constrains at the same time. So, the objective function in this work can be expressed 

as shown in (1) [22], [23]. 

 

Min PLoss = ∑ GK(Vi
2Ntl

K=1 + Vj
2 − 2ViVicos(ɸi − ɸj) (1) 

 

where, PLoss is the active power loss function. Ntl depict the number of branches. GK is the conductance of 

branch K. Vi, Vj are the voltage magnitudes at node i and j. ɸi, ɸj are the difference angles voltage at node i 

and j. (i and j) are the sending and receiving nodes of branch K. 

 

2.1.  System constrains 

Equality constrains are the load flow equation and defined [24]: 

 

{
PGi − PDi − Vi∑ Vj (Gijcos(ɸij) + Bijsin(ɸij)) = 0NB

j=1  

QGi − QDi − Vi∑ Vj (Gijsin(ɸij) −  Bijcos(ɸij)) = 0NB
j=1  

 (2) 
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where PGi, QGi are the real (MW) and reactive power (VAR) output from the generators at node i. PDi, QDi are 

the real (MW) and reactive power (VAR) load demand at node i. Gij, Bij are the mutual and susceptance 

conductance among i node and j node. ɸij depict the voltage angle magnitude in node i and j. Inequality 

constrains involves independent (control) variables like, generator voltages (VG), injected reactive power 

from capacitor (QC) and transformer positions (Tap) [25]: 

 

{
 
 

 
 VGi

min  ≤  VGi ≤ VGi
max , i ∈  NG 

Tap K
min ≤ Tap K  ≤  Tap K

max, K ∈ NT 

QCi
min  ≤ QCi ≤ QCi

max, i ∈  NC 
 (3) 

 

where NG depict the number of generator nodes. VGi
min, VGi

max are the Minimum limit and maximum limit of 

generator voltage magnitude at i-node. NT depict the total number of transformers. Tapk
min, Tapk

max are the 

Minimum limit and Maximum limit of transformer ratio at branch K . NC depict the total number of injected 

VAR source. QCi
min, QCi

max : are the Minimum limit and Maximum limit of injected VAR source from 

shunt capacitor at node i. And also involves dependent (state) variables such as voltage at load bus (𝑉𝑙) and 

reactive power output from the generators (𝑄𝐺) [25]: 

 

{
QGi

min ≤ QGi ≤  QGi
max , i ∈  NG 

Vli
min  ≤  Vli  ≤  Vli

max , i ∈  NPQ 
 (4) 

 

where, NG depict the number of generator nodes. QGi
min, QGi

max are the minimum (lower) limit and maximum 

(upper) limit of reactive power output of generator at i − node. NPQ depict the number of load nodes. Vli
min, 

Vli
max : are the Minimum (lower) limit and Maximum (upper) limit of voltage magnitude at i-node. 

 

2.2.  The generalized objective function 

In this problem, the dependent variables can be added to (1) by utilizing penalty factors to constrain, 

so (1) can be written as shown in (5) [25]: 

 

Min F =  PLoss  +  λV ∑ (vLi − vLi
lim )NL

i=1   2  +  
 

 λQ ∑ (QGi − QGi
lim ) NG

i=1  2 (5) 

 

where 𝜆𝑉 and 𝜆𝑄 are penalty terms; 𝑋lim  is the limit value of inequality constrains; 𝑁𝐿 is the total number of 

load nodes; 𝑁𝐺 is the numbers of generation station and PLoss is given in (1).  

 

2.3.  Concept of average voltage 

In this study, the new average voltage index is suggested to deal with all voltage nodes as well as 

satisfy most of the electrical utility limits. The equation of this concept can be written as shown in (6):  

 

Vav  =  
∑ Vi
Nn
i=1

Nn
 (6) 

 

where Vav depict the average voltage of all system; Vi depict the voltage in node i. Nn depict the total number 

of nodes.  

 

 

3. OPTIMIZATION PROCESS 

3.1.  Simple PSO algorithm 

PSO algorithm is a best type for artificial intelligence, which mimics the social behavior of the 

animals which does not have any leader when searching for food like, bird flocking and fish schooling. It has 

several advantages such as simple, fast, can applied for solving optimization problem and guarantees best 

solution within lesser calculation time and the convergence characteristic have very stable than other 

stochastic algorithms and capable of dealing with continuous and discrete variables and does not have 

mutation and crossover operation like genetic algorithm. An individual represents the probable solution and 

every group of individuals represents a swarm. This theory was first put forward in 1995 [26]. Each 

individual has best position discover by the individual it self and it is stored in a memory called local best 

position (Pbest), and the best position discovered among all individuals (Pbest) in the swarm also stored in a 

memory called global best position (Gbest), at every step the location of Pbest and Gbest are changing. Then, 
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the velocity and position of every individual in the swarm are changed by employing the calculation of the 

present individual velocity and the location from Pbest position and Gbest position. The velocity and distance 

from Pbest location and Gbest location of the agents will be changed by utilizing (7) and (8) [27]. 

 

Vi
k+1=K*[WPSO*Vi

k + C1 ∗ R1*(Pbest(i)
k − Xi

k)  + C2 ∗ R2*(Gbest(i)
k − Xi

k)] (7) 

 

Xi
k+1  = Xi

k +Vi
k+1 (8) 

 

where, 𝑊𝑃𝑆𝑂 is the inertia coefficient of PSO technique. 𝑉𝑖 represents the velocity of individual. 𝐶1,  𝐶2 are 

the two learning factors that utilized to pull each agent to 𝑃𝑏𝑒𝑠𝑡  location and 𝐺𝑏𝑒𝑠𝑡  location within range 

[0 to 2.05]. 𝑅1, 𝑅2 are the two random numbers within limit [0 to 1]. 𝑃𝑏𝑒𝑠𝑡(𝑖) depicts the local best position. 

𝐺𝑏𝑒𝑠𝑡(𝑖) represents the global best position. 𝑋𝑖 represents the position of the individual and 𝐾 is the 

constriction factor and it is utilize to improve the performance of the simple PSO algorithm and it was 

introduced by Shi indicate that using of this factor may be necessary and can be expressed [28]. 

 

K =
2

|2−ɸ−√ɸ2−4ɸ |
 , ɸ = C1 + C2, ɸ ≥ 4 (9) 

 

A proper choice of the inertia weight (𝑊) can achieve a balance between global location and local 

location. So, in this work, 𝑊𝑃𝑆𝑂 was reduced linearly from (0.4-0.9) for each iteration (step) to search in a big 

area at the start of the simulation and to attains balance between global position (𝐺𝑏𝑒𝑠𝑡) and local position 

(𝑃𝑏𝑒𝑠𝑡) [28]: 

 

WPSO  =  W max − (
W max − W min

maxiteration
) ∗ iter  (10) 

 

where 𝑊𝑚𝑎𝑥  is the max (upper) value of weight. 𝑊𝑚𝑖𝑛 is the min (lower) value of weight. 𝑖𝑡𝑒𝑟 is the current 

iteration and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  is the max (upper) iteration. 

 

3.2.  CPSO algorithm 

 Despite the advantages of the simple PSO algorithm, but it has several limitations such as highly 

depend on its parameter and decline to the local optimal at the premature convergence especially when the 

problem is very complex.In this work, so as to prevent these limitations and to boost the quality and 

performance, and the searching ability of the simple PSO algorithm, chaotic theory with Simple PSO are 

merged to form a hybrid algorithm called the CPSO algorithm. and undeniably, this merge is a very helpful to 

slip from the local optimal because of the special behavior and great ability of the chaotic CPSO algorithm [29]. 

In this work, the logistic map equation of the hybrid CPSO algorithm was described by the (11) [30]. 

 

βk+1 = µβk((1 − βk)), 0 ≤ β1 ≤ 1 (11) 

 

Where, k is the number of the iteration (steps), and the control parameter µ was set within a range (0.0 to 

4.0). The magnitude of µ decides whether β stabilizes at a constant area, oscillates within restricted limits, or 

behaves chaotically in an unpredictable form. And (11) was shows chaotic dynamics when µ = 4.0 and β^1 

∈{0,0.25,0.5,0.75,1}, it shows the sensitive depend on its initial conditions, which is the basic features of 

chaotic. The new inertia weight factor (WCPSO) was calculated by multiplying the (WPSO) for (10) and logistic 

map for (11) to form (12). 

 

WCPSO  =  WPSO  ∗  β
k+1 (12) 

 

To enhance the behavior of the simple PSO, this work presents a novel velocity update by blending 

inertia weight factor WPSO with the logistic map equation (β). Finally, by blending (12) with (7), the 

following velocity changed equation to the proposed CPSO algorithm was obtained: 

 

Vi
k+1 = WCPSO ∗ Vi

k + C1*R1*(Pbest(i)
k − Xi

k) + C2*R2*(Gbest(i)
k − Xi

k) (13) 

 

In the CPSO algorithm, WCPSO was oscillates and decrease simultaneously from (0.9-0.4) for total iteration, 

but in traditional PSO was decrease linearly. Table 1 shows a final choice of the control parameters CPSO 

and simple PSO algorithms that is considered the optimal choice in this study.  
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Table 1. Parameters used for CPSO and PSO algorithms 
Parameters of CPSO and PSO algorithms CPSO PSO 

   

n 100 100 
c1 2 2 

c2 2 2 

r1 1 1 
r2 1 1 

wmax 0.9 0.9 

wmin 0.4 0.4 
µ 4 - 

B1 0.75 - 

maxiter 300 300 
numbers of particles 100 100 

 

 

4. CASE STUDY AND SIMULATION RESULTS 

To verify and test the performance and ability for the proposed methods (i.e. simple PSO and 

CPSO) for solving RPD problem in a complex power system, IEEE node-118 systems is employed. This 

system is involve, 12 injected reactive power sources (QC) from shunt capacitors, 186 branches, 54 generator 

voltages (VG) and 9 transformer tap ratios (Tap) at branches 8, 32, 36, 51, 93, 95, 102, 107 and 127, the 

limits of these variables are illustrated in Table 2. Branch, bus, generator, the upper and lower limits of the 

reactive power in Mvar for the generators and other operating data are given in [31]. So, this system has 75 

control (independent) variables as displayed given in Table 3 (see appendix), and at base case the initial 

active and reactive power generations are 𝑃𝐺=4374.86 Mw and 𝑄𝐺=795.68 Mvar, the initial active and 

reactive power loads are 𝑃𝐿𝑜𝑎𝑑=4242.00 Mw and 𝑄𝐿𝑜𝑎𝑑=1438.00 Mvar, the initial active and reactive power 

losses are 𝑃𝐿𝑜𝑠𝑠=132.86 Mw and 𝑄𝐿𝑜𝑠𝑠=783.69 Mvar and they are 3 voltages outside the limits in the base 

placed at bus 53, 76 and 118 and the value of these voltages in p.u are 𝑉53=0.946, 𝑉76=0.943 and  

𝑉118= 0.949. The simulation results are given in Table 3 (see appendix) for the goal of minimization of 𝑃𝐿𝑜𝑠𝑠 
for the system and according to these results, found the results that yielded from the CPSO algorithm are the 

best for solving large power system compared to the results that obtained in the simple PSO and other 

algorithms in the literature like comprehensive learning particle swarm optimization CLPSO [32] algorithms. 

Figure 1 shows the comparison among the percentage reduction of power losses for the used algorithms, and 

Figure 2 shows the comparison among the real power loss value (𝑃𝐿𝑜𝑠𝑠) for the used algorithms. The 

convergence characteristics of 𝑃𝐿𝑜𝑠𝑠 in MW for the simple PSO and CPSO algorithms are expose in Figures 3 

and 4, and from these figures, it can be seen that CPSO algorithm performs best and reaching to the global 

solution in less time than simple PSO for the solution of RPD problem. The voltage profile are given in 

Figure 5 and from this figure it is clear that the voltage average at initial is about 0.986, at PSO is about 

1.024, and at CPSO is about 1.045 and also all buses voltages are inside the limits after CPSO algorithm but 

in the simple PSO algorithm 𝑉32 and 𝑉33 are still outside the limits. The power loss reduction (𝑃𝐿𝑜𝑠𝑠) is 

15.1% (from 132.8 Mw to 112.65 Mw) achieved by utilizing CPSO algorithm, which is consider the largest 

reduction in PL than that accomplished in the simple PSO, CLPSO [32] algorithms.  
 
 

  

 

Figure 1. Real power loss reduction in percentage 
 

Figure 2. Comparison of real power loss (𝑃𝐿𝑜𝑠𝑠) 
 

 

Table 2. Control variables limits 
System Type Variables Min Max 

118 Bus Generator voltage ( 𝑉𝐺) 0.95 1.1 

Transformer position (𝑇𝑎𝑝) 0.9 1.1 

VAR source compensation (𝑄𝐶) 0 0.20 
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Figure 3. Convergence for IEEE 118 node power 

system with simple PSO algorithm 

 

Figure 4. Convergence for IEEE 118 node power 

system with CPSO algorithm 

 

 

 
 

Figure 5. Voltage profile of IEEE 118-node system 

 

 

5. CONCLUSIONS 

In this study, two types of algorithms are utilized they simple PSO and CPSO. The chaotic particle 

swarm optimization algorithm is combined with MATPOWER toolbox and used as an optimization tool for 

attaining solving the optimal reactive power dispatch problem. The objective function has been utilized to 

decrease power loss in the power system branches and improve voltage profile. The efficiency and high 

quality of CPSO algorithm have been proved by examining on IEEE Node-118 system. CPSO provided the 

best technique to search for an optimal solution that decreased the calculation time and has high speed 

convergence in both power loss minimization and voltage profile improvement compared with the results 

obtained from using simple PSO and other results reported in the literature like comprehensive learning 

particle swarm optimization algorithm. Where, a percentage reduction in power loss be (15.1%) for CPSO, 

(10.1%) for PSO, and (1.3%) for CLPSO. 

 

 

6. SUGGESTIONS FOR FUTURE WORK 

In the future, the research can be developed by optimizing total voltage deviation (TVD) and voltage 

stability index (VSI) separately as a single objective function or as multi-objective functions in order to 

achieve more improvement in the RPC problem.  
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APPENDIX 

Table 3. Simulation result of IEEE- 118 node systems 
Control Variables Base Case CPSO PSO CLPSO [32] 

𝑉𝐺 1 0.955 1.028 1.019 1.033 

𝑉𝐺 4 0.998 1.048 1.038 1.055 

𝑉𝐺 6 0.990 1.036 1.044 0.975 

𝑉𝐺 8 1.015 1.047 1.039 0.966 

𝑉𝐺 10 1.050 1.099 1.040 0.981 

𝑉𝐺 12 0.990 1.033 1.029 1.009 

𝑉𝐺 15 0.970 1.026 1.020 0.978 

𝑉𝐺 18 0.973 1.034 1.016 1.079 

𝑉𝐺 19 0.962 1.028 1.015 1.080 

𝑉𝐺 24 0.992 1.047 1.033 1.028 

𝑉𝐺 25 1.050 1.075 1.059 1.030 

𝑉𝐺 26 1.015 1.091 1.049 0.987 

𝑉𝐺 27 0.968 1.027 1.021 1.015 

𝑉𝐺31 0.967 1.012 1.012 0.961 

𝑉𝐺 32 0.963 1.021 1.018 0.985 

𝑉𝐺 34 0.984 1.047 1.023 1.015 

𝑉𝐺 36 0.980 1.046 1.014 1.084 

𝑉𝐺 40 0.970 1.024 1.015 0.983 

𝑉𝐺 42 0.985 1.029 1.015 1.051 

𝑉𝐺 46 1.005 1.054 1.017 0.975 

𝑉𝐺 49 1.025 1.069 1.030 0.983 

𝑉𝐺 54 0.955 1.033 1.020 0.963 

𝑉𝐺 55 0.952 1.030 1.017 0.971 

𝑉𝐺56 0.954 1.032 1.018 1.025 

𝑉𝐺 59 0.985 1.062 1.042 1.000 

𝑉𝐺 61 0.995 1.077 1.029 1.077 

𝑉𝐺 62 0.998 1.072 1.029 1.048 

𝑉𝐺 65 1.005 1.096 1.042 0.968 

𝑉𝐺 66 1.050 1.051 1.054 0.964 

𝑉𝐺 69 1.035 1.078 1.058 0.957 

𝑉𝐺 70 0.984 1.043 1.031 0.976 

𝑉𝐺 72 0.980 1.040 1.039 1.024 

𝑉𝐺 73 0.991 1.039 1.015 0.965 

𝑉𝐺 74 0.958 1.028 1.029 1.073 

𝑉𝐺 76 0.943 1.026 1.021 1.030 

𝑉𝐺 77 1.006 1.053 1.026 1.027 

𝑉𝐺 80 1.040 1.067 1.038 0.985 

𝑉𝐺 85 0.985 1.062 1.024 0.983 

𝑉𝐺 87 1.015 1.025 1.022 1.088 

𝑉𝐺 89 1.000 1.083 1.061 0.989 

𝑉𝐺 107 0.952 1.024 1.008 0.976 

𝑉𝐺 110 0.973 1.041 1.028 1.041 

𝑉𝐺 111 0.980 1.049 1.039 0.979 

𝑉𝐺 112 0.975 1.023 1.019 0.976 

𝑉𝐺 113 0.993 1.039 1.027 0.972 

𝑉𝐺 116 1.005 1.080 1.031 1.033 

𝑄𝐶  48 0.150 0.047 0.056 0.028 

𝑄𝐶  74 0.120 0.112 0.120 0.005 

𝑄𝐶  79 0.200 0.150 0.140 0. 148 

𝑄𝐶  82 0.200 0.190 0.180 0.194 

𝑄𝐶  83 0.100 0.163 0.166 0.069 

𝑄𝐶  105 0.200 0.026 0.190 0.090 

𝑄𝐶  107 0.060 0.077 0.129 0.049 

𝑄𝐶  110 0.060 0.137 0.014 0.022 

𝑃𝐺 (MW) 4374.8 4354.7 4361.4 NR* 

𝑄𝐺 (Mvar) 795.68 535.56 653.58 NR* 

Reduction in PL𝑜𝑠𝑠 (%) 0 15.1 10.1 1.3 

(Mw) Total PL 132.8 112.65 119.34 130.96 

NR*: means that the value was not reported. 
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