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 Electric vehicles (EV) penetration in the distribution systems is evident and 

intended to grow day by day. Power quality issues pop up in the distribution 

system with an increase in EV penetration. Distribution networks need to 

consider the power quality issues developed due to the penetration of EVs 
for planning and designing the system. The power quality issues, including 

voltage imbalance, total harmonic distortion, distribution transformer failure, 

and related issues, are anticipated due to EV penetration in distribution 

systems. Detailed review of power quality issues and mitigation techniques 
are detailed in this paper. Discussion on the effect of these power quality 

issues on the distribution systems and corresponding mitigation measures are 

detailed. Power quality impact mitigation techniques have been discussed 

recently, which exploits the bidirectional power flow of vehicle to grid 
vehicle to grid (V2G) and grid to vehicle grid-to-vehicle (G2V). Methods 

and methodologies that mitigate power quality problems in the EV 

penetrated distribution system is discussed. Bidirectional power flow during 

EV charging and discharging and power quality issues in this topology is 
detailed in this review paper. A discussion on future trends and different 

possible future research paradigms is discussed as the review's conclusion.  
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1. INTRODUCTION 

In the Indian perspective, electric vehicles (EVs) and related fields have an enormous development 

scope. Electrical vehicles and related research are becoming a relevant subject of research nowadays. 

Although EVs are most sought for transportation it introduces power quality issues. Faster adoption and 

manufacturing of hybrid & electric vehicles, 2015 (FAME) and national electric mobility mission plan 

(NEMMP) are the regulators of the electric vehicle technology in India. These regulatory bodies propose an 

expected growth of around 3.8 million EVs in 2020. Charging infrastructure also grows at the same pace. 

Battery charging system is the important power electronic device that introduce non-linearity in the system 

causing total harmonic distortion (THD) of the grid side voltage or current. Unregulated connection and 

disconnection of the EVs in the grid creates the voltage imbalance issues. The cost for voltage compensation 

devices may increase due to these voltage imbalances in the grid. Switching losses in the alternating current 

and direct current (AC-DC) converters of the electric vehicle supply equipment (EVSE) contribute a chunk 

of the power loss. Since EVs travel from one locality to another the traffic of EVs in any area is 

unpredictable. Apart from overloading, transformers also encounter wear and tear due to harmonics. EVs 

charging electronics are a definite source of harmonics if multiple EVs are simultaneously connected. The 
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distribution transformer is the most vulnerable grid component that gets affected by the introduction of EVs 

in the grid. An EV can vary the harmonic level from 3% while at the start of charging to around 28% at the 

end of charging. This paper answers these three questions to a more considerable extent. Will there be any 

impact on the grid if EVs are introduced to the distribution system? What parameters are getting affected in 

the grid? What are the measures that can be taken to nullify or to reduce the effect? These questions arise 

since the EV interface devices engage power electronics converters and different pulse width modulation 

(PWM) techniques. This paper details the causes of the power quality issues in the distribution system (DS) 

due to the EVs. Then amount of power quality damage that EV penetration in the grid is detailed. Possible 

mitigation techniques that the distribution Companies DISCOMS must follow to get rid of these power 

quality issues are discussed with more light on the distribution transformer protection. Loading in the 

network, imbalance in phase, voltage profile, power quality issues are to be assessed since higher penetration 

EVs are evident soon.  

 

 

2. VOLTAGE IMBALANCE IMPACT IN DISTRIBUTION NETWORK BY EV CHARGING 

The voltage imbalance issue occurring in the DS can be understood by knowing in detail about 

different levels of power that is inherent in types of charging. The slow charging outlets are not going to 

affect the DS whereas the fast-charging outlets primarily affect the DS. According to the power level and 

type of power classification of charging mechanism is as given in SAE J1772 in 2017 [1]. Two DC levels and 

two AC levels of charging is defined as: Charging the electrical vehicle at home with the 16A outlet with the 

voltage level of 120V is referred to as AC level 1. Charging the vehicle with 80 A and 208-240 V that 

accounts to around 19.2 kW (max) is referred to as AC level 2. Charging at workplace, parking place and 

public charging outlets sometimes uses the AC level 2. DC level charging charges the battery directly while 

the AC level charging is carried out only if the on-board chargers are available in the vehicle. DC level 

charging with the voltage range of 50-1000 V DC and about 80 A is referred as DC level 1. Another DC level 

follows same voltage level as DC level 1 while the current range reaches to 400 A. This is called DC level 2 

charging methods. Single phase power from the electric vehicle supply equipment (EVSE) supplies the both 

the AC types while DC levels utilizes single phase as well as three phases. Another standard for the charging 

discussed as SAE J1772, SAE J3068 during 2018 recommends three phase utility power. At high power 

levels the utility if supplies a symmetric load the grid stability gest enhanced. SAE J3068 standardizes the 

heavy-duty vehicle charges with three phase supplies. Digital control protocols and charging coupler are used 

for power sufficiency and reliability [2]. Communication between the EV and EVSE via single wire 

baseband signaling controls reliable EV charging. This bidirectional communication between EV and three 

phase EVSE provides less complex, reliable, low-cost power. Getting support from distributed energy 

resources (DERs) these EVSEs can provide both the AC and DC output, if customer prefers, simultaneously 

supporting the grid. Renewable energy integration to the grid is standardized providing best maintenance and 

safety practices, reliable operation performance and testing capability using these standards. Thus, making 

sure the cascading failure is avoided while interconnecting the renewable sources [3]. Major blackout in 

South Australia due to wind farm tripping in 2016 affecting 650,000 customers is an example [4]. Apart from 

using the traditional EVSEs there must be a consideration for the renewable energy integration with the grid 

with relevant standardization. Since the effect of the voltage imbalance is dependent on the power range of 

EV charging, an idea about the power usage for the charging types is given in the following subsection. 

 

2.1.  Power range in EV charging 

An increase in EV connected to the distribution system affects the voltage profile in the system. 

Single-phase on-board charging starts with 1.6 KW at households and to the highest by the, DC level 2 

charging with tens of KW for fast charging [5]. If there should be an occurrence of charging an EV at home 

shows insertion of substantial single stage loads in the private low voltage (LV) distribution systems. In any 

case, higher penetration of EVs may adversely influence distribution networks diversely based on their 

electrical energy demand. It might prompt undesirable peaks in power usage, resulting in power quality 

issues like voltage drop, transformer overloading, harmonics, and voltage unbalance [6], [7]. As of late, a few 

contemplations that limit the power systems for EVs charging [8]-[15] is discussed. These limitations apply 

technical and economic constraints to the power system and equipment failure.  

Incentive-based and constant Tariff in EV charging,  
 

𝑆𝑂𝐶𝑏𝑎𝑡  =  

{
 
 

 
 (1 −

𝑑

𝐴𝐸𝑅
)𝑑 ≤ 𝐴𝐸𝑅 
 
 

                  0 𝑑 ≤ 𝐴𝐸𝑅 
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electric vehicles must be able to charge at any point in the 24 schedules. Thus, the infrastructure for charging 

at home, workplace and public spot is required. Considering a provided infrastructure total number of EVs 

that can be charged in a charging point is as given in (2). 

 

𝐸𝑉𝑁𝑟𝑚𝑎𝑥 = ∑ (𝐸𝑉𝐶𝑡(ℎ)
𝐻𝑆 +24

𝑡(ℎ)=1 𝐸𝑉𝐶𝑡(ℎ)
𝑊𝑃 + 𝐸𝑉𝐶𝑡(ℎ)

𝑃𝑃 )𝑋𝐸𝑉𝑃𝐿  (2) 

 

At any hour h 𝐸𝑉𝑁𝑟𝑚𝑎𝑥 is the maximum number of EVs that can be connected for charging. 𝐸𝑉𝐶𝑡(ℎ)
𝐻𝑆  , 

𝐸𝑉𝐶𝑡(ℎ)
𝑊𝑃  and 𝐸𝑉𝐶𝑡(ℎ)

𝑃𝑃  are EV that is charged at home, work space and public place at any hour h respectively. 

And 𝐸𝑉𝑃𝐿  is the EV penetration level. In (3) defines the power consumed from the LV utility 𝐸𝑉𝑁𝑟𝑚𝑎𝑥 . 

𝑃𝐶(ℎ)𝐸𝑉 is the power required for charging a single EV,  

 

𝑃𝐸𝑉𝑁𝑟𝑚𝑎𝑥 = 𝐸𝑉𝑁𝑟𝑚𝑎𝑥 ∗ 𝑃𝐶(ℎ)𝐸𝑉 (3) 

 

in (4) is the approximation of the (2) with workplace power ignored.  

 

𝑃𝐸𝑉𝑁𝑟𝑚𝑎𝑥 = ∑ {(𝐸𝑉𝐶𝑡(ℎ)
𝐻𝑆 +24

𝑡(ℎ)=1 𝐸𝑉𝐶𝑡(ℎ)
𝑃𝑃 ) ∗ 𝑃𝐶(ℎ)𝐸𝑉

} ∗ 𝐸𝑉𝑃𝐿  (4) 

 

The total power required charging the 𝐸𝑉𝑁𝑟𝑚𝑎𝑥 number of EVs and any hour h. While grid working 

condition is stable the EV charging is considered. If EVs are allowed to charge and discharge anytime then it 

is called uncontrolled charging. Power quality issues when plug-in hybrid electric vehicles (PHEV) is 

introduced in grid is detailed [16]. Details of the penalty and the incentives that is charged on the client 

during the peak and the valley hours enable them to decide whether to charge the EV vehicle or to wait. Ideal 

working condition of charging versus the EV driver’s eagerness decides the cost of the charging power. 

Objective function enables the charging of the vehicle during the non peak load period. While implemented 

the cost is higher during the time ranging between in this 13:00 and 20:00 h of a day and other time of the 

day will be charged with reduced tariff [17]. Benefit od low tariff is contingent upon the eagerness of the EV 

driver hour h. Power needed for all EVs at residential and public points are as given in (5) to (6) and power 

drawn from a LV network for charging is given in (7). 

 

𝑃𝐸𝑉𝐶𝑡(ℎ)
𝐻𝑆 ≤ ∑ (𝐸𝑉𝐶𝑡(ℎ)

𝐻𝑆24
𝑡(ℎ)=1 ∗ 𝑃𝐶(ℎ)𝐸𝑉) ∗ 𝐸𝑉𝑃𝐿  (5) 

 

𝑃𝐸𝑉𝐶𝑡(ℎ)
𝑃𝑃 ≤ ∑ (24

𝑡(ℎ)=1 𝐸𝑉𝐶𝑡(ℎ)
𝑃𝑃 ∗ 𝑃𝐶(ℎ)𝐸𝑉) ∗ 𝐸𝑉𝑃𝐿 (6) 

 

𝑃𝐸𝑉𝑁𝑟𝑚𝑎𝑥 ≤ ∑ {(𝐸𝑉𝐶𝑡(ℎ)
𝐻𝑆 +24

𝑡(ℎ)=1 𝐸𝑉𝐶𝑡(ℎ)
𝑃𝑃 ) ∗ 𝑃𝐶(ℎ)𝐸𝑉} ∗ 𝐸𝑉𝑃𝐿  (7) 

 

Although the economic signal is provided to the consumer, if more EVs are connected to the system, the 

distribution system would cross the normal loading conditions [18]. 

 

2.2.  Voltage imbalance problem 

Voltage unbalance is defined in different ways. The definition of the voltage unbalance is as defined 

in this section with the essential guidelines. Ratio of the three-phase negative and the positive sequence 

voltage is defined as the voltage unbalance factor (VUF) [19]. Mathematically it is given in (8).  
 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟(%) =
𝑉2

𝑉1
∗ 100  

 

≈ √
1−√3−6𝛽

1+√3−6𝛽
  

 

𝛽 =
𝑉𝑎𝑏
4 +𝑉𝑏𝑐

4 +𝑉𝑐𝑎
4

(𝑉𝑎𝑏
2 +𝑉𝑏𝑐

2 +𝑉𝑐𝑎
2 )2

 (8) 

 

Ratio of positive sequence voltage ‘V1’ and negative sequence voltage ‘V2’ defines the voltage unbalance 

factor. As EVs charging load isn't equally distributed on the three phase’s power system, it might increase the 

difference of loads among each period of the system.  
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2.3.  Mitigation of voltage imbalance in distribution networks with EVs 

A large portion of research works [20]-[29] facilitates EV charging using the centralized or 

decentralized methodology. Both economic and technical performance of the distribution system is improved 

by introducing the suggestions that is controlled by (a) EV charging and discharging, scheduling the time of 

utilization (ToU), and (b) Rate at which the EV can charge or discharge. To obtain these controls using the 

communication capability, the cost of getting the desired target is higher. Unbalance are introduced between 

phases of the distributed system by adding unequal number of EVs in each phase [5]-[14]. EVs capability to 

improve the distribution system performance is uncertain since the time commitment by the EV to supply the 

power from vehicle to grid is dependent on human error [30]. Failure in the charging devices, charging 

timetable mismatch and other problems are evident in using the EV capability in supporting the distributed 

system. Most of the research work centers around lessening power loss and improving the voltage.  

A coordinated EV charging called as electric vehicle charging coordination (EVCC) mitigates 

voltage imbalance [26]. EVCC does not consider the neutral current that flows due to the imbalance voltage 

between the phases. Along with the EVs the DERS also need the coordination since the input from DERs are 

also dynamic in nature. Voltage imbalance, power loss and neutral current all three needs to be controlled 

while the DERS and EVs are connected to the distributed network. A coordinated control of the DER and 

EVs enable the voltage imbalance mitigation in the EV connected distributed system. Advantages and the 

disadvantages of both the centralized and decentralized coordination model of the EV charging is discussed 

in [31]-[33].  

A case study that discusses about the emission benefits for both centralized and decentralized smart 

charging till the year 2030 is discussed [34]. A control methodology that coordinates the smart charging of all 

the vehicles that improves the load profile of the EVs connected to the distributed system is developed. The 

communication system involved in realizing this charging coordination collects and transfers data between 

the EVs and the aggregator. The load profile is smoothened in order to have this voltage profile normalized. 

Though some EVs would obtain higher peak voltages at times. Unlike the centralized control the 

decentralized controller charges the EVs locally. The reduced communication equipment that are used in this 

decentralized control reduces the cost involved. It is adaptable to changes and has a reduced computational 

complexity [35]. The decentralized controller looks advantageous to the centralized controller while the 

individual EV client controls the charging cost of the EVs. Decentralized coordination is best while the cost 

and the robustness is considered. That is why at some situations the decentralized control is preferred since 

there is no dependency on the neighboring vehicle or communication devices [33], [35]. However, another 

classification of EV charging is single phase-based and three phase-based charging [35].  

The active power balancing is possible using the droop controller topology for the smart charging in 

the distribution network [36]-[38]. But these controllers will not bother to charge an EV satisfying the client 

fully. Although the reactive power that is introduced in the distributed network due to the power electronics 

devices like rectification and switching converters is an additional burden for the distribution network [39], 

[40]. Droop controller-based controller is defined in [36] while the reactive power compensation is possible 

using the auxiliary equipment described in [41], [42] for a balanced system. Negative and zero sequence 

voltages are generated to decrease the voltage unbalance in the three-phase supply [43]. Low voltage network 

load voltage profile is improved by adjusting the network loads in [44], [45]. For this situation, the procedure 

likewise requires a reactive power capability, which is constantly restricted by the rated power of the charger.  

 

2.4.  Impact of voltage imbalance in distribution networks with EV charging 

The charger injects the harmonic current in the network that is clear in the harmonic model. The 

harmonic current and its corresponding phase angle is given in (9). This harmonic model is defined in [46], 

where the harmonics, when charging, create power electronics switching oscillations and harmonics is 

injected in the distributed system. These current harmonics are resolved by using the 60Hz power flow 

results.  

 

𝐼ℎ = 𝐼1 ×
𝐼ℎ−𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚

𝐼1−𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚
  

 

𝜃ℎ = 𝜃ℎ−𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 + ℎ × (𝜃1 − 𝜃1−𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚) (9) 

 

The harmonics flow from the non-linear apparatus and power electronic devices are as shown in the 

equation. The PHEV chargers are bound to draw the harmonics frequently from the charging action. The 

deterministic angular variation is also defined in the equation. 
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3. COMPACT FLUORESCENT LAMP (CFL) EFFECT AND NEUTRAL VOLTAGE RISE 

Compact fluorescent lamp (CFL) index is one measurement index that is equivalent to the power 

used by the CFL and multiplied by the number of CFLs [47]. Harmonics introduced in the system due to the 

harmonic current injection is quantified by the power each CFL uses and multiplied by the number of CFLs. 

The measurement is facilitated due to the availability of CFL in every household [48]. It is predicted that the 

penetration level of the EVs in 2020 will be 0.2 per home [49]. The voltage increase will transcend to up to 

1.0 V in neutral voltage [50], [51]. If the ground condition is improper, the voltage will increase from 2 V to 

4 V. This rise in neutral voltage due to harmonics is a tiny problem today, but during 2022 it is thought to be 

higher. The voltage increase will transcend to up to 1.0 V in neutral voltage [50], [51]. If the ground 

condition is not proper, the voltage will increase from 2 V to 4 V. This rise in neutral voltage due to 

harmonics is a tiny problem today, but during 2022 it is thought to be higher.  

 

 

4. HARMONIC MITIGATION TECHNIQUES IN EV CHARGED DISTRIBUTION SYSTEM 

The fast-charging stations [52]-[56] apply centralized coordination implementation with different 

DC-DC stages for better harmonic mitigation. The DC distribution system is a primary variation in the 

charging station that can reduce the harmonic effect in the EVSE. The points that strengthen the idea of DC 

distribution is that, (a) The rectifier and inverter stages can beeliminated, (b) only one point of coupling with 

the grid, (c) storage and renewable integration very simple, and (d) Energy management must be streamlined. 

The average power demand is very high compared to the average demand as in [52]. The range of power 

used for the fast charging is in the range from 1.1 MW and 20 Kwh in dc side storage unit and for fast 

charging it ranges to 240 kW [52]. The quick chargers are using the 12 pulse rectifiers in order to be able to 

maintain good harmonics and different models are defined in [53]-[56]. Although cost is high when 12 pulse 

implementations is carried out the harmonic reduction is a bigger advantage than the cost. The low ac 

harmonics are maintained by the triangular current form as defined in [57]. The low ac harmonics are 

obtained due to the reference triangular form as defined in [57]-[62]. The rectifier output is molded to obtain 

the triangular wave to reduce the ac side harmonics. But in the literature [63] instead of using the triangular 

form the letter of credit (LC) filter is used to obtain the harmonic reduction. 

 

 

5. IMPACT OF TRANSFORMERS AND MITIGATION METHODS 

Due to higher penetration of EVs the transformers are exposed to ageing issues. Failure due to 

thermal stress and accelerated degradation of the transformer is evident [64]. The up-gradation of the 

transformation according to the demand is not a practical solution since the economics of that significant 

change is unfeasible most of the time. Thus, the demand side management is the alternative that fits the EV 

integration in the distributed system. Charging of the EVs can be postponed carrying out demand-side 

management. EVs with full batteries should not be charged unnecessarily. Thus, those EVs must be 

incentivized to obtain a mitigating effect of the overloading in transformers. Transformer degradation due to 

increase in the EV penetration in the system is evident in [65]. Numerous papers investigating the 

distribution transformer and residential grid impact due to high EV penetration is detailed in [65]-[67]. 

Economic impacts are also detailed. Photovoltaic (PV) arrays mitigate the transformer degradation impact in 

the EV penetrated grid [68]. It is discussed that 10% penetration of the EV in the distribution system causes a 

considerable impact on the transformer degradation [69]. PV array generation and battery energy storage 

system (BESS) effectively mitigate the transformer loss mitigation using the optimization paradigm [70]. 

Computational complexity and the expenses due to the equipment’s bought introduce the feasibility issue 

[70]-[74]. A rule-based implementation that manages the charging time according to the client's preferences 

whether to charge in peak hour or not helps mitigate the transformer loss in the distribution system [73], [74]. 

Optimization algorithm with the thermal and the voltage stress reduction on the transformer as the objective 

function is adopted [75]. The customer preference is not considered but only the state of charge (SoC) of the 

EV batteries are supposed to evaluate the algorithm [75]. Although the objective function considered in the 

only considers the voltage and thermal stress, the failure hazard is considered for the optimization objective 

in [76]. Fuzzy logic controller (FLC) acts as the decision-making algorithm for solving the transformer 

failure using the performance index called the distribution. Factors involved in the decision making are SoC 

of battery, SoC required for next trip, time remaining for departure and EV owner’s requirement.  
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6. POWER ELECTRONICS DEVICES BASED POWER QUALITY ISSUES AND MITIGATION 

TECHNIQUES 

Reducing the switch stress, current and voltage ripple, and the filter size reduction is exhibited in the 

topological variation developed in the onboard chargers. Power quality indices that are measured at the 

source that depends on the power factor and the THD are considered the objective. The onboard charger 

topology includes the three level DC-DC converter that gets the DC input from the controlled rectifier from 

the distribution system. The reduced size in the filter elements makes this implementation advantageous to 

other topologies [77]. Power factor correction (PFC) correction at the source of DC-DC converters is 

available. Proposed bridgeless cuk converter that acts as a PFC based converter improves the charge 

efficiency. THD is reduced according to the standards and power quality improvement is validated by the 

power quality index. A satisfactory charging efficiency is observed in the method [78]. Interleaved lands man 

converter is used for the PFC in the EV connected distributed system. Input current harmonics is reduced 

along with the output voltage harmonics. Current control is intact in both the constant current and constant 

voltage charging of the battery [79]. Voltage regulation, power factor improvement and neutral power 

compensation is developed in the controller. Active power regulation is also evident in the controller, thus 

providing overall power quality control [80]. The voltage fluctuation depends on the grid configuration and 

the location of the PV capacity in the grid system. The light flicker that are visible or annoying can occur in 

future considering the expansion of the EV usage. The method discussed in the algorithm improves the 

voltage profile during the fluctuation transients [81]. Vehicle to grid vehicle to grid (V2G) operation with 

voltage dip in the grid and related power quality issues are detailed [82]. Active power supply using the 

active power filter powered using the grid integrated PV with large battery capacity is discussed in [83]. 

Power compensation and harmonics suppression is evident in the implementation. With minimization of 

VUF as the optimization objective function the charging and discharging of the PHEVs are applied with and 

without PHEV incorporation in the implementation. Both coordinated and uncoordinated charging is applied 

in the scenarios [84]. Droop characteristic-based voltage stabilizing is applied in the grid-operated EV charging 

scenario's load models [85]. This article also presents an adaptive control and DC charger technique to 

demonstrate how basic PV/charger functions together with immunity to solar irradiance’s intermittent nature 

can be achieved [86]. A two-stage battery charger, in which the first stage i.e., AC-DC stage, which is 

controlled by sinusoidal pulse width modulation (SPWM) control, and a predictive duty cycle control method 

is used for the second stage i.e., DC-DC stage is adopted. The fast control of a battery current is achieved by 

using predictive control, which removes the DC bias from the transformer current by controlling its peak 

value [87].  

Additionally, switch voltage stress is reduced to half of the input dc link voltage. Some of the 

primary reasons that could cause the voltage drops to include the connection of large household loads or the 

integration of sizeable loads like EVs themselves, and heat pumps, or contingencies like remote faults. 

Typically, in low voltage distribution grids (such as the one studied in this work), the transformers possess 

only offload tap-changers, where a voltage drop at the high voltage side could propagate to the low voltage 

section [88]. Measurement of power quality issues needs more technical expertise in measuring parameters 

that decide the existence of power quality issues in distribution systems due to EV penetration. A series of 

field measurements is conducted to obtain the harmonic component in the current of the distribution network 

is observed [89].  
 

 

7. FUTURE RESEARCH DIRECTIONS 

A composite controller that can implement the voltage imbalance control and the THD reduction 

and transformer disturbance controller needs to be developed. Since the composite controller is possible at 

the EVSE end, future implementation needs to be towards the composite controller. EVSE that can charge 

the EV customer with higher tariff while in supplied from the grid and lower tariff while supplied from the 

renewable source can be developed for efficient resource utilization.  
 

 

8. CONCLUSION 

A detailed review of the power quality issues that pop up while the EVs are introduced in the 

Distributed system is discussed. Mitigation procedures that are helpful in the improvement of the power 

quality in the distributed system is elaborated. The voltage unbalance problem is mitigated using the battery 

charge scheduling methods, using renewable energy support and other few methods. The harmonics 

elimination techniques are used to reduce the harmonic levels in the system. The transformer degradation 

algorithm is decreased also using renewable energy and battery charging scheduling methods. Future 

research directions on power quality improvement while EV is introduced in the distribution system is 

suggested as a concluding remark. 
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