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 We study new methods of secure cloud processing of big data when solving 

applied computationally-complex problems with secret parameters. This is 

one of the topical issues of secure client-server communication. As part of 

our research work, we model the client-server interactions: we give specific 

definitions of such concepts as “solvable by the protocol”, “secure protocol”, 

“correct protocol”, as well as actualize the well-known concepts-“active 

attacks” and “passive attacks”. First, we will outline the theory and methods 

of secure outsourcing for various abstract equations with secret parameters, 

and then present the results of using these methods in solving applied 

problems with secret parameters, arising from the modeling of economic 

processes. Many economic tasks involve processing a large set of economic 

indicators. Therefore, we are considering a typical economic problem that 

can only be solved on very powerful computers. 
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1. INTRODUCTION  

In this paper we investigate new methods for secure cloud processing of big data when solving 

applied computationally-complex problems with secret parameters. As a rule, standard cryptographic 

protocols are used to ensure the security of client-server communications. These cryptographic methods are 

effective for big data storage tasks, but are not always acceptable for secure information processing tasks. For 

example, the well-known mathematical methods of homomorphic encryption still have no practical 

application due to the huge computational costs on the client side. Therefore, along with classical 

cryptographic methods, it is necessary to use alternative (non-cryptographic) methods and technologies for 

protecting information. Such methods, as a rule, are used for the safe processing of big data arising in the 

mathematical modeling of economic problems, in linear programming problems, which, for one reason or 

another, may contain secret parameters [1]-[24]. 

Our problem can be described as follows. We will assume that a "client" is an entity who wishes to 

secure use an insecure server to solve some computationally-complex problem, that is, the client wishes to 

secure process big data on the server. As a server a supercomputer can be used, which is feasible for the 

implementation of this computationally-complex task. It is important to note that in this setting, the server is 

not trusted by the client; therefore, sensitive or confidential information must be protected from the server, 

and the results of the server's computations, generally speaking, must be easily verified by the client. Further, 

own computing devices can act as a server, but controlled unscrupulous or careless employees. Therefore, an 

adversary who wants to intercept classified information can also act as a server. So, formally, the server is 

https://creativecommons.org/licenses/by-sa/4.0/
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simultaneously an adversary, and the data sent to it represents a computationally-complex problem that it 

must solve in encrypted form. 

Further, the concept of "client" will be relative, and it will depend on the considered class of 

problems with secret parameters, which must be solved using the server in encrypted form. Therefore, a 

"regular" computer, but with limited computing resources, can serve as a client. In this case, the server acts as 

an ideal supercomputer that the client can use on a contractual basis to solve it. This client-server interaction 

can be given the following protocol form (see [8]). 

Let the client need to solve some computationally-complex problem Z, depending on the secret 

parameter α: Z(α). Suppose that there is a certain algorithm (scheme) A for solving problem Z(α), which can 

be efficiently implemented using the computing resources of the server, but not on the client side. Protocol Z: 

i) The client decomposes Algorithm A into two Algorithms A1 and A2, so that three conditions are met: 

firstly, solving algorithms A1 and A2 allows solving problem Z; secondly, the A1 algorithm can depend on 

the secret parameter, and the A2 algorithm either does not depend on the secret parameter α at all, or the time 

required for the server to reveal the secret from the A2 algorithm is unacceptable for it. Thirdly, the client can 

calculate A1 quickly enough, ii) the client solves A1, and sends the A2 to the server, iii) the server solves the 

computationally-complex problem A2, and returns the result of the calculation to the client, iv) the client, 

having received the result of computing the computationally-complex problem A2 from the server, solves the 

original problem Z. 

It should be noted that, generally speaking, the obtained solution to Problem Z may not be a secret. 

For example, suppose the client needs to compute y = xdmod n, where d is the client's secret parameter, 

while integers n and e such that ed ≡ 1(φ(n)), are public. The integer n is the product of the secret prime’s p 

and q. If the interceptor knows the numbers y, x and n, then it is almost impossible to determine the secret 

parameter d anyway, and this problem is known as the discrete logarithm problem. 

We need the following generally accepted definitions [8]: 

- Definition 1. We say that a computationally-complex problem is solvable by some protocol if the client 

receives a solution to the original problem as a result of executing each step of this protocol. In all cases, 

by a solution we mean an approximate solution. The task that the client sends to the server is first reduced 

to a certain scheme, according to which it will be solved on a supercomputer. That is, the client orders the 

server to solve the problem according to some scheme (algorithm) with a given accuracy. 

- Definition 2. We will say that a protocol is secure if the client's secret parameters cannot be declassified 

during interaction with the server. Moreover, if the server determines a certain set, the elements of which 

are probable secret parameters, then the cardinality of the set must be at least countable (this excludes the 

probabilistic approach and the possibility of enumeration). 

The following concepts are also important. 

- Definition 3. An active attack is a case when the server can send false decisions to the client.  

A protocol is called resistant to active attack if the client can verify the solution received from the server 

within a reasonable time for the client. For example, if the server sends the client an approximate solution 

x of some matrix equation Ax=f, then the client can verify the server's computation result by simply 

multiplying the matrix A by the vector x, which should be approximately equal to the vector f. That is, the 

client solves a direct problem. 

- Definition 4. We say that a protocol is correct if the total time required to implement the protocol is less 

than the time the client solves the problem on its own, without the help of the server. In this 

case, Comm(α),  CompC (β),  Comp S(γ) Comm (α)-denote the time required to transmit a message α 

between the server and the client, the time the client executes algorithm β and the time it takes to execute 

the algorithm γ by the server, respectively. And by T (Z) we denote the time required to implement the 

protocol Z. If some algorithm β is not calculated at all on the client's side, then we will 

write CompC (β) = ∞.  

The time T (Z) required to implement protocol Z will not include the time required by the client to 

test the protocol for resistance to an active attack. That is, T (Z) is the time required to implement the Z 

protocol, if the server does not deviate from the protocol, that is, it sends only the correct decisions to the 

client (in this case, we speak of a passive attack, that is, the real attack occurs by an information interceptor). 

There is an explanation for this: if the server sends a false solution to some computationally complex 

problem, and the client detects this within an acceptable time for it, then the goal is not achieved, that is, the 

protocol is not implemented. Therefore, it is advisable to denote by T (Z) - the time required only with a clear 

implementation of the Z protocol.  

All considered protocols in the article will be correct, because we will assume that the task is not 

calculated at all on the client's side, or it is calculated in an unacceptable time. Therefore, the concept of 

correctness will be relative and depends on a specific class of problems. Each time the correctness of the 
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protocol will be substantiated that the computationally-complex part A2 of the problem Z (α) is transferred to 

the server, and the client needs to solve the computationally easy task A1. 

 

 

2. RESEARCH METHOD 

Let M be a complete metric space and B a continuous operator taking an element from M to itself, 

that is;  

 

B ∶  M →  M.  
 

The completeness of the space M is necessary for the possibility of finding an approximate solution. 

Generally speaking, if M is assumed to be an arbitrary metric space, then some problems may turn out to be 

algebraic. For example, if M consists of two numbers 0 and 1, then the problem of finding an approximate 

solution as such is not worth it. As shown where x∈ M, b∈M. 

Consider the problem; 

 

Bx = b, (1) 

 

Suppose that problem (1) is uniquely solvable. Let the client needs to approximately solve a computationally-

complex in (1) with respect to the unknown x. To find an approximate solution on a computer, in many cases 

it is required to reduce the equation to a discrete analogue. However, we will present several protocols for 

solving in (1) only at the ideological level, since the considered (1), generally speaking, is abstract. Task Z2: 
The client needs to approximately solve (1) for an unknown x ∈ M. Suppose that transformation B is a secret 

element of the client, and the right-hand side b ∈ M is not a secret. We also require that the solution to (1) 

remain a secret. 

 

2.1. Protocol 𝐙𝟐 

− The client finds a bijective operator at random D:M → M. Next, it calculates the composition BD ≡  G 

and sends the server to solve the equation with accuracy ε:  

 

Gy = b, 

 

while the client keeps operator D secret. 

− The server solves the equation Gy = b and returns to the client an approximate solution y. 

− The client finds an approximate solution to (1) by the formula; 

 

x = Dy  

 

Let T1 = CompC(D, BD) be the time required for the client to construct a bijective operator D and 

calculate the composition BD, T2 Comm(G) is the time required to transmit a message G to the server, T3 =
Comps(y: Gy = b) is the time it takes for the server to solve the equation Gy=b,  

T4 = Comm(y) is the time it takes for the server to send the message y, and T5 = CompC(Dy) is the time 

required by the client to calculate Dy. By CompC (x ∶  Bx =  b) we denote the time (which can be equal to 

∞) required for the client to solve (1) without the help of the server. Let T(Z2) = T1+T2 + T3 + T4 + T5 <
CompC(x: Bx = b).  

Statement 1. Task Z2 is solvable by protocol Z2 if BD and Dy are calculated on the client side, and 

the equation Gy = b is solved on the server. Further, the Z2 protocol is Resistant to active attack if Gy is 

calculated on the client side; and secure. 

Indeed, we have; 

 

B(Dy) = B(D(G−1b)) = BDD−1B−1b = b,  

 

therefore, if the server does not deviate from the protocol, then the client finds an approximate solution to (1) 

by the formula x=Dy, that is, the problem Z2 is solvable by this protocol. 

− Resistance to active attack. Since the server sends the solution y to the client, the client verifies the 

server's computation result by simply calculating the direct problem Gy, which should be approximately 

equal to b: ρ(Gy, b)  <  ε. 
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− Security. The server knows the composition of the two operators BD = G, but separately the operators B 

and D are not known to the server. Therefore, the secret parameter B, as well as the solution x of (1), 

remain secret from the server. 

Correctness of the protocol  Z2. Constructing an arbitrary bijective operator D is often less difficult 

than finding a solution to an arbitrary (1); therefore, the assumption T(Z2) < CompC(x: Bx = b), which 

determines the correctness of the protocol, is justified. Example. Suppose the client needs to solve the 

equation 5x=150, where the number 5 is the client's secret parameter. 

 

2.2.  Protocol 𝐙𝟐
′  

− Let 3 be a random secret number taken by the client. Now the product 5*3=15 and the right side 150 the 

client sends to the server. 

− The server solves the equation 15y=150 and receives the number y = 10, which it sends to the client. 

− The client finds a solution to the original equation by the formula x=3*10=30. 

Task Z3: The client needs to approximately solve (1). Suppose that the client's secret parameter is 

the right-hand side b of the equation, and operator B is not a secret. We also require that the solution to (1) 

remain a secret. 
 

2.3.  Protocol 𝐙𝟑 

− The client randomly finds bijective operators D, K: M → M. Next, calculates KBD ≡ G, Kb ≡ g and sends 

them to the server so that it solves the following equation with accuracy ε 
 

Gy = g, 
 

the client keeps the D and K operators as secrets. 

− The server solves the equation Gy = g and returns an approximate solution y to the client. 

− The client finds an approximate solution to (1) by the formula; 
 

x = Dy. 
 

Let T1 = CompC(D, K, KBD) be the time required for the client to build reversible operators D and K 

and calculate the composition KBD, T2  =  Comm(G, g) is the time required to transmit the messages G, g to 

the server, T3 = CompS(y: Gy = g) is the time it takes for the server to solve the equation Gy=g,  

T4 = Comm(y) is the time it takes for the client to send the message y to the server, and T5 = CompC(Dy) is 

the time it takes for the client to compute Dy. By CompC (x ∶  Bx =  b) we denote the time (which can be 

equal to ∞) required for the client to solve (1) without the help of the server. Let T(Z3) = T1+T2 + T3 + T4 +
T5 < CompC(x: Bx = b). 

Statement 2. Task Z3 is solvable by protocol Z3 if KBD, Kb and Dy are computable on the client 

side, and Gy=g is solvable on the server. Further, the protocol Z3 is resistant to active attack if Gy is 

computable on the client side; and secure. 

Indeed, we have; 
 

B(Dy) = B(D(G−1g)) = B(D(D−1B−1K−1g))=K−1g=b. 
 

Hence x = Dy. That is, the task Z3 is resolvable by the protocol Z3 . 
− Resistance to active attack. Since the server sends the client an approximate solution y, the client verifies 

it by calculating it simply by solving the direct problem Gy, which should be approximately equal to g∶ ρ 

(Gy, g) <ε. 

− Security. The server knows the composition of the operators KBD = G, but separately the operators K and 

D are not known to the server; the server also knows the result of calculating the two secret elements K 

and b: Kb = g, so the operator K also remains a secret. This means that element b remains secret. It also 

follows from this that the solution x of (1) remains a secret. 

Correctness of the protocol Z3. In the general case, the construction of arbitrary bijective operators D 

and K is often less difficult than finding a solution to an arbitrary (1); therefore, the assumption T(Z3) <
CompC(x: Bx = b), which determines the correctness of the protocol, is justified. Example. Suppose the 

client needs to solve the equation 5x=150, and the number 150 is the client's secret parameter. 
 

2.4. Protocol 𝐙𝟑
′  

− Let K = 3 and D = 10 be random secret numbers taken by the client. Now the client sends the calculation 

results of the products 3*5*10 = 150 and 3*150 = 450 to the server. 

− The server solves the equation 150y = 450 and receives the number y = 3, which it sends to the client. 
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− The client finds a solution to the original equation by the formula x = D*y = 10*3 = 30. 

In protocols Z2 and Z3, it was assumed that in (1) the secret parameter is either operator B or the 

right-hand side of b. Sometimes it may turn out that the secret parameters of the client are both operator B 

and the right side of b. In this case, the task for the client is simplified, since the less the server knows about 

the task in question, the more difficult it is for him to recognize it. 

Problem Z3
∗: Suppose the client needs to approximately solve in (1), keeping the operator B, the 

right-hand side b and the desired solution x secret. The Z3 protocol is used for this task. Statement 2’: Task 

Z3
∗ is solvable by protocol Z3 if KBD, Kb and Dy are computable on the client side, and protocol Z3 is 

resistant to active attack if Gy is computable on the client side; and secure, i.e., the secrecy of B and b is 

maintained. 

It is enough to show the security of the protocol. The server knows the composition of the 

operators 𝐾𝐵𝐷 =  𝐺, but separately the operators K, B and D are not known to the server, which means that 

B remains secret. Also, the server knows the result of calculating two secret elements K and b*Kb = g, so the 

element b also remains secret. It also follows from this that the solution x of (1) remains a secret. 

Consider the system of algebraic linear equations 
 

Bx =  b (2) 
 

where B is a rectangular m × n matrix with elements B [i] [j], (i = 0, ..., m - 1; j = 0, ..., n - 1), and b is a 

vector of length m with elements b [k], (k = 0, ..., m - 1). Suppose that system (2) is consistent, that is, it has 

at least one solution. Vector b is the client's secret parameter. Then problem (2) according to the LE protocol 

from [1] is solved as follows.  
 

2.5.  Protocol 𝐙𝟒 

− The client takes an n-dimensional vector at random 
 

w =  (w[0], . . . w[n −  1]) and calculates b − Bw =  g by the algorithm 
for(i = 0; i < m; i + +) 

{ 

c = 0; 

for(j = 0; j < n; j + +) 

c = c + B[i][j] * w[j]; 

g[i] = b[i] − c; 

} 

 

Now the client is sending to the server the equation By =  g, and keeps the vector w as secret. 

− The server solves the equation 
 

By =  g  
 

and returns an approximate solution to the client y =  (y[0], . . . y[n −  1]). 
− The client finds a solution to (2) using the algorithm 

 
for(j = 0; j < n; j + +) 

x[j] = y[j] + w[j]; 

 

This shows that the client needs to do only a few arithmetic operations to solve a system of linear equations. 

That is, for large n and m, the computational costs of the client are much less than if the client solved the 

system of linear algebraic (2) without the help of the server. 
 

 

3. RESULTS AND DISCUSSION 

Linear problems are especially common when modeling economic problems, in the problem of 

finding the extremum of a function, and linear programming. In general, if a certain process is described by a 

linear mathematical model, then it can be easily solved by the methods described above. In this section, we 

will look at two specific problems. First, we consider the problem of finding the extremum of a function with 

secret parameters, and then an applied problem with secret parameters that arises when modeling economic 

processes.  
 

3.1.  Problems of finding the extremum of a function with secret parameters 

Consider the problem of determining the extremum of the function: 
 

f(x1, … , xn) = ∑ ∑ aijxixj −
n
j=1 ∑ bkxk

n
k=1

n
i=1  (3) 
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subject to communication. 
 

∑ 2cixi = P
n
i=1  (4) 

 

Here aij = aji. The client needs to find the extremum of the function (3), subject to the connection (4), using 

the computing facilities of the server. In this case, the server does not need to know the following secret 

parameters of the client: b1, b2, … , bn и P. Numbers aij and ck are not secrets. Protocol Q: 

− The client composes a system of linear algebraic equations 
 

Aq = b (5) 
 

where b = (b1, b2, … , bn , P) is free column, q = (x1, x2, … , xn, λ) − unknown vector, and matrix A has the 

form. 

A =

(

 
 

2a11 2a12 … 2a1n 2c1
2a12 2a22 … 2a2n 2c2

… … … … …

2a1n 2a2n … 2ann 2cn
2c1 2c2 …  2cn  0 )

 
 

 (6) 

 

Next, the client takes a random vector w, computes 𝑏 − 𝑤 = 𝑓, and sends the equation to the server 
 

Ay = f (7) 
 

− The server solves (7) and returns solution y to the client. 

− The client finds a solution to (6) by the formula 
 

𝑥 =  𝑦 +  𝑧  
 

and finds an extremal point for function (3) subject to constraint (4). 

Statement 3. Point x∗ = (x1, x2, … , xn) is an extreme point, and protocol Q is resistant to active 

attack; and secure. Resistance to active attack and security follows from the LE protocol from [1]. To find the 

extremum, the Lagrange method is used. 

The Lagrange function has the form: 
 

L = ∑ ∑ aijxixj −
n
j=1 ∑ bkxk

n
k=1

n
i=1 + λ(∑ 2cixi − P)

n
i=1   

 

Let q denote the column (x1, x2, … , xn, λ)
t. Then the extreme points are found from the system of linear 

algebraic (5). 
 

3.2.  A linear programming task with secret parameters 

Many economic tasks deal with processing a large set of economic indicators. In this subsection we 

consider a typical economic problem that can be solved only on very powerful computers. The statements of 

some of the problems considered are taken from [25], and all concepts of a purely economic nature are also 

defined in this work. 

Consider a macroeconomic model [25], in which n products G1, … , Gn, m consumers A1, … , Am and 

one manufacturer participate. Let some period (for example, a year) produce Xi units of the product Gi. Let, 

further, the values P1, … , Pm mean, respectively, the incomes of consumers A1, … , Am for the same period. 

Suppose that each consumer spends all his income on purchasing products from the manufacturer, and the 

relative utility of a unit of product Gi for consumer As is estimated by the non-negative number ci
(s)

. Non-

negative n-dimensional vector x(s) = (x1
(s)
, … , xn

(s)), whose component xi
(s)

 is the number of units of product 

Gi purchased by consumer As, assortment set of this consumer. Let C = (cij) be a non-negative matrix, each 

column and each row of which has at least one positive element. Let P1, … , Pm be positive numbers. 

Problem statement: it is required to find a vector x(s) maximizing form: 
 

∑ Ps ln (∑ ci
(s)
xi
(s)n

i=1 ) → maxm
s=1  (8) 

 

∑ xi
(s)
= Xi, i = 1, … , n,

m
s=1  (9) 

 

xi
(s)
≥ 0, i = 1,… , n, s = 1,… ,m (10) 
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Here the maximizing function; 
 

∑ Psln (∑ ci
(s)
xi
(s)
)n

i=1
m
s=1   

 

is the entropy of the macroeconomic system. 

Let the client need to solve problem (8)-(10). The client's secret elements are matrix C and 

vector X = (X1, … , Xn). Vector P is not a secret. Protocol E: 

− The client finds diagonal matrices at random Dj = diag(d1
j, . . . , dn

j), di
j > 0, i = 1, 2, . . . , n; j = 1,… ,m 

and calculate ri
(s)
= ci

(s)
di
(s)
. Further, for s=2,...,m computes n ki

(s)
=
di
s

di
1, bi =

Xi

di
1 and sends to the server 

task (11)-(13) : 
 

∑ PSln (∑ ri
(s)
zi
(s)
) → maxn

i=1
m
s=1  (11) 

zi
1 +∑ ki

(s)
zi
(s)
= bi, i = 1, … , n

m
s=2  (12) 

 

zi
(s)
≥ 0, i = 1,… , n; s = 1,… ,m (13) 

 

− The server solves the problem (11)-(13) and solution zi
(s)

 returns to the client. 

− The client finds a solution to problem (8)-(10) by the formula 
 

xi
(s)
= di

szi
(s)

 (14) 
 

Statement 4. Task (8)-(10) is solvable by protocol E, and protocol E is secure. Let's make a replacement; 
 

xi
(s)
= di

szi
(s)
.  

 

Then, considering that ri
(s)
= ci

(s)
di
s, ki

(s)
=
di
s

di
1, bi =

Xi

di
1 , conditions (8) and (9) take the form (11) and (12), 

respectively. Further, since di
s are positive numbers, then condition (10) can be written in the form of 

condition (13). Protocol security. The server receives a system of equations; 
 

ri
(s)
= ci

(s)
di
s (15) 

 

ki
(s)
=
di
s

di
1 , s=2, …, m (16) 

 

bi =
Xi

di
1 (17) 

 

system (15)-(17) contains 2𝑛𝑚 + 𝑛 unknowns, and equations 2nm. Therefore, system (15)-(17) is not 

uniquely solvable, that is, the server will not be able to determine the secret elements of the client. 
 

 

4. CONCLUSION 

Generally speaking, for the numerical solution of the equation Gy = b, the bijectivity of the operator 

D is insufficient (for example, continuity is also required). Therefore, this and other protocols that solve the 

abstract problem (1) should be perceived at the conceptual level. Further, since B and D are one-to-one maps, 

the equation Gy=b can have only a unique solution. 

In the task Z3
∗ it is assumed that the secret parameters of the client are all elements of (1), that is, in 

fact, the server will only know the form of (1). Note that in this setting, the client's task becomes less 

difficult, since the less the adversary knows about the task under consideration, the more difficult it is to 

determine the secret parameters. But this does not correspond to practice, since usually the interested enemy 

knows some parameters of the task. Therefore, in order for the tasks under consideration to have a practical 

meaning, it is desirable to assume that the enemy knows as much as possible about the computationally 

complex task under consideration. The joint system of linear algebraic (2) can have infinitely many solutions. 

Therefore, in the Z4 protocol, at step 2, the server returns to the client an arbitrary approximate solution of the 

equation by=g. 
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