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 The aim of the proposed paper is an analytical model and realization of the 

characteristics for tunnel field-effect transistor (TFET) based on charge 

plasma (CP). One of the most applications of the TFET device which 

operates based on CP technique is the biosensor. CP-TFET is to be used as 

an effective device to detect the uncharged molecules of the bio-sample 

solution. Charge plasma is one of some techniques that recently invited to 

induce charge carriers inside the devices. In this proposed paper we use a 

high work function in the source (ϕ=5.93 eV) to induce hole charges and we 
use a lower work function in drain (ϕ=3.90 eV) to induce electron charges. 

Many electrical characterizations in this paper are considered to study the 

performance of this device like a current drain (ID) versus voltage gate 

(Vgs), ION/IOFF ratio, threshold voltage (VT) transconductance (gm), and sub-
threshold swing (SS). The signification of this paper comes into view 

enhancement the performance of the device. Results show that high 

dielectric (K=12), oxide thickness (Tox=1 nm), channel length (Lch=42 

nm), and higher work function for the gate (ϕ=4.5 eV) tend to best charge 
plasma silicon tunnel field-effect transistor characterization. 
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1. INTRODUCTION  

Charge plasma and electrostatic techniques are recently devised techniques to provocation the virtual 

doping inside the device [1], [2]. In the charge plasma technique, the charge carriers are motivated within the 

materials by employing different work functions on the drain and source regions, whereas in the electrostatic 

technique, the charge carriers are motivated within the materials by employing external bias [3], [4]. The 

tunnel field-effect transistor (TFET) device is vastly studied within the containing the virtual doping 

techniques [5]-[7]. TFET can be regarded as a promising alternative device of metal-oxide-semiconductors 

field effect transistor (MOSFET) to overcome the imperfection of short channel effects and betterment the 

characteristics of the device such as high ION/IOFF ratio, low OFF-current state lower subthreshold slope and 

minimize the power consumption [8]-[11]. The operating mechanism of TFET is based on the band-to-band 

tunneling phenomenon, while in MOSFET, the operating mechanism is based on the thermionic emission 

technique [12]-[14]. Besides all these advantages, but TFET is still suffering from some problems and facing 

challenges like low ON-current state, ambipolar behavior (conduction of current when the gate bias is 

negative), and higher parasitic capacitances [15]-[18]. 

One of the most applications of the charge plasma tunnel field-effect transistor (CP-TFET) is the 

biosensor device which operates based on charge plasma technique [19]. There are other types of biosensors 
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device that depends on the ion-sensitive field-effect transistor (ISFET) [20]. ISFET operates on fundament 

the presence of ions in the bio-sample solution below the dielectric gate, but ISFET cannot detect the 

uncharged molecules for any bio-sample, so this can be considered as limiters of ISFET [19]. While CP-

TFET has been verified to be used as an effective device to detect the uncharged molecules of the bio-sample 

solution [21], [22]. Also, another type of FET biosensor is the dielectric modulated device has named DM-

FET biosensor and DM-TFET which have higher sensitivity for bio-sample [23], [24]. 

This paper overcomes the problem of the detect uncharged molecules and precision of the 

sensitivity, by collecting all the beneficial features of the dielectric modulated (DM) biosensor, charge 

plasma conception and TFET device, the DM CP-TFET biosensor has been an ongoing device and its better 

performance as compared with other types of biosensor [25]-[27]. So, this proposed paper aims to realize and 

study the characteristics of TFET device that depend on the CP technique, and the signification of the work 

comes into view enhancement the performance of the device (sub threshold slop and ION/IOFF ratio) which 

used as a biosensor applications. 

 

 

2. DEVICE STRUCTURE AND PARAMETERS  

The substructure of the device, siliconcharge plasma tunnel field-effect transistor (CP-TFET) is 

shown as in Figure 1. The source and drain regions are established on the intrinsic body by prober metal 

work function. “P+” source is implanted by (ϕS=5.93 eV) and “N+” drain is implanted by (ϕD =3.9 eV). The 

gate regions are established on SiO2 by different metal work functions. Gate1 and Gate2 are implanted by 

(ϕ =3.9 eV), Gate3, and Gate4 (ϕ =4.0 eV). The structure of the device is making the concentrations 

distribution electron and hole are available regular at source and drain electrode, which make better control 

and a great ON current-state [28]-[30]. The concentration of substrate region (body) is 1×1015 cm-3 which 

represents the silicon intrinsic and the length of the channel is 43 nm. Oxide layer thickness (SiO2) under the 

gate is 3 nm and the length of the gate under lap region (dielectric) or space length is 7 nm, and the applied 

voltage on the drain terminal (Vd) is 0.5 V.  

In this article, we study and investigate the important electrical parameter (performance) for the 

device such as ION, ION/IOFF ratio, sub-threshold slope (SS), the threshold voltage (VT) and transconductance 

(gm). The performance of the device was observed by varying many factors for the device such as different 

dielectric constant (under lap region(K)), oxide layer thickness (TOX), and channel length (LCh) [31], [32]. 
 

 

 
 

Figure 1. Schematic structure of a CP-TFET 
 

 

3. RESULTS AND DISCUSSION 

The simulation results are taken by using the Technology Computer Aided Design (TCAD) tool. 

The gate voltage (VGS) is plotted against both drain current (ION) and transconductance (gm) in Figure 2 and 

Figure 3 at K=1,2,4,8, and 12). In Figure 2 is the effect of dielectric constant in drain current, wherein the 

(ION) increases when (K) increases and so on in Figure 3 of the (gm). 

The relation between dielectric constant (k) versus the ratio of  (ION/IOFF) and subthreshold slope 

(SS) are plotted in Figure 4, which shows the increase of (K) led to an increase in the ION/IOFF, while the 

opposite occurs in (SS), where increasing of (K), result in (SS) will decrease. Also, can be found the 

intersection point between them in about 5.2 of (K). The drain current and transconductance are plotted 

against voltage gate with a different thickness of TOX = (1,2,3, and 4) as shown in Figures 5 and 6 

respectively. The plots validate the performance of the device, at decreasing of the (TOX), the ID current and 

gm will be increasing. That’s mean the proportional is reverse between (ID and gm) with (TOX). 
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Figure 2. ID=(ION) versus voltage gate (VGS) at varying (K) 
 

 

 
 

Figure 3. Transconductance (gm) versus voltage gate at varying (K) 
 

 

 
 

Figure 4. ION/IOFF ration and (SS) versus different dielectric constant of (k) 
 

 

 
 

Figure 5. ID (ION) versus voltage gate (VGS) at varying (TOX) 
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The relation between thickness material (TOX) of (SiO2) versus the ratio of ION/IOFF  and (SS) are 

plotted in Figure 7, which shows the minimum value of  ION/IOFF ratio (1.1×106) with VD= 0.5 V was gotten 

at TOX=(1 and 2) nm, but at TOX=3 nm, the  ION/IOFF ratio began increasing until reached to a maximum value 

(1.3×109) at TOX=4 nm. While occurs opposite in (SS), where the minimum value of TOX= 1 nm at the same 

value of VD=0.5 V, we obtained the worse case of SS characteristics (84.19 mV/dec), but after that, when the 

value of TOX began increasing, the value of SS became decreasing until reached to the best value of SS 

characteristics (63.26 mV/dec). Also, we can find the intersection point between them in about 3.7 of (TOX). 

 

 

 
 

Figure 6. Transconductance (gm) versus voltage gate at varying (TOX) 
 

 

 
 

Figure 7. ION/IOFF ration and (SS) versus different thickness constant of (TOX) 
 

 

The three parameters (work function, channel length and oxide thickness) are taken to investigation 

the characteristics of the charge plasma tunnel field-effect transistor (CP-TFET) device, like threshold 

voltage (Vt), ION current, IOFF current, ION/IOFF ratio, subthreshold slop (SS) and transconductance (gm). We 

set the work function of (gate1 and gate2) at fixed value (3.9 ev), channel length at fixed value (43 nm) and 

oxide thickness at fixed value (3 nm). While the work function of (gate3 and gate4) are set at variable value 

(4.5, 4.3, 4.1, and 3.9) ev. All the electrical characteristic of the device was obtained at Vd= 0.5V, dielectric 

constant (K) =12 and temperature degree of device at 300 K as shown as in Table 1. 

The relation between channel length (Lch) versus the ratio of (ION/IOFF) and subthreshold slope (SS) 

are plotted in Figure 8, which shows the increase of (Lch) led to decreasing in the ION/IOFF, while the opposite 

occurs in (SS), where increasing of (Lch), will result of  decreasing in (SS). 

 

 

Table 1. Electrical characteristic of CP-TFET (k=12 and Vd=0.5V) 
Work Function 

(Gate3+Gate4) 

(ev) 

Channel 

Length 

(nm) 

TOX 

(nm) 

Vt 

(V) 
ION (A) IOFF  (A) ION/IOFF 

SS     

mmmV/dec 

Gm             

u/S 

Work Function 

(Gate1+Gate2)  

(ev) 

4.5 43 3 0.954 1.52×10-8 3. 43×10-18 4.4×10+9 33.84 0.050 3.9 

4.3 43 3 0.954 1.53×10-8 2. 07×10-17 7.4×10+8 50.75 0.051 3.9 

4.1 43 3 0.954 1.54×10-8 3.9.87×10-17 1.5×10+8 59.90 0.052 3.9 

 
 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 138-143 

142 

 
 

Figure 8. ION/IOFF ration and (SS) versus different thickness constant of (Lch) 
 

 

4. CONCLUSION  

In this article, we have been taken many factors to study and analyze the characteristics of silicon 

tunnel field-effect transistors based on charge plasma. The performance of the charge plasma tunnel field-

effect transistor (CP-TFET) device studies and investigated through this paper. By using plasma technique 

concept based on TFET structure. A dual-gate metal structure and gate under lap region is proposed to 

enhancement the characteristic of the device. By simulation study, the CP-TFET device shows making better 

performance for ION =1.5×10-8A at (K=12, Lch=43 nm and Tox=3 nm), ION/IOFF=1.3×10+9 at (K=12, Lch=43 

nm and Tox=4 nm), and sub threshold slop SS=33.84 mv/dec at (K=12, work function for gate3 and 

gate4=4.5 ev). 
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