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 Extreme learning machine (ELM) algorithm assigns the input weights and 

biases in a “one-time stamp” fashion, this method makes the algorithm to be 

ill-conditioned and reduces its classification accuracy. The contribution of this 

work is the enhancement of the performance of ELM with the moth-flame 
optimization (MFO) algorithm to improve classification accuracy. A hybrid 

of the Moth-flame optimization and extreme learning machine (MFO-ELM) 

algorithm is implemented in MATLAB. MFO ensures a concurrent simulation 

of exploration and exploitation of the search space to select an optimum 
candidate solution. The candidate solution is reshaped into input weights and 

biases for ELM classification. The hybrid algorithm is validated on five life-

selected datasets. The performance improvement of MFO-ELM is compared 

with ELM-optimized particle swarm optimization (PSO-ELM) and 
competitive swarm optimization (CSO-ELM) algorithms. The improvement 

rates are qualitatively and quantitatively evaluated to show the improvement 

of MFO-ELM on ELM and the other meta-heuristic algorithms. MFO-ELM 

improved the accuracies of the basic ELM in all 100% of the simulations and 
performed better than the other meta-heuristic algorithms in 80% of the 

simulations. The performance of MFO-ELM is more competitive, and it is 

recommended for solving classification problems. 
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1. INTRODUCTION  

Machine learning (ML) algorithms have parameters that govern their operational efficiencies [1]. The 

parameters are initiated before training commences. For the past three decades, most applications of machine 

learning use a single layer feed forward network (SLFN). The backbone of the SLFN training algorithms is the 

backpropagation (BP) method. That is, parameters learn at each iteration based on the first-order instantaneous 

value of the cost function [2]. These parameters have to be tuned to minimize the cost function. The major 

challenge is that the parameters require iterative tuning, which results in the slowness of the machine learning 

algorithms [3]. With every training, the old and new datasets retrain in batch learning algorithms [4]. This 

method consumes much time, therefore a quest among researchers for a fast and scalable machine learning 

algorithm to alleviate the problem of long training time. 

Huang proposed extreme learning machines (ELM) [5]. ELM learning principle is essentially a linear 

model. ELM randomly assigns the input weights and biases to the hidden neurons, then computes the output 

of the hidden neurons and uses Moore Penrose generalized inverse to determine the output weights analytically 

[6]. Therefore, the input weights and biases no longer require iterative tuning as it was in the conventional 

https://creativecommons.org/licenses/by-sa/4.0/
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learning machines [7], [8]. It is faster than the backpropagation (BP) algorithms as it is a one-pass algorithm 

[9]. Thus, ELM has been exploited by researchers for classification in recent times [10]. However, ELM has 

the problem that its weights and biases which are randomly assigned make it to be ill-conditioned, this affects 

its accuracy and generalization performance [11]. This problem must be addressed to exploit its fast training 

advantage in the classification of datasets. 

Deng et al. [12] adopted regularization parameters to address the problem of random assignment of 

input weights and biases of ELM. They based the approach on ridge regression theory and weighted least 

squares. Martínez et al. in [13] improved the work of Deng et al. They proposed the use of ridge regression, 

elastic net, and lasso methods to prune the size of hidden neurons in ELM architecture. They validated their 

work with some regression benchmark tasks, and it was proved to scale a more compact network with a 

competitive result when compared with ELM. However, [10] appraised the generalization of their algorithms 

but shows that the ridge regularized ELM requires large memory space, and since large matrix inversion is 

involved, the computational cost is high. Therefore, they proposed the generalized regularized ELM (GR-

ELM) approach for multiclass classification tasks. The approach combined the Frobenius norm and ℓ2,1 norm 

of output weights as ELM penalty. The R-ELM was maintained for binary classification tasks. They used 

alternating direction method for multiplier (ADMM) for implementation. They came up with a more compact 

network structure. However, the approach becomes more complex and the issue of computational cost remains 

unresolved.  

Other than procedural algorithms above, recent work enhance the performance ELM classification 

with optimization techniques [14], [15]. Optimization techniques select good parameters for the efficient 

performance of the ELM algorithm [16]. They generate a Pareto front, from which updating searches an 

optimum candidate solution. Physical activities like hill-climbing, migration, maneuvering emissions; 

biological behavior of Beetles, Birds, Bees, Ants, Bats, Fish, Cats; and other evolutionary forms had been 

modeled in optimization to improve ELM [17]-[19].  

Eshtay et al. [6] employed competitive swarm optimization based neural network (CSONN) to control 

the complex nature of the ELM network. The algorithm optimized the weights and biases and determined the 

size of the hidden nodes dynamically. They used 23 benchmark functions for the simulations and compared 

the results with the static rule based ELM and some other meta-heuristic based ELM. Their results improve the 

generalization of ELM and perform better than static rule-based ELM. However, the algorithm was more 

computational complex than the traditional ELM and the static rule-based ELM. Yang and Duan [20] proposed 

a hybrid model of artificial bee colony (ABC) and differential evolution (DE) optimization techniques to 

improve the parameter selection of ELM. The model improved the generalization performance with less 

processing time offered by ELM. The deficiency of initial random assignment of input weights and biases was 

also improved, and the results of the classification were also improved. However, the exploitation of ABC is 

poor [21] and the DE is computationally intensive [22]. Xie et al. [23] proposed collaborative ELM to prevent 

repeated computations that emanate from data redundancy. They employed the use of confidence interval to 

enhance the traditional ELM algorithm. With the approach, they were able to eliminate redundant computations 

of the neural network nodes. The approach improves the efficiency of ELM classification. However, the 

approach did not consider the selection optima input weights and biases for ELM, therefore, ELM is still subject 

to being stuck in a local minimum. There are many other state-of-the-arts optimization techniques used recently 

to improve the performance of ELM. These include grey wolf optimizer (GWO), bat algorithm (BA), bacterial 

foraging optimization (BFO), [20], [24]-[26], and many more. These hybrid techniques improved the 

performance of ELM in some ways; however, they are challenged with being stock in local minimal, which 

reduced its classification accuracy. MFO has a better trade-off between the exploration and exploitation in the 

search space than any of the above schemes, with less computational cost. Therefore, we propose an enhanced 

MFO-ELM. The proposed algorithm is set to achieve the following: i) To improve ELM generalization 

performance. ii) Introducing a meta-heuristic algorithm to select optima input weights and biases for ELM. iii) 

Implementation of the proposed MFO-ELM on five machine learning datasets and comparatively evaluating 

the results. The remaining sections are organized as follows: section 2 is the proposed method, section 3 is the 

research method, section 4 is the results and discussion, and section 5 is the conclusion. 

 

 

2 THE PROPOSED METHOD 

2.1.  Extreme learning machine 

ELM is a single layer feedforward neural (SLFN) network. Assuming an arbitrary 𝑁 cases, each 

instance has 𝑑-dimensional feature and belongs to 1 of 𝑚 classes in the set. The dataset can be represented 

as(𝑥𝑖, 𝑦𝑖), 𝑖 =  1,2, … , 𝑁, were 𝑥𝑖is the input vector 𝑥𝑖  ∈  𝑅𝑛, and 𝑦𝑖is the expected result 𝑦𝑖  ∈  𝑅𝑚. For an 

SLFN network with 𝐿 hidden neurons, and g(x) activation function, the network is to be trained with vectors 
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of 𝑋𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, ⋯ , 𝑥𝑖,𝑛]𝑇, 𝑖 =  1,2, … , 𝑁, and the target vector 𝑌𝑖 = [𝑦𝑖,1, 𝑦𝑖,2, ⋯ , 𝑦𝑖,𝑚]𝑇. The output of the 

neural network is mathematically modeled in (1). 

 

y𝑖 = ∑ 𝛽𝑗𝑔(𝑤𝑗. 𝑥𝑖 + 𝑏𝑗),   𝑖 ∈ [1, 𝑁] 

𝐿

𝑖=1

 (1) 

 

Where 𝑤𝑗 = [𝑤𝑗,1, 𝑤𝑗,2, ⋯ , 𝑤𝑗,𝑛]𝑇 is a vector of weights connecting the 𝑖𝑡ℎ input node to 𝑗𝑡ℎ hidden neuron, and 

𝑏𝑗 is the bias of 𝑗𝑡ℎ hidden neuron. 𝛽𝑗  =  [𝛽𝑗,1, 𝛽𝑗,2, ⋯ , 𝛽𝑗,𝑚]𝑇 is a vector of output weights between the hidden 

neurons and the output nodes, 𝑤𝑗 . 𝑥𝑖 is the inner product of 𝑤𝑗 and 𝑥𝑖. In (1) can be compactly presented as in 

(2) for 𝑁 system of equations. 

 

𝑌 = 𝐻𝛽 (2) 

 

where 𝐻, and 𝛽are the hidden neurons output and weight respectively, and 𝒀 is the ELM output. The operating 

principle of extreme learning machines is based on empirical risk management. ELM is ill-conditioned because 

the input weights and biases are randomly assigned, therefore it tends to over-fit. 

 

2.2.  Moth-flame optimization technique 

MFO is a population-based bionic optimization algorithm. It regulates the exploration and exploitation 

during the search process. We consider a search space with n moths and d positions. The moth positions are 

initialized randomly using the (3) within an interval [-1 and 1] as in [27]: 

 

𝑋𝑖𝑗 =  𝑟 ∗ (𝑢𝑏𝑗 −  𝑙𝑏𝑗) +  𝑙𝑏𝑗 (3) 

 

where 𝑥𝑖𝑗 is moth 𝑖𝑡ℎ in feature location 𝑗𝑡ℎ of the search space, 𝑖 =  1, 2, … , 𝑛, 𝑗 =  1, 2, … , 𝑑; 𝑙𝑏𝑗 and 𝑢𝑏𝑗 are 

lower and upper bounds of moth positions in the space. Each moth represents a candidate solution. The moth 

positions represent the input weights and biases to be optimized. The position vector of each moth in the search 

space is regulated by a flag operator. The flag ensures optimal fitness values. Each position vector is passed to 

the fitness function to calculate the fitness value.  

The moths and the flames are solutions in the algorithm search space. The moths represent the particles 

that move around the flames, however, the flames are a matrix of the best moth positions attained so far. Each 

flame is assigned to a moth to prevent local optimal stagnation. As the moths search around the flames, they 

are updated if there is a better solution. The process will continue until it reaches the maximum set iteration 

for all the moths to attain their best possible solutions. A logarithmic spiral model [22] is used as the main 

update mechanism of moths. In (4) is the logarithmic spiral for the MFO algorithm. 

 

𝑆(𝑀𝑖, 𝐹𝑖) = 𝐷𝑖𝑒
𝑎𝑡𝐶𝑜𝑠(2𝜋𝑡) + 𝐹𝑗 (4) 

 

where 𝑆 is a function model that controls the flying of a moth around a flame, which may not necessarily be in 

the space between them. This is set to regulate the exploration and exploitation of the model. 𝑀𝒊 indicates the 𝑖th 

moth, 𝑭𝒋 indicates the 𝑗th flame, and 𝐷𝑖 indicates the Euclidian distance of the 𝑖th moth for the 𝑗th flame, a is a 

constant for defining the logarithmic spiral’s shape, 𝒕 parameter-random number in [-1,1] which specifies how 

close the next moth position should be to the flame. 2𝜋𝑡 is the distance between successive turns of the spirals. 𝑎 

is the linear decrease from -1 to -2 throughout the iteration. It determines the convergence of the algorithm. The 

decrement in the flames attempts to regulate the exploration and exploitation of the search space. 

The effectiveness of the algorithm strongly depends on the distance 𝐷 between the moths and the 

flame. The position update of moths relative to n locations may degrade the exploitation of the candidate 

solution. Hence, an adaptive model shown in (5) is employed to determine the number of flames.  
 

𝑓𝑙𝑎𝑚𝑒𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑙 x 
𝑁−1

𝑇
) (5) 

 

l – the current iteration, N - the flames count, 𝑇 – the maximum iteration. The position update of the moths is 

carried out with respect to the best flame in the last iteration. After the termination, the best moth is returned 

as the best optimal approximation.  
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3 METHOD 

To improve the classification accuracy of ELM in this study, we use (3) to generate a population of 100 

candidate solutions. Then, we employed MFO to optimize the population. The best candidate solution was 

selected and reshaped into weights and biases. The weights are random numbers in the range [-1, 1] while the 

biases are the range of [0, 1]. These parameters are passed to ELM for classification. We present the conceptual 

design in Figure 1, the algorithm in Algorithm 1 and the optimization parameters are from [28]-[30]. 

We run the algorithm on five life datasets. Four (4) of the datasets were drawn from the UCI repository: 

Blood, Breast, Diabetes, and Liver; while the one (1) from the datahub repository is the Phoneme dataset. The 

datasets were normalized to ensure the even distribution of data points and avoid the effect of being skewed 

towards features with higher values. The datasets were partitioned into training and testing data in ratio 2:1 as shown 

in the Data pre-processing phase of Figure 1. We constructed ten (10) SLFN at an interval of 5 nodes (range between 

5 and 50 nodes). Each simulation reached the best accuracy within the node range. For every SLFN construct, there 

were thirty (30) trials of simulations, then the average results are computed. The results of particle swarm 

optimization extreme learning machines (PSO-ELM) and competitive swarm optimization extreme learning 

machines (CSO-ELM) algorithms are drawn from [31] for performance comparison. 
 

 

 
 

Figure 1. Flowchart of the enhanced MFO-ELM scheme 

 

 

Algorithm 1. Enhanced MFO-ELM algorithm 
1: Initialize MFO parameters 

2: Output: Accuracy 

3: Generate guess using equation (3) and evaluate the fitness  

4: while 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑀 do 

5: Update flame number using equation (5)  

6: sort moth with fitness values and select the best 

7: use equation (5) to calculate linear decrement from -1 to -2 

8: 𝐷 =  𝑎𝑏𝑠(𝐹𝑖𝑗  – 𝑋𝑖𝑗) //D is the distance between the flame and the corresponding moth 

9: for 𝑖 =  1 to 𝑁 do 
10:  Update the moth positions with respect to flame 

11: end for 

12: Select the best flame: Iter = iter +1 

13: end while 

14: Reshape the best flame (𝐹) into weights and biases (𝑤, 𝑏) 
15: Calculate hidden neuron output 𝐻  
16: Calculate the output weight 𝛽  
17: Calculate ELM output with equation (2) 

28: Calculate the misclassification and the accuracy 
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4 RESULTS AND DISCUSSION 

We compared the improved accuracy of the proposed MFO-ELM with CSO-ELM, PSO-ELM, and 

ELM in this section for each dataset as shown in Figure 2. The comparative performance for each model in 

each dataset is summarized in Figure 3. Also, we extend our discussion to include the rate of improvement of 

the proposed algorithm over these algorithms and analyze the significant improvement test of the proposed 

algorithm on classical ELM. 

 

4.1.  Evaluation of accuracy 

We evaluated the classification performance Figure 2 of MFO-ELM with CSO-ELM, PSO-ELM, and 

ELM in Figures 2(a)-(e) for each dataset. We presented the relative performance of the algorithms in Figure 3. 

The relative performance is the average classification accuracy of each algorithm in the simulations. This is 

presented in a single chart for easy comparison. The results show that the proposed MFO-ELM performed better 

in Blood, Breast, Diabetes, and Liver datasets which represents 80% of the simulations. It is only in the simulation 

on Phoneme datasets that CSO-ELM and PSO-ELM performed better than MFO-ELM.  
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 

Figure 2. Compared the improved accuracy of the MFO-ELM: (a) performance comparison of classification 

on blood dataset, (b) performance comparison of classification on breast dataset, (c) performance comparison 

of classification on diabetes dataset, (d) performance comparison of classification on liver dataset,  

and (e) performance comparison of classification on phoneme dataset 
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The overall evaluation of the comparison shows that the enhancement of ELM with MFO improves 

its performance. The mean accuracies of ELM are improved on all the simulations on the five datasets. That 

is the accuracies of MFO-ELM is better than ELM in all. Therefore, optimizing the input weights and biases 

with MFO improved the accuracy of the ELM algorithm. 
 

 

 
 

Figure 3. Relative classification accuracy on each dataset 

 

 

4.2.  Percentage performance improvement rate (PIR%) 

More so, the percentage performance improvement rate (PIR%) evaluates the efficiency of the MFO-

ELM on ELM and compared it with PSO-ELM and CSO-ELM algorithms. The higher the PIR% the better the 

improvement on the ELM algorithm. PIR% is expressed in (6): 

 

𝑃𝐼𝑅% =  
𝐴𝑠−𝐵𝑠 

𝐵𝑠
∗ 100 (6) 

 

where 𝐴𝑠 and 𝐵𝑠 are the scores of two comparative algorithms, 𝐴𝑠 is the proposed algorithm while 𝐵𝑠 is the 

benchmark algorithm.  

Table 1 shows the PIR% of classification accuracy of the MFO-ELM scheme and the other two 

algorithms (PSO-ELM and CSO-ELM) on ELM for the five selected datasets. On the Blood dataset, the PIR% 

gained by MFO-ELM over ELM is 1.0014, PSO-ELM is 0.4381, while CSO-ELM scaled negatively with -

0.2754. This shows that MFO better enhanced the performance of ELM than the other two meta-heuristic 

algorithms. For simulation on the Breast cancer dataset, the PIR% of MFO-ELM on ELM is 0.4914, while 

PSO-ELM and CSO-ELM had negative scores of -0.3890 and 0.4197 respectively. Therefore, MFO-ELM has 

a superior improvement rate on ELM and the other meta-heuristic algorithms did not. 

 

 

Table 1. Summary of PIR% of each meta-heuristic algorithm on ELM 
 ELM PSO-ELM CSO-ELM MFO-ELM 

 Accuracy Accuracy PIR% Accuracy PIR% Accuracy PIR% 

Blood 79.89 80.24 0.4381 76.67 -0.2754 80.69 1.0014 

Breast 97.68 97.30 -0.3890 97.27 -0.4197 98.16 0.4914 

Diabetes 77.87 76.48 -1.7850 77.15 -0.9246 78.52 0.8647 

Liver 71.92 70.03 -2.6279 73.22 1.8076 76.29 6.0762 

Phoneme 82.42 83.49 1.2982 83.46 1.2618 82.95 0.6431 

 

 

Similarly, on the Diabetes dataset, the PIR% of MFO-ELM on ELM is 0.8647, while for PSO-ELM, 

CSO-ELM the rates are negative with -1.7805 and -0.9246 respectively. MFO-ELM proves its superiority over 

all algorithms. Also, CSO-ELM showed a better improvement rate than PSO-ELM with respective scores of 

1.8076 and -2.6279 respectively. However, MFO-ELM has a substantial higher improvement rate of 6.0762. 

Contrary to the results of simulations on the previous datasets, the improvement rate of MFO-ELM on the 

Phoneme dataset is less than PSO-ELM and CSO-ELM. While MFO-ELM has an improvement rate of 0.6431, 

PSO-ELM and CSO-ELM have improvement rates of 1.2982 and 1.2618 respectively. PSO-ELM shows a 

higher improvement rate than any other algorithm. This follows the theorem of “No free lunch for all” [32]. 
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The accuracy and PIR% justify that the enhanced MFO-ELM improves the accuracy of ELM classification 

than the other meta-heuristic optimization algorithms. This is because MFO has a better exploration and 

exploitation process of the search space than the other two meta-heuristic algorithms, which eventually led to 

the selection of optimal parameters for ELM. 

 

4.3.  Test of significant improvement of MFO-ELM on ELM classification 

We measured the significant improvement of the MFO-ELM algorithm on the ELM algorithm with 

the Wilcoxon signed ranked test [31], [33]. Table 2 presents the analysis of the test. Mean is the average 

classification accuracies of the two comparison algorithms, std dev. is the standard deviation, min and max are 

the respective minimum and maximum accuracies. The Wilcoxon signed rank test column shows rank 

(negative (Neg.) or positive (Pos.)), the number of samples N, mean rank M and p-value is the 2-tail significant 

values. Rank shows the rankings of the algorithms based on the key below the table. The positive rank is the 

total number of accuracies of MFO-ELM that are better than the ELM’s in the simulations, while the negative 

rank is that of ELM that is better than MFO-ELM’s accuracies, and Ties is the number of equal accuracies of 

the algorithms. The better result of the two comparisons for statistical and Wilcoxon rank test measures are 

bold in the table. 

For the blood dataset, the average accuracies of MFO-ELM ranked higher than the ELM algorithm in 

all the statistical and Wilcoxon rank test measures. We obtained similar results for Breast and Phoneme dataset 

simulations. Also, the p-values of the simulations of these three datasets are less than 0.05 which shows a 

significant improvement of MFO-ELM on the standard ELM. The statistical measures for MFO-ELM are higher 

than the ELM algorithm on the Diabetes dataset’s simulations. However, the Wilcoxon signed rank shows that 

the improvement measure is not significant. Similar to Diabetes simulations, the results for the Liver dataset for 

ELM have better standard deviations than MFO-ELM in the statistics columns, The Wilcoxon signed rank test 

also favours ELM more positively than MFO-ELM, and the p-Value shows no significant improvement. 

The overall evaluation of the comparison shows that MFO improves the ELM performance. 

Statistically, the mean accuracies are improved on all the simulations on the five datasets. That is the accuracies 

of MFO-ELM is better than ELM in all. Also, the standard deviations of statistics of MFO-ELM are less than 

ELM in four (4) out of the five (5) datasets, which means the algorithm is more stable in 80% of the whole 

simulations. More so, with the Wilcoxon Signed rank test, MFO-ELM ranked higher than ELM in three (3), 

and equal in one, but lost out in only one. This shows a 70% improvement ranking. The p-values also prove a 

significant improvement in 60% of the simulations. Therefore, optimizing the input weights and biases with 

MFO significantly improved the stability and accuracy of the ELM algorithm. 
 

 

Table 2. Wilcoxon signed rank test for MFO-ELM and ELM classification accuracy 

Dataset Algorithm 

Statistics 
Wilcoxon signed rank test: 

MFO-ELM/ELM 

Mean Std Dev Min. Max Rank N M p-

Value 

Blood ELM 

MFO-ELM 

78.810 

79.940 

0.007 

0.003 

77.380 

79.630 

79.890 

80.690 

Neg. 

Pos. 

Ties 

0 

10 

0 

0.00 

5.50 

0.005 

Breast ELM 

MFO-ELM 

96.860 

97.560 

0.013 

0.003 

93.150 

97.210 

97.650 

98.160 

Neg. 

Pos. 

Ties 

2 

8 

0 

2.50 

6.25 

0.022 

Diabetes ELM 

MFO-ELM 

75.880 

76.000 

0.015 

0.014 

72.170 

74.340 

77.870 

78.520 

Neg. 

Pos. 

Ties 

5 

5 

0 

5.80 

5.20 

0.878 

Liver ELM 

MFO-ELM 

69.580 

70.030 

0.026 

0.043 

63.010 

65.420 

71.920 

76.290 

Neg. 

Pos. 

Ties 

6 

4 

0 

3.83 

8.00 

0.646 

Phoneme ELM 

MFO-ELM 

78.810 

82.090 

0.026 

0.014 

74.100 

78.710 

82.420 

82.950 

Neg. 

Pos. 

Ties 

0 

10 

0 

0.00 

5.50 

0.005 

Note: The bold values indicate the best results 

Neg. Ranks: MFO-ELM < ELM 

Pos. Ranks: MFO-ELM > ELM 

Ties: MFO-ELM = ELM 

 

 

5. CONCLUSION 

This study proposed an enhanced MFO-ELM algorithm. The proposed algorithm used MFO to set the 

initial value of input weights and hidden neuron biases for the ELM classifier. It was applied to the 

classification of some medical datasets. The overall performance shows that the proposed MFO-ELM 
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algorithm improved the basic ELM algorithm in all five datasets. That is, MFO-ELM has improved the 

performance of ELM 100% in the simulations. This proves that the initial setting of the input weights and 

biases of ELM by the MFO optimization scheme enhances the performance of the ELM classifier. More so, 

when comparing MFO-ELM with other ELM enhanced optimization algorithms, it is only in the Phoneme 

dataset that PSO-ELM and CSO-ELM performed better than the proposed algorithm. It is superior to the other 

meta-heuristic algorithms in 80% of the simulations. Further study will be focused on the hybridization of two 

meta-heuristic algorithms to improve the parameter setting of ELM. 
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