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Abstract 
The power of each sensor node in wireless sensor networks for signal detection applications is 

scarce and limited. Thus, the allocation of power resource of a node should make the detection 
performance of the whole network maximum, which is complex due to the detection probability of the 
whole system cannot be expressed explicitly. The ant colony optimization algorithm is good at solving 
multidimensional optimization problem. Consequently, continuous ant colony system (CACS) and ACOR 
proposed in literature are adopted to optimize the allocation of node’s power between sensing and 
communications. Simulation show that they can lead to a good power allocation. Meanwhile, the identical 
power allocation scheme (IPAS) that all sensor nodes have identical power assignment can achieve nearly 
the same detection performance as that achieved by the best scheme searched by CACS and ACOR. As a 
result, particularly for a large number of identical sensors, IPAS can be employed to achieve nearly the 
best detection performance. 
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1. Introduction 

Distributed detection (DD) systems with a set of geographically separated sensors have 
been investigated since 1980s. In the detection problem, one core objective of the system 
design is to distinguish between two hypotheses, such as the absence (Hypothesis 0) or 
presence (Hypothesis 1) of a certain target. Such detection ability is crucial for various 
applications. As an example, in a battlefield surveillance, the presence or absence of a target is 
usually determined before its attributes, such as its position or velocity, are estimated. With the 
development of wireless sensor networks (WSNs), many authors have analysed the 
performance of these DD systems in which transmissions from sensors to the fusion centre (FC) 
are subject to channel fading and noise [1-5], which may render the received decisions of 
sensors at the fusion centre unreliable. One prominent feature of a canonical WSN, however, is 
its limited node energy, which poses many challenges to network design and management.  

The problem of optimizing detection performance with such imperfect communication 
brings a new challenge to distributed detection. Zhang et al. [6] considered the performance 
optimization with individual and total transmitter power constraints on the sensors. The power 
allocation scheme obtained strikes a trade-off between the communication channel quality and 
the local decision quality. Considering the scenario of using distributed radar-like sensors to 
detect the presence of an object through active sensing, Yang et al. [7] formulated the problem 
of energy-efficient routing for signal detection under the Neyman-Pearson criterion. Moreover, 
they proposed a distributed and energy-efficient framework that is scalable with respect to the 
network size, and is able to reduce greatly the dependence on the central fusion centre. 
Masazade et al. [8] evaluated the sensor thresholds of distributed signal detection system by 
formulating and solving a multiobjective optimization problem. Unfortunately, although the 
literature on energy-efficient communication or signal detection in WSNs is abundant, there is 
much less research on the power allocation between signal detection and communication, let 
alone the consideration of their joint optimization.  

Obviously, the energy consumption of the whole system can be lowered by jointly 
optimizing the signal detection of sensor node and the signaling between sensor node and the 
FC. In another word, for a given node’s power budget, we can find a power allocation scheme 
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that strikes a trade-off between the communication channel quality and the detection quality of 
local sensors with the objective of the optimum detection performance at the FC. In general, 
there are many algorithms to solve the power allocation problem.  However, the difficulty is that 
the probability of detection of a DD system cannot be expressed explicitly, especially with the 
problem in this paper.  

In the 90s of 20th century， Italian scholar M．Dorigo put forward the ant colony 
optimization algorithm (ACO) [9]. Thereafter, ACO algorithms have been studied and utilized 
extensively. Artificial ants move randomly instead of deterministically. Therefore, it allows them 
to search wide variety of possible solutions of a problem independently and in parallel. In the 
same way, ACO based solutions are good at producing a good suboptimal solution in a very 
short period. These characteristics have inspired us to design a joint power assignment 
algorithm for distributed detection, with the objective of maximizing the overall probability of 
detection at the FC. 

The remainder of this paper are organized as follows. In Section 2, the problem of 
distributed detection in parallel fusion networks with noisy channel, sensing model, link model, 
and fusion rule are formulated, respectively. The power allocation problem and its optimization 
by ACO solutions are given in Section 3 and Section 4, respectively. The numerical results are 
given in Section 5. Finally, Section 6 concludes the paper. 
 
 
2. Problem Formulation 
2.1. Distributed detection 

Consider a scenario, where N sensors are scattered over an area to detect the 
presence (the signal plus noise Hypothesis 1H ) or absence (the noise-only Hypothesis 0H ) of an 

object, for example people, vehicles, or military targets, using radar-like sensors that emanate 
specific electromagnetic signals into the region of interest. For the active sensing application, 
the monitored space is typically divided into many range resolution cells. Each range cell could 
be probed sequentially in turn to determine the presence of a target by using radar pulses that 
are possibly launched by directional antennas. Assume the position of k-th sensor node is
( , )k kx y . Each sensor gathers information pertaining to a target in the position of ( , )t tx y  and 

makes a decision (for deciding the presence of the target and otherwise) and sends its binary 
decision to a fusion centre through an unreliable communication channel. In a word, the parallel 
fusion model is adopted. The position of fusion centre is assumed to be ( , )fc fcx y .  

 
2.2. Sensing Model 

According to the free-space radar equation, the power of the echoes from the target 
with RCS   at range kR  to the radar can be expressed as: 

 

  32 2 44r t kP PG R               (1) 

 
where tP  is the radiated transmitted power, G  is the gain of radar antenna,   is the 

wavelength, and kR  is the range between the k-th radar and the target. For radar with noise 

figure F  and bandwidth B , the output signal-to-noise ratio ( )oSNR  of its receiver is: 

 

    32 2 44t e ko
SNR PG kT BFLR          (2) 

 
Where k is Boltzmann’s constant, eT  is the effective noise temperature, L  is the system loss,   

is the pulse duration. The minimum detectable signal minS  and the minimum output signal-to-

noise ratio ( )
minoSNR  of a radar receiver is related by: 

 

 
min

min e o
S kT BF SNR               (3) 
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The signal received by the k-th sensor is assumed to be: 
 

1
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                 (4) 

 
Assume that the k-th local sensor makes a binary decision { 1, 1}ku    , with false alarm 

rate 0[ 1 | ]lfk kP P u H  and detection probability 1[ 1 | ]ldk kP P u H , respectively. Therefore, the 

decision rule of the k-th sensor is: 
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Where k  is decision threshold determined by the false alarm rate lfkP . When kn  is Gaussian 

white noise with zero mean and variance 2
k , the return from the Swerling 0 target is constant. In 

this case, the ldkP and lfkP  can be calculated as following, 
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2.3. Link Model 

Let com
tkP denote the radiated transmitted power of communication signal at the k-th 

sensor. Considering the path loss incurred during transmission, the power of signal received by 
the FC and from the k-th sensor is 

 

( )kfc com
rk tk k kP P d                      (7) 

 
Where k is a constant determined by the antenna characteristics, k is path loss exponent, and 

kd  is the range from the k-th sensor to the FC. Each local decision ku is transmitted through a 

fading Rayleigh channel and the output of the channel for the k-th sensor is given by Equation 
(8). 
 

fc
k rk k k kr P h u w                       (8) 

 
Where kw  is zero mean Gaussian noise with variance 2

kw , and kh is the gain of a real valued 

Rayleigh fading channel with the PDF given by
2

( ) 2 , 0kh
k k kf h h e h  . 

 
2.4. Fusion Rule 

Based on the knowledge of channel statistics and local detection performance indexes, 
the LRT-CS (likelihood ratio test based on channel statistics) [1] can be reformulated as: 

 

1 2 1

1 2

2

0

2

2 2

2 1 erf exp 1
2( , , , | )

log log
( , , , | )

2 2

2 erf exp 1
2

1
22

fc fc fc
rk rk rk

ldk k k k k k k

fc fc fc
rk rk rk

k k k k k

N
tot

N

lf kk

P P P
P a r r a a r

P P P
a

f r r r H

f r r r
r r a a r

H
P







   

    
           
    
        

 

 


  

 




 1

N

k 








 


   (9) 

 

where  2 21 / 2
k k

fc
r wkk w Pa    and   2

0

2
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
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When using the fusion rule above, the global probability of false alarm ftotP  and the 

global probability of detection dtotP  are determined by Equation (10) and (11), respectively.  

 

 0P Hftot totP T                      (10) 

 

 1P Hdtot totP T                   (11) 

 
In the equations above, T is the detection threshold at the FC. 
 
 

3. Optimization of Node’s Power Allocation Schemes 
3.1. Power Consumption of Sensor Node 

In general, the power consumption of sensor node can be divided into two kinds, range-
related power consumption and range-free power consumption. Here, consider two kinds of 
range-related power consumption. One is consumed by target sensing, denoted by sensing

kP ，and 

is related to the drain efficiency of power amplifier and antenna gains. Assuming the total 
energy efficiency is sensing

k ， the consumed power sensing
ktotP and the radiated signal power sensing

kP  

has the following relation. 
 

  1sensing sensing sensing
ktot k kP P 


         (12) 

 
For radar sensor, the larger the sensing

kP is ， the stronger the target’s returns are and 

correspondingly the higher local sensor’s detection capability. Therefore, sensor’s target 
detection performance can be adjusted by adjusting sensing

kP . 

Another kind of range-related power consumption is that consumed by the 
communication between sensor node and the FC. Assuming that the power of the signal 
radiated into wireless channel by sensor k  is denoted by com

kP and total efficiency of power 

amplifier and antenna is denoted by com
k ， then the power used for radiating signal com

ktotP  can be 

denoted by: 
 

  1com com com
ktot k kP P 


         (13) 

 
Except for the range-related power consumption, the other power consumption, for 

example from low noise amplifier, A/D converter, D/A converter and so on, is range-free. 
Furthermore, it can be considered fixed or cannot be controlled freely. Besides, for maintaining 
the normal function of sensor network, sensor node will consume some energy, which may 
fluctuate. Therefore, the power allocation of sensor node, considered in this paper, is a problem 
about how to share the adjustable power budget by the target sensing power sensing

ktotP and 

signaling power com
ktotP . Assume that the total power budget is sensing+com

kP   and then: 

 
sensing sensing+com

ktot k
com

ktotP P P                                              (14) 

 
For optimum system performance, the match between the communication capability 

and the detection performance index of local sensor node is needed. That is to say, the target 
sensing power sensing

koptP and the signaling power com
koptP  maximize the detection capability of the 

whole system. At this time， there is: 
 

sensing com sensing+com
ktot ktot kP P P                                                  (15) 
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3.2. Objective Function 
For given admissible maximum false alarm rate ， the objective of system optimization 

is equivalent to finding the scheme of determining sensing power sensing
ktotP and communication 

power sensing+comcom sensing
k ktt t otk o P PP   ，so as to maximize the global probability of detection dtotP , 

expressed as the function of the decision threshold k  of k-th sensor, sensing power sensing
ktotP , 

communication power com
ktotP , and the decision threshold T  at the FC, as shown in: 

  

   sensing sensing sensing
1 1 1 1Pr H , , , , , , , ,com com com

dtot tot D tot tot k ktot ktot Ntot ktotP T P P P P P T P P   �   . (16) 

 
The optimiztion problem can be expressed as: 
 

sensing sensing sensing
1 , , , ,

sensing sensing+com sensing. . 0, 0, 0, ,

max
Ntottot ktot

dtot
P P P

com com
k ktot ktot ftot ktot k ktot

P

s t P P P P P P      

      (17) 

 
Where ftotP is the global probability of false alarm. 

 
 
4. Optimization Method 
4.1. The Identical Power Allocation Scheme (IPAS)  

In general, performance indexes (probabilities of false alarm and detection) of local 
sensor are not equal for the system with maximum detection performance. However, when the 
number of sensors approaches infinity, the system with identical local detectors will have 
asymptotic optimum performance [10]. Therefore, we assume that every sensor node has 
identical sensing and communication performance and their power supplies have identical 
power. Furthermore, assume the power budget that can be distributed between sensing and 
communication is sensing+com

kP . 

A simple method can be used to find a good allocation method. According to the total 
power budget sensing+com

kP ，determine a sufficient small power increase P with the relation of
sensing+com

kP L P  . Let sensing power sensing
ktotP  be P , 2 P , , L P  successively and let 

communication power sensing+com sensing
k

com
ktot ktotP PP  . Next, compute dtotP according to Equation (16). 

Record all the dtotP s obtained and find the largest one among them. The sensing power sensing
ktotP

with the largest dtotP is the best one. In this method, all the nodes have the identical power 

allocation scheme. So, the method can be denoted by IPAS in abbreviation. 
 

4.2. Ant Colony Optimization 
Although ACO was proposed for combinatorial problems, researchers started to adapt it 

to continuous optimization problems. The simplest approach for applying ACO to continuous 
problems would be to discretize the real-valued domain of the variables. This approach has 
been successfully followed when applying ACO to the protein–ligand docking problem [11]. 
Recently, Socha and Dorigo [12] has proposed an ACO algorithms, named as ACOR , that 
handle continuous parameters natively, where the probability density functions that are implicitly 
built by the pheromone model are explicitly represented by Gaussian kernel functions. Their 
approach has also been extended to mixed-variable problems [13].  

Ants generally start out moving at random. However, when they encounter a previously 
laid trail, they can decide to follow it, thus reinforcing the trail with their own pheromone 
substance. This collective behaviour is a form of autocatalytic process. In this case, the more 
ants follow a trail; the more attractive that trail becomes to be followed by future ants. This 
process is thus expressed as a positive feedback loop, where the probability with which an ant 
select a path increases with the number of ants that previously selected the same path [2]. 
Hence, artificial ants probabilistically develop a solution iteratively by considering pheromone 
trails or/and local heuristic information as well.  
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Here, we adopt a  model  , ,Q S f  of continuous optimization problem, where S is a 

search space defined over a finite set of continuous decision variables; is the set of 
constraints among the variables; :f S  � is an objective function to be minimized. According 

to the statement above,  
 




sensing com sensing sensing
1 1 1 2 2

sens ng

2

i

, , , , , , , ,

, , , , 1,2, ,

, com com
tot tot tot tot Ntot Ntot

com
ktot kto

N

kt

TP P P P P P

P T NP k

 



 

    

S s 

� � � � 
     (18) 

 

   sensing sensing sensing
1 1 1, , , , , , , ,com com com

dtot D tot tot k ktot ktot Ntot ktotf P P P P P P T P P  s                (19) 

 
The CACS algorithm was first proposed in [14]. It uses a continuous pheromone model 

consisting of a Gaussian pdf centred on the best solution found so far. The best solution at 
present is modified according to a weighted average of the distance between each individual in 
the population and the best solution found so far, as shown in Equation (20). 

 

 
1

2

1 1 min

1 1ant antN N
j j

j k opt
k k kk opt

s s
f ff f





 

 
  
   
                              (20) 

 
Where antN is the number of ants defined in the algorithm, 2

j is the variance of the j-th 

dimension, opts is the best solution at present and the superscript j denote the j-th dimension 

variable of the solution s . 
The main advantages of the CACS are that it requires the setting of just one parameter 

(the number of ants in the population) and presents a very simple mechanism to generate the 
ants of the next generation. On the other hand, a clear drawback is that it only investigates one 
promising region of the problem at a time, which means that the algorithm tends to concentrate 
the Gaussian pdf around local optima very quickly, thus leading to a premature convergence. 

The ACOR  algorithm [12] consists of an archive that holds the k best solutions found so 
far. In conceptual terms, each solution corresponds to the centre of a different Gaussian pdf. 
Moreover, this archive is used to calculate the variance of each distribution, so that the whole 
process can be described as follows. Initially, the whole archive is stochastically created (using 
a uniform distribution), and the generated individuals are sorted in descending order of fitness. 
Then, the main iteration starts by first assigning a solution of the archive to each ant of the 
problem, with probability proportional to the weight k of the k-th archive solution ks . 

 
2

2 2

1 ( 1)
exp

22
k

antant

k

q NqN



 

  
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                                            (21) 

 
Where antN  is the number of ants, k is the rank of the solution on the archive, and q is a variable 

called locality of the search process and used to balance exploitation and exploration. The 
mean of each Gaussian is then defined as being the correspondent archive solution, and its 
variance is given by: 
  

dim
1

, 1, ,
1

ant
i iN
k li

l
k ant

s s
i N

N
 




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                              (22) 

 
Where controls the speed of convergence to determine how fast the solutions of the archive 

will converge, s  is a solution belonging to the archive, and dimN is the dimension of the search 

space. Finally, this Gaussian distribution with mean and variance defined as described above is 
used to generate a new solution to the problem. After each ant has built a candidate solution, 
these candidate solutions are inserted into the archive and are sorted again. The algorithm then 
iteratively removes the worst solutions until the archive returns to its original size.  
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5. Numerical Simulation 
5.1. Simulation Conditions 

In our simulations, we use the WSN configuration described in Section 2. Consider a 
WSN with eight radar-like sensor nodes and a FC. All units of coordinate are meters. The FC is 
with coordinate (0,300). Assume that the Y-axis coordinates of all the sensors are zero and their 
X-axis coordinates are given in Table 1. Also, assume the target to be detected is with 
coordinate (20,-150). 

 
 

Table 1. X-axis Coordinates of Sensor Nodes 
Sensor’s No. 1 2 3 4 5 6 7 8 

X-axis coordinate -180 -120 -60 0 60 100 160 220 

 
 
Assume the false alarm rate  of the FC is 0.001. Each sensor has operating frequency 

9375MHz, pulsewidth 10ns, and sensing
k =0.18. Assume a noise figure F = 8 dB, effective noise 

temperature 0 290T K , antenna gain 28dBG  and total receiver loss L  = 4 dB. Also, assume 

that, for targets following the Swerling II fluctuations with average RCS of 5 m2, a probability of 
detection 0.5 and radar returns’ power of -93dBm are required at maximum range of 150 meters 
with false alarm rate 0.01 or better. Assume that communication system operates at 2.4GHz 
and adopts the following path loss model given by Shellhammer [15]. 

 

10

10

40.2 20 log ( ) 8

( )
58.5 33log 8

8

d d m

pl d d
d m

 
       

                   (23) 

 
Assume that the signal-to-noise loss of the practical communication receiver compared 

with the ideal one is 5dB. Also, assume that, for binary symmetric Rayleigh fading channel, a bit 
error rate 0.001 is required at receiver sensitivity of -95dBm at maximum range of 102 meters 
with transmitted power 5 dBm. Let the drain efficiency of power amplifier of communication 
module is 0.17. 

Monte Carlo simulation is used to find the thresholds k ( 1, 2, ,k N  ) andT , as shown 

in the following. For positive integer n, generate I.I.D. samples 1x , 2x ,…, nx , each with the same 

distribution as the random variable X . Sort 1x , 2x ,…, nx  in ascending order and denote them by 

(1) (2) ( )nx x x    . Let ( )kT x  and then the corresponding mean 1m   and standard deviation 

1  of the false alarm rate of the detector are given in Equation (24) and Equation (25), 

respectively. 
 

  1 ( )

1
E Pr

1k

n k
m X x

n

 
  


               (24) 

 

    1 ( )

1 ( 1)
std Pr

1 2k

k n k
X x

n n
  

  
 

          (25) 

 
In the simulation of this paper, the parameters to estimate detection threshold are 

75 10 1n    and 75 10 50000k    . Therefore, 1 0.001m  and 42.0 10   . The probability of 

detection was estimated by 53 10 experiments. 
 

5.2 Simulation results 
When sensing+com

kP  =60mW and all the sensors have identical sensing power, the plot of 

probability of detection at FC versus sensing power are given in Figure 1.  Obviously 
sensing

ktot 41.9P   mW will maximize the dtotP . The maximum value obtained is 0.878. A bad power 
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allocation, for example sensing
ktot 5P  mW and com

ktotP =55 mW, will make the system’s detection 

performance less than 0.1. Therefore, a reasonable allocation of node’s power is necessary. 
 
 

  

Figure 1. Probability of Detection versus 
Sensing Power under Power Budget of 60mW 

Figure 2. Local Optimum Probability Obtained 
during Iterations 

 
 

Table 2. Power Allocation Scheme Obtained by ACOR 

 k 
No. of iteration 

1 2 3 4 5 6 7 8 9 10 11 12 

sensing
ktotP  

(mw) 

1 48.71 13.72 8.64 32.41 33.69 26.55 35.70 42.98 41.95 41.95 47.28 36.70 
2 53.22 37.40 43.22 56.07 44.51 46.65 42.05 45.00 44.38 44.38 45.30 45.61 
3 38.20 44.22 37.73 41.77 43.56 41.52 43.92 43.61 46.27 46.27 43.86 44.91 
4 28.94 39.51 33.73 35.25 34.62 36.71 37.93 37.42 37.73 37.73 37.90 37.65 
5 35.46 44.89 36.13 39.95 39.45 40.92 42.11 41.01 40.73 40.73 40.34 40.51 
6 46.21 49. 44.81 43.26 40.85 43.25 43.15 41.41 43.30 43.30 44.04 42.54 
7 31.75 37.66 40.48 39.97 44.28 38.77 42.96 42.30 44.41 44.41 45.17 44.94 
8 55.31 19.41 47.35 18.89 20.56 44.19 43.98 49.46 34.52 34.52 38.66 46.71 

Pdtot 0.850 0.866 0.869 0.873 0.876 0.880 0.882 0.883 0.886 0.886 0.887 0.888 

 
 

When using the ant colony optimization algorithm, the number of ants is assumed 100. 
The times of iterations are 20. The local best probability of detection of each iteration is given in 
Figure 2. The best sensing power of each sensor searched by ACOR at each iteration are given 
in Table 2. The results obtained by CACS are given in Table 3, where k stands for the No. of 
local sensor and sensing

ktotP  is the sensing power of the k-th sensor. 

 
 

Table 3. Power Allocation Scheme Obtained by CACS 

 k 
No. of iteration 

1 2 3 4 5 6 7 8 9 10 11 12 

sensing
ktotP  

(mw) 

1 27.24 32.08 33.89 36.69 38.75 40.07 40.07 40.47 40.47 40.47 40.47 40.07 
2 34.54 35.67 39.25 43.89 48.17 48.92 48.92 50.24 50.24 50.24 50.24 48.92 
3 35.04 42.89 44.54 44.92 45.49 45.61 45.61 46.24 46.24 46.24 46.24 45.61 
4 36.62 40.09 41.30 42.70 42.91 43.16 43.16 43.42 43.42 43.42 43.42 43.16 
5 31.31 32.79 34.33 34.48 35.38 36.11 36.11 36.30 36.30 36.30 36.30 36.11 
6 28.42 35.32 41.63 44.32 44.79 44.97 44.97 45.66 45.66 45.66 45.66 44.97 
7 28.75 31.22 34.19 38.06 42.73 47.49 47.49 50.91 50.91 50.91 50.91 47.49 
8 32.42 34.01 38.24 38.64 41.92 42.26 42.26 44.13 44.13 44.13 44.13 42.26 

Pdtot 0.850 0.821 0.857 0.872 0.878 0.880 0.880 0.880 0.881 0.881 0.881 0.881 

 
 
From these results above, we can find that the CACS converges rapidly to the best 

solution. Moreover, the best solutions found by ACOR outperform that by CACS slightly and 
there is a detection probability difference of 0.008. Compared with the best solution found by 
IPAS, both ACOR and CACS can obtain better solutions. However, the detection probability 
difference between them is small and is not more than 0.01. Considering the simplicity and 
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robustness of the IPAS, the IPAS is a feasible suboptimum optimization scheme for the WSN 
with identical nodes. 

 
 

6. Conclusion 
Considering the scenario of using distributed radar-like sensors to detect the presence 

of a target, we formulate the problem of power allocation between sensing and communication 
for signal detection under the Neyman-Pearson criterion. The power allocation scheme has 
been optimized by means of IPAS, CACS and ACOR, respectively. Results show that they can 
lead to a good power allocation. Among them, the ACOR can obtain the best solution and the 
CACS has the second best performance. Although the IPAS is the worst among them, it 
achieves nearly the same detection performance as compared with that achieved by CACS and 
ACOR. Therefore, for the WSN with identical nodes, an identical power allocation scheme for all 
sensors can be employed to achieve nearly the best power allocation scheme. 
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