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 Forecasting is one of the main topics in data mining or machine learning in which 
forecasting, a group of data used, has a label class or target. Thus, many 
algorithms for solving forecasting problems are categorized as supervised 

learning with the aim of conducting training. In this case, the things that were 
supervised were the label or target data playing a role as a 'supervisor' who 
supervise the training process in achieving a certain level of accuracy or 
precision. Time series is a method that is generally used to forecast based on time 
and can forecast words in social media. In this study had conducted the word 
forecasting on twitter with 1734 tweets which were interpreted as weighted 
documents using the TF-IDF algorithm with a frequency that often comes out in 
tweets so the TF-IDF value is getting smaller and vice versa. After getting the 
word weight value of the tweets, a time series forecast was performed with the 

test data of 1734 tweets that the results referred to 1203 categories of Slack words 
and 531 verb tweets as training data resulting in good accuracy. The division of 
word forecasting was classified into two groups i.e. inactive users and active 
users. The results obtained were processed with a MAPE calculation process of 
50% for inactive users and 0.1980198% for active users. 
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1. INTRODUCTION  

TF-IDF is one that only multiplies term frequency and inverse document frequency that TF is the 

number of appearances of a term in a document and IDF reduces the dominant terms that often appear in 

various documents or files, by calculating the inverse frequency of them that contain a word and can exclude 

a collection of words [1]-[3]. TF-IDF is commonly used in the classification process in existing documents 

and was studied by several classification methods [4]-[6]. 

Classification, prediction and forecasting are included in techniques that utilize data to use in the 
hope that finding a new model in the computing of a particular interest [7]-[9]. Both classification and 

forecasting processes have an accurate level of techniques which the difference from each model produced 

and a good level of accuracy occurs if it approaches 100%, meaning that the resulting model shows the right 

results in the development of the model which consists of training and testing data [10]. 

In contrast, forecasting using TF-IDF for developed a framework for forecasting text using the KNN and 

TF-IDF methods and the test results showed the advantages and disadvantages of the algorithm [11], providing 

guidance for further development on the same framework. In addition [12], classification by using naive bayes for 

classification of text in machine learning that based on the values of conditional probability and had compared 

https://creativecommons.org/licenses/by-sa/4.0/
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algorithm methode of the multinomial, naive bayes, bernoulli, and gaussian to the SVM algorithm and the results 

state for representation of statistical text, TF, TF-IDF and it used character level 3 (3-Gram). 

In addition to the TF-IDF text classified [13], measured the performance of the DT and SVM in 

classifying emotions from Malay folk tales with 100 documents which were taken from children's short 

stories collected and applied as data set from text-based emotion recognition experiments and the TF-IDF 

process was extracted from text documents and classified using DT and SVM, classifying online news by 

applying TF-IDF and cosine similarity, requires preprocessing, namely tokenizing, stopword and stemming 

to reduce terms so as to speed up the process of calculating term weighting using TF-IDF and speeding up 

the process of cosine similarity [5], [14]. The aim is to facilitate human error and reduce the occurrence of 

categorization errors. Classification is able to classify news with an accuracy rate of 91.25%. However, with 
the development of online media, it does not rule out the possibility of classifying online media that is often 

used, namely social media [15]. The use of social media in the learning process [16], especially in online 

discussion forums [17], is increasing [18], [19]. However, the widening of the discussion is beyond the scope 

of the study which should even lead to the habitual level of using social media [20]. Therefore, it is necessary 

to have a classification of the words that appear on social media. From several previous studies regarding TF-

IDF, it was not found in forecasting posted words in social media. Thus, the need of word forecasting on 

social media is to get the frequency value in the posts on social media. The method used in word forecasting 

on social media is the time series where collaborations and improved methods are used to get to what extent 

TF-IDF works in forecasting words using time series. 

 

 

2. MATERIAL AND METHOD 

2.1.   TF-IDF 

TF-IDF is an algorithmic method useful to compute the weight of each commonly used word [11]. 

This method is also known to be efficient, easy and has accurate results [21]. The TF and IDF values for each 

token (word) in each document in the corpus would be computed by applying this method [22]. In simple 

terms, the TF-IDF method is used to find out how often a word appears in a document. 

In this this, we conducted the TF-IDF algorithm method which was then be combined into NBC 

[23]. Consequently, the final result of this study was to create a word classification-based program on social 

media data obtained from twitter [24], [25] then the performance of the document was made based on the 

tweets that appear. The first step was to determine how often the word appears in a document. Thus, the more 

frequency of occurrence of the word, the greater its value will be. 

Related to TF, there would be some of patterns that can be used [26]: 
a) Binary TF. 

b) Pure TF. 

c) TF logarithmic, have high frequency. 
 

𝑇𝐹 =  {
1 + 𝑙𝑜𝑔10(𝑓𝑡,𝑑), 𝑓𝑡,𝑑   ˃ 0

0, 𝑓𝑡,𝑑 = 0
 (1) 

 

In where, the ft,d value, d is the frequency term (t) in document (d). Therefore, if a word or term is 

contained in a document 5 times, the weight = 1 + log (5) = 1,699 is obtained. However, if the term is not 

included in the document, the weight is zero [27]. 

Then, the next or the second one is the IDF which is a calculation of how widely distributed terms 

are in the collection of documents concerned. In contrast to TF, the more frequent words appear, the greater 

the value. In IDF, the less frequent words appear in the document, the greater the value. To determine the 

amount of the IDF value, we use the formula [28]: 
 

𝐼𝐷𝐹𝑗 = log (
𝑁

𝑑𝑓𝑗
) (2) 

 

Where N is the number of whole documents in the collections while dfj is that of documents 

containing term (tj). The type of TF formula commonly used for calculations is pure TF. Thus, the general 

formula for Term Weighting TF-IDF is a combination of the raw TF calculation formula with the IDF 

formula by multiplying the TF value by the IDF value: 
 

𝑤𝑖𝑗 = 𝑡𝑓𝑖𝑗  𝑥 𝑖𝑑𝑓𝑗 (3) 

 

𝑤𝑖𝑗 = 𝑡𝑓𝑖𝑗  𝑥 log (
𝑁

𝑑𝑓𝑗
) (4) 
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Where Wij is the weight of the term (tj) to the documents (di). While tfij is the number of occurrences 

of term (tj) in the documents (di). N is the number of all documents in the database and dfj is the number of 

documents that contain term (tj) (at least one word is term (tj)). Regardless of the value of tfij, if N = dfj, then 

the result would be 0 (zero), because the result is log 1, for the IDF calculation. For this reason, a value of 1 

can be added on the IDF side, so that the weight calculation becomes as follows: 

 

𝑤𝑖𝑗 = 𝑡𝑓𝑖𝑗  𝑥 log (
𝑁

𝑑𝑓𝑗
) + 1 (5) 

 

2.2.   Times series 

There are various methodologies in time series such as ESM, SDM, VAM, SAM using variable time 

series, ARMAX models [29], [30]. The use of data in research is also carried out for analysis of forecasting 

patterns of rainfall distribution in various regions of the world [31]. Various time series methods for various 

purposes have been applied to investigate rainfall information in various literatures. 
Time series is the management of data collected and observed over a certain time span [32]. There are 

four elements in time series data such as seasonal data, cycles, trend data, and random components. Trend 

patterns are usually seen from charts that go up or down over a long period of about 10 to 20. Meanwhile, 

seasonal data usually goes up and down in the short term, for example one year. This is what distinguishes the 

cycle, the cycle also shows an up and down pattern, but over a long period of time. The last component is 

random, that is, other variables that cannot be explained by the previous three components are random data [33]. 

Time series technique is historical data that is used to predict the next data. Almost simila to 

regression, Y is historical data and X is the period or time data itself, it can be 1 for the earliest data, and 2 

for the next data and so on. The resulting model will be used to predict the next Y value. Then whether to use 

r-squared? The answer is yes, although time series in measuring accuracy does not use R-squared, because 

time series is also an equation model, R-squared should also be used to assess whether the resulting equation 

is good or not [34]. 
Trend technique is a technique commonly used in forecasting quantitative data analysis. Because 

basically in looking for patterns in trend data such as linear, quadratic, S curve or exponential, the model is 

then used to estimate the next data. The formula for forecasting with time series contained in the following 

formula. 

 

Model linear: Ypred = a + bT + e (6) 

 

Model quadratic: Ypred = a + bT2 +  cT + e (7) 

 

Model S curve: Ypred = L/(1 + exp (a + b(T) + e)) (8) 

 

Model exponential: Ypred = a + eb.T (9) 

 

2.3.   Mean absolute percentage error (MAPE) 

Mean absolute percentage error (MAPE) is a formula to calculate the accuracy with a relatively 

small error size developed by applying the Mean absolute error (MAE) formula [35]. In the case of 

calculating the difference between the estimated and actual value, MAPE is usually used more frequently 

than similar formulas such as MSE and MAD because MAPE states in percentage the result of the error in 

predicting or forecasting the actual results during the certain period and will provide information in 

percentage of high or low error. In other words, MAPE is the absolute average error during a certain period 
which is then multiplied by 100% to get the percentage result. 

Measuring the relative precision by applying MAPE is intended to determine the percentage of 

deviation of the estimation results [36]. This approach is useful when the size of the forecast variable is 

important in evaluating the accuracy of the forecast. MAPE indicates how many errors occur in estimating 

compared to the real values. The MAPE equation is as follow: 
 

𝑀𝐴𝑃𝐸 =  
∑ |

𝑦−ŷ

ŷ
|𝑛

𝑡=1

𝑛
× 100% (10) 

 

Where, 

n = the amount of data in the measurement error 
y = actual yield value 

ŷ = the estimated result value 
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2.4.   General architecture 
The general architecture of this study can clearly be seen in Figure 1. Explanation in Figure 1 are as 

follows: 

a) Dataset is obtained from twitter, and each tweets will be counted as a document on the IDF. 

b) Perform frequency calculations based on the TF-IDF method. 

c) Forecasting words whose frequency has been calculated using TF / IDF using a time series which will 

interpret the words whose frequency often appears can represent the documents that will appear in the 

future. 

d) Get results from classification using timeseries in the form of comparison of forecasting results and 

reality on word posts on social media (MAPE). 
 

 

 
 

Figure 1. General architecture 

 

 

3. RESULTS AND ANALYSIS 

From the research methodology, a general architecture study was designed using the twitter dataset 

to classify a person's tweets where the tweets were converted into documents in order to get the frequency of 

each word. In calculating the weight using TF-IDF, the word TF value was calculated first with each word’s 

weight is 1. Whereas the IDF value was formulated in (2). Where IDF (tweets) is the value of IDF of each 

word to search for, td was the number all existing documents, df the number of appearances in all documents. 

After getting TF and IDF values, to get the final weight of TF-IDF it was formulated in (1) where w (tweets) 
is the weight value of each word, TF (wordi) is the calculation result of TF. IDFi is the result of the IDF 

calculation. 

The thing that needs to be considered in seeking information from a heterogeneous collection of 

documents / tweets was weighting terms. Term could be a word, phrase or other indexed unit in a document 

which could be applied to find out the document context. Because every word possesses importance in a 

different level in the document, an indicator for each word is given, namely the term weight. To calculate the 

weight value using TF-IDF, some of the steps taken are as follows: 

Table 1 shows that the TF-IDF calculation had been achieved with the frequency that often 

appeared, namely the word wkwk which was the slack language of LOL then followed by the word happy. 

However, in the TF-IDF calculation the more words appeared, the smaller the frequency that appeared. So 

that the frequency numbers were weighted for the use of number processing. In accordance with the purpose 

of this study, this figure was done by calculating time series to forecast words on social media data obtained 
from twitter, then the performance of the document was made based on the tweets that appear. The first step 

was determining how often the word appeared in a document. Thus, the more frequency of occurrence of the 

word, the greater its value woull be. 

In conducting forecasting based on time series, there were several steps taken, namely the trainning 

stage and the tetsing stage which produced forecasting. At the trainning stage, the analysis process was 

carried out on a sample of documents in this study in the form of social media data such as tweets from 

twitter, i.e. the words that may appear in the sample document collection and determined the habbit of social 

media users who represented documents as much as possible, at the training stage there are training 

documents which were a reference for the testing process. Training documents, serves for class formation 

and as a reference for how documents will be classified, in this study the authors used data sources that had 

been classified into documents from twitter, the intended reference was document labeling based on the 
expert domain. 

Testing documents, in the research carried out, the type of document used in this study was social 

media documents, namely twitter which contained information and was obtained with unstructured content 

because there were html tags and messages which made them meaningless, while for classification accuracy, 

structured documents were needed and should be understandable. The tweets used was the original document 

listed on the @a*fr***o account. The experimental document was a document totaling 1734 tweets which in 

Dataset

Twitter

TF

IDF

Count TF-IDF

Time 

Series

Forecasting

MAPE

Result
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this case were categorized as an inactive twitter account and the @y*l**a***r**i account as active for 

analyzing the time series. The stage taken before the forecasting process was preprocessing to find meaning 

in training and testing documents and to support the forecasting process, this process must be done because 

the document test data were in the form of paragraphs and tags that eliminated the meaning of the document. 

This paper had difficulty in understanding the contents of the test document before the preprocessing process 

was carried out. Preprocessing could also affect the identification of text aimed at determining features.  

The first thing in document processing was breaking down character sets into words or tokens, often 

referred to as tokenization. Tokenization is complex for computer programs because some characters can be 
found as token delimiters. Delimiters are space, tab, and line characters, while @ () <>! ? " are often used as 

a delimiter, but depending on the environment. Then carried out the text identification process because it is 

very important to recognize the text patterns that will be forecasted and to recognize the types of text that will 

be used for training. The problem that arised during identification was the irregularity of the text pattern that 

was obtained even though it had been processed using stopwords in the previous step, this caused the writer 

to have a little confusion in identifying the text and requiring accuracy in observation. In the identification 

process, the writer needed to open the documents one by one to understand the existing patterns in the text, 

for the patterns themselves were found irregular in the placement of content.  

The process of determining the label on the training document was done manually based on the 

expert domain taken from www.twitter.com based on the predetermined category in the domain. Label 

determination was used to provide a reference in the document classification process or classify according to 

predetermined label categories. Based on the results of document identification that referred to the content 
contained in the document, the data were classified into two categories, that is inactive users and active users. 

For inactive users, word forecasting was carried out on social media using time series based on 

frequency using TF-IDF, the word "happy" was obtained so that the results of TF-IDF were used as weight in 

forecasting with time series. The word "happy" was made as a label and be forecasted. The dataset for fore 

casting was as follows. From Table 2, forecasting was conducted into the system by applying times series 

method then the result could be seen in Table 3. 

 

 

Table 1. Term dataset 
Term (t) D1 D2 .. .. Dn DF IDF 

happy 0 0 .. .. 0 39 =log(112/39)= 0.4578818967 

makasih 0 0 .. .. 0 17 =log(112/17)= 0.8188854146 

Anniversary 0 0 .. .. 0 4 =log(112/4)= 1.447158031 

wkwkw 0 0 .. .. 0 112 =log(112/112)=0 

Love 0 0 .. .. 0 9 =log(112/9)= 1.09482038 

Selamat pagi  0 0 .. .. 0 22 =log(112/22)= 0.7067177823 

 

 

Table 2. User dataset is inactive 
Date Dataset 

 

Date Dataset 

 

Date Dataset 

05/2010 0 

 

12/2011 0 

 

07/2013 0 

06/2010 0 

 

01/2012 0 

 

08/2013 0 

07/2010 5 

 

02/2012 0 

 

09/2013 0 

08/2010 6 

 

03/2012 0 

 

10/2013 0 

09/2010 0 

 

04/2012 0 

 

11/2013 0 

10/2010 0 

 

05/2012 5 

 

12/2013 0 

11/2010 0 

 

06/2012 6 

 

01/2014 0 

12/2010 0 

 

07/2012 0 

 

02/2014 0 

01/2011 0 

 

08/2012 1 

 

03/2014 4 

02/2011 0 

 

09/2012 0 

 

04/2014 0 

03/2011 0 

 

10/2012 0 

 

05/2014 0 

04/2011 0 

 

11/2012 0 

 

06/2014 0 

05/2011 0 

 

12/2012 1 

 

07/2014 0 

06/2011 0 

 

01/2013 0 

 

08/2014 2 

07/2011 0 

 

02/2013 0 

 

09/2014 4 

08/2011 0 

 

03/2013 0 

 

10/2014 0 

09/2011 18 

 

04/2013 0 

 

11/2014 2 

10/2011 0 

 

05/2013 0 

 

12/2014 0 

11/2011 0 

 

06/2013 0 

 

01/2015 0 
 

Table 3. forecasting the word “happy” in 

inactive users 
Date Forecasting 

 

Date Forecasting 

02/2015 0 

 

02/2016 0 

03/2015 2 
 

03/2016 0 

04/2015 2 

 

04/2016 -1 

05/2015 1 

 

05/2016 2 

06/2015 0 

 

06/2016 1 

07/2015 0 

 

07/2016 1 

08/2015 0 

 

08/2016 0 

09/2015 0 

 

09/2016 0 

10/2015 2 

 

10/2016 -1 

11/2015 1 

 

11/2016 -1 

12/2015 1 

 

12/2016 2 

01/2016 0 

 

01/2017 1 
 

 

 

From Table 3 it can be seen that the forecasting process could be calculated. However, it could be 

seen that the forecasting results were minus (-) or below zero. The forecasting process was carried out using 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

The effect of the TF-IDF algorithm in times series in forecasting word on social media (Arif Ridho Lubis) 

981 

the happy weights achieved by using the TF-IDF of 0.4578818967. So that the forecasting results for inactive 

users could be seen through the graph in Figure 2. 

 
 

 
 

Figure 2. Forecasting happy word 
 

 

In Figure 2 the blue graph is the trainning dataset and the orange graph is the forecasting result. In 

the test, it could be seen that in the February 2015 period the system received no forecasting value for the 
appearance of the word "happy", but in April 2015 the system received forecasting results 2 times while the 

dataset or anything actually did not exist at all. So that the MAPE results achieved by inactive social media 

users were 50%. 

However, for active social media users, data scrolling was carried out with the activeness of each 

making it on twitter social media which consisted of 573 tweets which were then carried out by calculating 

the TF-IDF on words that often appeared. There were 4 words taken as words that often appeared. They are 

shown in Table 4. 

From Table 4, it showed that the TF-IDF calculations could be obtained with the frequency that 

often appeared, i.e. the word bisa which is a statement word. However, in the TF-IDF calculation the more 

words appeared, the smaller the frequency that appears. So that the frequency numbers were weighted for the 

use of number processing. In accordance with the purpose of this study, this figure was carried out by 
calculating time series to forecast words on social media data obtained from twitter with a weight of 

1.214843848. Then the performance of the document was made based on the tweets that appear. 

After obtaining the weight value on the TF-IDF, then forecasting with the time series was done 

before forecasting the dataset used from October 2017 to August 2020. Where the training data started from 

October 2017 to March 2020 and data testing was used in April 2020 and August 2020. The dataset for active 

social media users was shown in Table 5. From Table 5 was a dataset of active social media twitter users and 

the data were those that had been obtained from the TF-IDF calculation, namely the word "bisa" and the 

word was carried out by training on the time series method. The results of forecasting the word "bisa" could 

be seen in Figure 3. 
 

 

Table 4. Term dataset active social media users 
Term (t) D1 D2 .. .. Dn DF IDF 

bisa 0 0 .. .. 0 35 =log(573/35)= 1.214843848 

Mau 0 0 .. .. 0 25 =log(573/25)= 1.359835482 

Kalau 0 0 .. .. 0 23 =log(573/23)= 1.396199347 

Kenapa 0 0 .. .. 0 11 =log(573/11)= 1.716837723 

 
 

Table 5. Dataset of active user 
Date Dataset 

 

Date Dataset 

 

Date Dataset 

10/2017 0 

 

10/2018 0 

 

10/2019 0 

11/2017 0 

 

11/2018 3 

 

11/2019 2 

12/2017 0 

 

12/2018 1 

 

12/2019 3 

01/2018 0 

 

01/2019 0 

 

01/2020 0 

02/2018 0 

 

02/2019 2 

 

02/2020 2 

03/2018 0 

 

03/2019 0 

 

03/2020 7 

04/2018 0 

 

04/2019 1 

 

04/2020 0 

05/2018 1 

 

05/2019 0 

 

05/2020 2 

06/2018 2 

 

06/2019 0 

 

06/2020 2 

07/2018 0 

 

07/2019 0 

 

07/2020 0 

08/2018 0 

 

08/2019 1 

 

08/2020 0 

09/2018 1 

 

09/2019 4 
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Figure 3. Forecasting “bisa” word 

 

 
From Figure 3, it could be seen that the blue one is the training data and the orange one is the testing 

data. The word that was forecasted was the data "bisa" because it was taken from the TF-IDF calculation. 

From the testing data we could compare or measure the accuracy using the MAPE formula. However, before 

doing the MAPE calculation, you could see the forecasting results with the actual data in Table 6. 

From Table 6, it could be seen that the results of forecasting with 5 testing data showed 4 data the 

results were the same and in August 2020 1 forecasting the word "bisa" is not there. From this data, the 

calculation of accuracy could be calculated with MAPE: 

 

𝑀𝐴𝑃𝐸 =  
0,990099

5
× 100% = 0,1980198 %  

 

So that a MAPE of 0.1980198% has been obtained, which was the result of very small MAPE so 

that word patterns or forecasting in social media could be done. 

 

 

Table 6. Error and MAPE 
Date Actual Forecasting 

04/2020 0 0 

05/2020 2 2 

06/2020 2 2 

07/2020 0 0 

08/2020 0 1 

 

 

4. CONCLUSION 

Finally, this study drew the conclusion that twitter data could be forecasted and could find out that 

every content of twitter was in the form of a good activity that could reveal characteristics from users, which 
in the future can be used for the benefit of the industrial world. In this study, a word forecasting process in 

social media was carried out starting with the TF-IDF calculation where it could be concluded that the TF-

IDF values with frequencies that often appeared get a smaller frequency value and vice versa words with less 

frequency TF-IDF values will be greater. After TF-IDF calculations were carried out, forecasting was carried 

out using the time series method using a method where the division of word forecasting was divided into two 

categories that is the category of inactive users and active users. The test data on inactive users is 1734 

tweets, the results referred to 1203 categories of slack words and 531 tweets and the test data on active users 

is 573 tweets with 60613 words. The results obtained were done with a MAPE calculation process of 50% for 

inactive users and 0.1980198% for active users. 
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