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 The use of the self-scaling Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method is very efficient for the resolution of large-scale optimization 

problems, in this paper, we present a new algorithm and modified the self-

scaling BFGS algorithm. Also, based on noticeable non-monotone line 

search properties, we discovered and employed a new non-monotone idea. 

Thereafter first, an updated formula is exhorted to the convergent Hessian 

matrix and we have achieved the secant condition, second, we established the 

global convergence properties of the algorithm under some mild conditions 

and the objective function is not convexity hypothesis. A promising behavior 

is achieved and the numerical results are also reported of the new algorithm. 
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1. INTRODUCTION 

Consider the unconstrained optimization problem: 

 

 𝑚𝑖𝑛
𝑥∈𝑅𝑛 

 𝑓(𝑥) (1) 

 

where 𝑓: |𝑅𝑛  → 𝑅 is a continuously differentiable function, to solve problem (1) one uses an algorithm that 

generates a sequence of iterates 𝑥𝑘 according to: 

 

𝑥𝑘+1 =  𝑥𝑘 +  𝛼𝑘  𝑑𝑘  (2) 

 

for 𝑘 ≥ 0, where 𝑑𝑘 is a search direction, 𝛼𝑘 > 0 is step length and 𝑥0 is given the initial point. Basic steps 

in these algorithms are choosing suitable direction and timely step size. To satisfy the descent condition 

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 < 0, generally, in order to securities a sufficient reduction to value of function we required the 

search direction 𝑑𝑘 and 𝛼𝑘  is specified, there are various examples for procedures to choose the search 

direction 𝑑𝑘, conjugate gradient (CG), steepest descent (SD), Newton, quasi-Newton, and trust-region 

methods see [1]. Newton has the highest rate of convergence and the direction is accounted by solving the 

system 𝐺𝑘𝑑𝑘 = −𝑔𝑘 where 𝐺𝑘 = ∇2𝑓(𝑥𝑘) and 𝑔𝑘 = ∇𝑓(𝑥𝑘). 

Quasi-Newton criterion methods convention the following secant equation: 𝐵𝑘+1 𝑠𝑘 =  𝑦𝑘 where 

𝑦𝑘 =  𝑔𝑘+1 − 𝑔𝑘 , 𝑠𝑘 =  𝑥𝑘+1 − 𝑥𝑘 , at the first iteration, 𝐵0 is an arbitrary nonsingular positive definite 

https://creativecommons.org/licenses/by-sa/4.0/
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matrix and 𝐵𝑘+1 is an approximation of 𝐺𝑘. The most efficient of Quas-Newton methods are perhaps to self-

scaling BFGS method which was updated suggested by [2], [3] and this method is overall numerical 

computation than the other method. The matrix 𝐵𝑘+1 in the self-scaling BFGS method can be updated by the 

following formula: 

 

𝐵𝑘+1 = [𝐵𝑘 −
𝐵𝑘𝑆𝑘 𝑆𝑘

𝑇𝐵𝑘 

𝑆𝑘
𝑇𝐵𝑘𝑆𝑘 

] 𝜇𝑘 +  
𝑦𝑘 𝑦𝑘

𝑇

𝑆𝑘
𝑇𝑦𝑘

  (3) 

 

where: 

 

μk =  
sk

Tyk
yk yk

T⁄  (4) 

 

If the curvature condition 𝑠𝑘
𝑇𝑦𝑘  > 0 holds, the method of self-scaling BFGS maintains the 

positiveness of the matrices {𝐵𝑘}. For this reason, the descent direction of f at 𝑥𝑘  is satisfy in the direction of 

the self-scaling BFGS not problem if 𝐺𝑘 is positive definite or not. Many modifications have been proposed 

made to afflicted the global convergence property of the (Broyden-Fletcher-Goldfarb-Shanno) BFGS 

method, for instance, some modulations in the criterion BFGS method are made, and submitteded a modified 

BFGS (MBFGS) algorithms [4]-[6]. The superlinear convergence and the global of their methods have been 

proved under appropriate conditions for non-convex problems. 

A sufficient reduction produces from suitable line search is another making a good iterative process 

in function value, as we say. A public situation to accept a step length mentionsed Armijo rule as (5): 

 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓𝑘 + 𝜎𝛼𝑘  𝑔𝑘
𝑇 (5) 

 

and the largest member 𝛼𝑘 in {1, 𝜌, 𝜌2, … …} satisfying (4) such that 𝜌 ∈ (0,1) 𝑎𝑛𝑑 𝜎 ∈ (0,1). 

It is clear that 𝑓
𝑘
 denotes 𝑓(𝑥𝑘) and 𝑓

𝑘+1
<  𝑓

𝑘
 for every descent direction, and called monotone 

line search. The first non-monotone line search technique were proposed by [7], Newton's method using the 

Armijo condition was defined by (6): 

 

 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ {𝑓𝑘−𝑗}
0≤𝑗≤𝑚(𝑘)

𝑚𝑎𝑥
+ 𝜎𝛼𝑘 𝑔𝑘

𝑇𝑑𝑘  (6) 

 

where 0 ≤ 𝑚(𝑘) ≤ min {𝑚(𝑘 + 1) + 1, 𝑁}, N is a non-negative integer constant, Many kinds of researchers, 

for example [8]-[12]. A non-monotone schema can promote of finding a global optimum and also developed 

a speed of convergence. One of the efficient non-monotone line search methods have been proposed by [13] 

to overcome some drawbacks in the non-monotone in (6) though have features and well work for many 

situations [14], and have the same general planner while the statement "max" is substitute average weights 

for values of function with sequential iterations. 

 

 

2. MODIFIED A NEW NON-MONOTONE SELF-SCALING BFGS METHOD  

A non-monotone BFGS methods were proposed for solving (1) in [15]-[17]. These algorithms were 

proved the convergence analysis under the convex hypothesis on the objective function. In this work, a new 

non-monotone modified self-scaling BFGS method is inserted and evidence the global convergence of the 

method without convexity assumption. This work is arranged as follows. The New1 non-monotone proposed 

and defined in line search (7)-(9) and we note that the numerical results of the New1 non-monotone line 

search (7)-(9) have been more effective than the [18]. The New2 method is expressed in this part. Also, we 

remember the properties convergence of the new algorithm in part 3. Numerical experiences show that the 

new method is very favorable and investigated both theatrically and numerically against some well-known 

algorithms. In the last part, some conclusions are list. 

Now we explain the new non-monotone line search method (New1) which is described as follows: 

 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) −  {𝑓𝑘−𝑗} ≤ 𝐸𝑘 − 𝜎𝑡𝑘‖𝑔𝑘‖2
 0≤𝑗≤𝑚(𝑘)

𝑚𝑎𝑥   (7) 

 

where: 

 

𝐸𝑘 = 𝛿1𝑡𝑘𝛿𝑘
𝑇𝑔𝑘 (8) 
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𝑡𝑘 =
𝛿𝑘−1

𝑇 𝛿𝑘−1 

𝛿𝑘−1
𝑇 𝑦𝑘−1 

  (9) 

 

𝛿1 = 0.0001 , 𝑘 ≥ 1, with 𝜎 ∈ (0,1)  

 

Two reasons made the BFGS algorithm had important disadvantages despite this method is a 

successful algorithm for unconstrained nonlinear optimization. Once, the directions of the method may not be 

descent especially when 𝑠𝑘
𝑇𝑦𝑘 > 0 is not satisfied and cannot guarantee positive definiteness of the matrix 

𝐵𝑘. Second, in general issuess, The BFGS method may not be convergent for non-convex objective 

functions, despite established superlinear convergence and the global for convex problems. 

A New2 non-monotone modified self-scaling BFGS algorithm is presented guaranteeing the positive 

definiteness of the matrix 𝐵𝑘 for non-convex objective functions. In this part, the new method is inserted 

after describing some inspiration. We defined the modified secant equations: 

 

𝐵𝑘+1𝑠𝑘 = 𝑦𝑘
∗  (10) 

 

where: 

 

𝑦𝑘
∗ ≜ 𝑦𝑘 + 𝑢𝑘

∗𝑠𝑘  (11) 

 

and defined by three forms: 

 

𝑢𝑘
∗(1) = 2

‖𝑦𝑘
∗‖2

𝑆𝑘
𝑇𝑦𝑘

∗ 
 (12) 

 

𝑢𝑘
∗(2) = 1 + 2

‖𝑦𝑘
∗‖2

𝑦𝑘
∗𝑇𝑆𝑘 

 (13) 

 

𝑢𝑘
∗(3) = ‖𝑔𝑘‖𝛽 + max  {

‖𝑦𝑘
∗‖2

𝑦𝑘
∗𝑇𝑆𝑘 

, 0} ≥ 0  (14) 

 

where 𝛽 is a positive constant, see [19], [20]. Then we have reformed the self-scaling BFGS update formula 

based on (10) as follows: 

 

𝐵𝑘+1 = [𝐵𝑘 −
𝐵𝑘𝑆𝑘 𝑆𝑘

𝑇𝐵𝑘 

𝑆𝑘
𝑇𝐵𝑘𝑆𝑘 

] 𝜇 ∗𝑘+ 
𝑦𝑘

∗ 𝑦𝑘
∗𝑇

𝑆𝑘
𝑇𝑦𝑘

∗   (15) 

 

where: 

 

𝜇 ∗𝑘=  
𝑠𝑘

𝑇𝑦𝑘
∗ 

𝑦𝑘
∗ 𝑦𝑘

∗𝑇⁄  (16) 

 

and defined an efficient algorithm that is called modified self-scaling BFGS. It is clear that (17). 

 

‖𝑔𝑘‖𝛽‖𝑦𝑘
∗‖2 ≥ 𝑦𝑘

∗𝑇𝑠𝑘 > 0 , for all 𝑘 ∈ 𝑁  (17) 

 

This property is guarantees positive definiteness of the matrix 𝐵𝑘 and separate on the convexity of f, 

as such the used line search. The new MBFGS method combined with the new non-monotone line search and 

satisfies the global convergence. For unconstrained optimization in which 𝐵𝑘 is updated in [21], proposed the 

relation: 
 

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘 𝑠𝑘

𝑇𝐵𝑘  

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘 

+ �̃�𝑘  
 𝑦𝑘(𝑦𝑘)𝑇

𝑠𝑘
𝑇𝑦𝑘

  (18) 

 

and: 
 

�̃�𝑘 =
2

𝑆𝑘
𝑇𝑦𝑘

(𝑓𝑘 − 𝑓𝑘+1 + 𝑠𝑘
𝑇𝑔𝑘+1)  (19) 

 

so, the local super linear convergence and global properties for convex objective functions preserves in this 

algorithm too. 
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Now, the New2 algorithm is suggested which the self-scaling BFGS method update formula using 

𝑦𝑘
∗ in (11), and compute the update formula as follows: 

 

𝐵𝑘+1 = [𝐵𝑘 −
𝐵𝑘𝑠𝑘 𝑠𝑘

𝑇𝐵𝑘 

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘 

] 𝜇𝑘
∗ + 

𝑦𝑘
∗ 𝑦𝑘

∗𝑇

𝑠𝑘
𝑇𝑦𝑘

∗   (20) 

 

where: 

 

 𝜇𝑘
∗ =

𝑠𝑘
𝑇𝑦𝑘

∗

𝑦𝑘
∗ 𝑦𝑘

∗𝑇⁄  (21) 

 

and 𝐵𝑘 satisfies the secant condition as follows: 

 

𝐵𝑘+1𝑠𝑘 =  𝜇𝑘
∗𝑦𝑘

∗  (22) 

 

outline of the new non-monotone self-scaling MBFGS described in Algorithm 1. 

 
Algorithm 1. New-self-scaling BFGS (new-non-monotone modified self-scaling BFGS)  

A start an initial point 𝑥0 ∈ 𝑅𝑛, a symmetric positive definite matrix 𝐵0 ∈ 𝑅𝑛∗𝑛 , 𝜌, 𝜎 ∈ (0,1). 

Step 1: set 𝛿1 = 0.0001, 𝑘 = 1 
Step 2: if ‖𝑔𝑘‖ <∈, 𝑠𝑡𝑜𝑝 

Step 3: compute search direction 𝑑𝑘 by solving 𝐵𝑘 𝑑𝑘=−𝑔𝑘  

Step 4: set 𝑡𝑘 =
𝛿𝑘−1

𝑇 𝛿𝑘−1 

𝛿𝑘−1
𝑇 𝑦𝑘−1 

 where 𝑗𝑘 the smallest positive integer and 𝑡𝑘 satisfies (7),(8),(9) 

Step 5: compute 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 

Step 6: compute 𝑦𝑘
∗ in (11) and 𝜇𝑘

∗ in (21). then, update 𝐵𝑘 in (20) 

Step 7: set 𝑘 = 𝑘 + 1 and go to step 1. 

 

 

3. CONVERGENCE ANALYSIS  

For the general nonlinear objective function, this part is to explain and prove the properties of the 

new algorithm. And the following assumptions on the objective function (f). 

 

3.1.   Assumption (H) 

The level set 𝑆 = {𝑥: 𝑥 ∈ 𝑅𝑛 , 𝑓(𝑥) ≤ 𝑓(𝑥1)} is bounded, where 𝑥1 is the starting point. In a 

neighborhood Ω 𝑜𝑓 𝑆, f is continuously differentiable and its gradient g is Lipchitz continuously, namely, 

there exists a constant 𝐿 ≥ 0 such that ‖𝑔(𝑥) − 𝑔(𝑥𝑘)‖  ≤ 𝐿‖𝑥 − 𝑥𝑘‖, ∀𝑥, 𝑥𝑘 ∈ 𝛺. It is clear that from the 

assumption (H, i), there exists a positive constant D such that 𝐷 = max {‖𝑥 − 𝑥𝑘‖∀𝑥, 𝑥𝑘 ∈ 𝑆}. 

 

3.2.   Some related propertis 

Some proven mathematical properties to completing the stability study of the theoretical side. 

Property (1). Let {𝑥𝑘} is the sequence generated by Algorithm 1 new-non-monotone self-scaling MBFGS, 

then {𝐸𝑘} is a non-increasing sequence and for all 𝑘 ∈ 𝑁 ∪ {0}, { 𝑥𝑘} ⊂ 𝑆(𝑥0). Proof: See [22]. Property (2). 

If the assumptions (H, i) and (H, ii) are contented and {𝑥𝑘} is the sequence produced by the new Algorithm 1 

(new-non-self-scaling MBFGS). If ‖𝑔𝑘‖ ≥ 𝜁 holds for all 𝑘 ∈ 𝑁 with a constant 𝜁 > 0 then there exist 

positive constants 𝜃1, 𝜃2, 𝜃3 such that, for all 𝑘 ∈ 𝑁, the inequalities: 

 

‖𝐵𝑖𝑠𝑖‖ ≤ 𝜃1‖𝑠𝑖‖, 𝜃2‖𝑠𝑖‖
2 ≤ 𝑠𝑖

2𝐵𝑖𝑠𝑖 ≤ 𝜃3‖𝑠𝑖‖
2  (23) 

 

contract for fully a half of the indices 𝑖 ∈ {1,2, … … , 𝑘}. 

Proof: To prove that, must offer that there subsist two positive r and R such that: 

 

 
𝑦𝑘

∗𝑇𝑆𝑘

‖𝑆𝑘‖2 ≥ 𝑟  (24) 

 

and 
 

 
‖𝑦𝑘

∗‖2

𝑦𝑘
∗𝑇𝑆𝑘

≤ 𝑅  (25) 

 

From assumption ‖𝑔𝑘‖ ≥ 𝜁 and from (17) we have: 
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 𝑦𝑘
∗𝑇𝑠𝑘 ≥ ‖𝑔𝑘‖𝛽‖𝑦𝑘

∗‖2 ≥ 𝜁𝛽‖𝑦𝑘
∗‖2 ≥ 𝜁𝛽𝛾⩪‖𝑠𝑘‖2  (26) 

 

so: 
𝑦𝑘

∗𝑇𝑆𝑘

‖𝑆𝑘‖2 ≥ 𝑟, where 𝑟 = 𝜁𝛽𝛾⩪ is a positive constant. On the other hand, it follows (11), (12) and Cauchy-

Schwartz inequality that: 

 

‖𝑦𝑘
∗‖ ≤ ‖𝑦𝑘‖ + ‖𝑠𝑘‖(‖𝑔𝑘‖𝜇 +

‖𝑦𝑘‖

‖𝑆𝑘‖
)  

 

and from assumptions (H, i), (H, ii) and the relation in corollary (3.3) there exists �̂� > 0 such that‖𝑔𝑘‖ ≤ �̂�. 

Therefore, it can be seen that: 

 

‖𝑦𝑘
∗‖ ≤ ‖𝑠𝑘‖(𝐿 + �̂�𝜇 + 𝐿) = 𝐶‖𝑠𝑘‖ (27) 

 

L is Lipchitz constant from a hypothesis (H, ii), and 𝐶 = 𝐿 + �̂�𝜇 + 𝐿. The relation (26) along with (27) for 

all 𝑘 ∈ 𝑁, result: 

 

 
‖𝑦𝑘

∗‖2

𝑦𝑘
∗𝑇𝑆𝑘

≤ 𝑅  

 

where: R=
𝐶2

𝜁𝜇 . From (24), (25), and theorem (2.1) in [6] we have the rest of the proof. 

Property (3). If the assumption (H, i) and (H, ii) exist and {𝑥𝑘} is the sequence generated by the 

New1 algorithm. If ‖𝑔𝑘‖ ≥ 𝜁 holds for all 𝑘 ∈ 𝑁 with a constant 𝜁 > 0 then there is a positive constant �̆� 

such that 𝑡𝑘 > �́� for all k belonging to J= {𝑘 ∈ 𝑁 ℎ𝑜𝑙𝑑 (16)}. Proof: see [22]. Property (4). Suppose that the 

assumption (H, i) and (H, ii) hold, then: 

 

∑ −𝛼𝑘 𝑔𝑘
𝑇𝑑𝑘 < ∞∞

𝑘=0  (28) 

 

Proof: Using (7), (8), (9) we have:  

 

𝑓𝑘+1 − 𝑓𝑘 ≤ 𝜎𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 = −𝜎𝛼𝑘(‖𝑔𝑘+1‖2 + [1 +

‖𝑦𝑘
∗‖2

𝑦𝑘
∗𝑇𝑆𝑘

] 
(𝑆𝑘

𝑇𝑔𝑘+1)
2

𝑦𝑘
∗𝑇𝑆𝑘

 ) ≤ 0 (29) 

 

therefore, {𝑓𝑘} is 𝑎 decreasing sequence. Since f is bounded below, there exists a constant 𝑓 such that: 

lim
𝑘→∞

𝑓𝑘 = 𝑓. It follows that: ∑ (∞
𝑘=0 𝑓𝑘 − 𝑓𝑘+1) = lim

𝜎→∞
∑ (𝑓𝑘 − 𝑓𝑘+1) =  lim

𝜎→∞
(𝑓0 − 𝑓𝜎+1)𝜎

𝑘=0 = 𝑓0 − 𝑓 Hence,  

∑ (∞
𝑘=0 𝑓𝑘 − 𝑓𝑘+1) < +∞. 

 

3.3.   Theorem 

If the assumption (H, i) and (H, ii) exist and {𝑥𝑘} is the sequence generated by the New Algorithm 1 

(self-scaling NBFGS), then:  

 

lim
𝑘→∞

𝑖𝑛 𝑓‖𝑔𝑘‖ = 0.  (30) 

 

Proof: If we assume that lim
𝑘→∞

𝑖𝑛 𝑓‖𝑔𝑘‖ ≠ 0, so there exists a constant 𝜁 > 0 such that ‖𝑔𝑘‖ ≥ 𝜁 .For all k 

sufficiently, since Bksk = αkBkdk = −αk𝑔k, it follows from (28) that ∑ 𝛼𝑘  
𝑠𝑘

𝑇Bksk

‖Bksk‖
∞
𝑘=0  ‖𝑔𝑘‖2 =

∑
1

𝛼𝑘
 𝑠𝑘

𝑇Bksk
∞
𝑘=0  = ∑ (−∞

𝑘=0 𝛼𝑘 𝑔k
𝑇dk) < ∞ . ‖𝑔𝑘‖ ≥ 𝜁, From the property (3) definition of J are holds, leads 

us to: 

 

∑ 𝛼𝑘  
𝑆𝑘BkSk

‖BkSk‖2
∞
𝑘=0  ‖𝑔𝑘‖2 ≥  𝜁2 ∑ 𝛼𝑘

∞
𝑘=0

𝑆𝑘
𝑇BkSk

‖BkSk‖2  

 

 ≥ 𝜁2 ∑ 𝛼𝑘
∞
𝑘∈𝐽

𝑆𝑘
𝑇BkSk

‖BkSk‖2  

 > 𝜁2�̅� ∑∞
𝑘∈𝐽

𝑆𝑘
𝑇BkSk

‖BkSk‖2  

 

from the last inequity in which comes from property (4) this leads to: 
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∑∞
𝑘∈𝐽

𝑆𝑘
𝑇BkSk

‖BkSk‖2 < ∞ (31) 

 

because the set J is infinite, it is lead to that 
𝑠𝑘

𝑇Bksk

‖Bksk‖2 → 0 for 𝑘 ∈ 𝐽.This immediately contradicts the fact: 

𝑠𝑘
𝑇Bksk

‖Bksk‖2 ≥
𝜗2‖𝑠𝑘‖2

𝜗1
2‖𝑠𝑘‖2 =

𝜗2

𝜗1
2 that is in (31). 

 

 

4. RESULTS AND DISCUSSION  

The main work of this section is to compare the numerical experiments of the New1 non-monotone 

modified MBFGS algorithm with the (MBFGS-XG) algorithm proposed by [23]. We present a new algorithm in 

which the new non-monotone line search to approximate comparison is named (New1 NMBFGS). On the other 

hand, we compare the numerical experiments of the new self-scaling modified BFGS algorithm named (New2 

self-scaling MBFGS) with the standard self-scaling BFGS method straight with Armijo line search [7], [9]. We 

wrote FORTRAN language and double-precision arithmetic. These results were performed on a PC. Our attempts 

were performed onset of (50) nonlinear unconstrained problems that have a second derivative available, and the 

experience problems are contributed in CUTE [24], [25].  

We considered numerical experiments with several variable 𝑛 = 2,4,6, … … 1000, All these methods 

terminate when the following stopping criterion is met ‖𝑔𝑘‖∞ ≤ 10−6. Our experiences show the parameters 

𝜌 = 0.46, 𝜎 = 0.38, 𝛿1 = 0.0001, have the best conclusions for all the algorithms. Tables 1 and 2 compare 

some numerical experiments for the New1, New2 of algorithms against the BFGS algorithms, and the test 

problems with different dimensions, 𝑛 = 2,4, … 1000. In all these tables: N = Dimension of the problem, 

NOI = number of iterations, NOF = Number of functions, CPU = Total time required to complete the 

evaluation process for each test problem. 

Figures 1 to 4 compare of the New1 method against MBFGS-XG method due to NOI and it’s clear 

that New1 have more than 37.89%, and 66.71% NOI, and New2 against self-scaling BFGS due to NOI and 

New2 have more than 44.18% and 70.76% NOI respectively. Also Figures 2 and 5 compares the New1 

against MBFGS-XG method 38.28% and 44.27% due to NOF, and New2 against self-scaling BFGS due to 

NOF and it’s better than 42.29% and 69.2% respectively. Figures 3 and 6 compares of the New1 method 

against MBFGS-XG and have better results in comparison 70.7% and 71%, and New2 against self-scaling 

BFGS 70.41% and 70.7% due to CPU [26]-[28]. 
 
 

Table 1. Comparison of the New1 method against MBFGS-XG and New2 against self-scaling BFGS method 

with 𝑛 = 2, 4, … .100 

Prob. 
MBFGS-XG method New1 Method Self-scaling BFGS method New2 Method 

NOI NOF CPU NOI NOF CPU NOI NOF CPU NOI NOF CPU 

1 15 35 2.2 12 35 2.29 11 42 2.1 11 42 2.91 

2 9 19 0.02 9 19 0.01 9 19 0.01 9 19 0.01 
3 44 64 0.3 33 58 0.05 36 70 0.05 29 72 0.05 

4 15 35 0.19 10 31 0.01 15 35 0.9 10 31 0.01 

5 21 26 0.45 20 30 0.21 25 30 0.01 8 19 0.21 
6 13 28 1.91 13 41 0.1 12 53 1.9 16 69 0.1 

7 39 55 2.5 41 59 2.5 38 62 2.3 41 59 2.5 

8 10 25 1.2 7 22 0.13 7 22 1.2 7 22 0.13 
9 80 113 3.1 75 110 2.9 70 102 2.3 75 110 2.9 

10 25 60 2.5 22 47 0.5 25 70 2.4 22 47 0.5 

11 1310 8600 0.3 401 3001 0.1 640 5299 0.2 140 1109 0.1 
12 101 621 0.32 70 551 0.0 70 501 0.2 35 305 0.0 

13 80 502 0.1 51 320 0.1 60 402 0.1 23 349 0.1 

14 800 3001 1.6 75 300 0.1 80 341 1.5 30 150 0.01 
15 291 1100 0.91 60 250 0.01 54 245 0.61 23 120 0.01 

16 1372 8911 2.9 401 3221 2.9 640 5320 2.1 139 1001 2.9 

17 1050 7000 0.04 200 972 0.1 200 1608 0.04 110 890 0.01 
18 180 181 0.41 180 181 0.41 180 181 0.41 180 181 0.41 

19 1340 9101 2.91 604 2952 2.91 1291 8517 2.1 207 1201 2.03 

20 1311 8500 0.015 520 3970 0.015 1341 8500 0.015 170 1418 0 
21 589 479 0.12 431 530 0.12 589 749 0.12 322 419 0.12 

22 220 1601 0.639 22 380 0.639 23 204 0.639 16 190 0.639 

23 150 891 0.46 45 300 0.0 21 185 0.46 17 140 0.0 
24 299 1297 0.15 90 499 0.01 94 610 0.15 40 301 0.01 

25 470 1992 0.0 122 601 0.0 130 75 0.0 115 537 0.0 

Total 9834 54237 25.244 3514 18488 16.114 5661 33242 21.814 1796 8825 15.659 
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Table 2. Comparison of the New1 method against MBFGS-XG and New2 against self-scaling BFGS method 

with 𝑛 = 110, … … .1000 

Prob. 
MBFGS-XG method New1 Method Self-scaling BFGS method New2 Method 

NOI NOF CPU NOI  NOI NOF CPU NOI  NOI NOF 

26 181 391 1.19 47 200 0.1 50 241 1.19 21 149 0.1 

27 200 500 1.19 65 210 0.1 68 250 1.19 51 190 0.1 

28 245 821 0.46 37 126 0.46 28 105 0.46 19 73 0.46 
29 151 391 0.05 10 59 0.05 13 61 0.05 7 50 0.05 

30 681 1501 0.21 520 1101 0.21 579 1391 0.21 434 1031 0.21 

31 780 8001 0.0 121 781 0.1 124 690 0.0 112 583 0.1 
32 981 6351 0.25 392 4381 0.25 428 4221 0.15 219 4001 0.25 

33 100 520 1.24 15 40 0.91 15 40 1.9 15 40 0.91 

34 180 690 0.0 20 69 0.0 29 119 0.0 18 59 0.0 
35 1050 7211 1.1 189 1481 1.19 190 1591 1.1 99 790 1.23 

36 520 1300 0.9 79 245 1.31 43 159 0.5 25 80 1.51 

37 325 981 0.05 56 105 0.01 28 160 0.01 9 49 0.01 
38 200 1231 0.35 117 963 0.35 187 1141 0.15 133 1121 0.35 

39 17 18 0.15 17 18 0.18 17 18 0.15 17 18 0.18 

40 19 31 0.01 19 31 0.01 19 31 0.01 19 31 0.01 
41 85 791 0.9 60 572 0.95 71 613 0.01 50 495 0.95 

42 35 69 0.8 35 77 0.0 32 64 0.02 35 77 0.0 

43 35 78 1.9 20 70 1.9 30 70 1.9 15 60 1.9 
44 172 4832 0.9 60 840 0.0 121 1960 0.5 45 840 0.0 

45 101 200 0.63 139 215 1.5 101 200 0.61 139 215 1.5 

46 19 30 1.5 11 27 1.6 16 27 0.39 10 20 1.6 
47 176 1981 0.01 142 1210 0.01 170 1900 0.01 89 982 0.01 

48 69 121 0.81 41 121 0.6 50 129 0.05 39 117 0.6 

49 37 77 0.15 21 70 0.12 30 70 0.01 21 67 0.12 
50 30 50 0.01 29 50 0.01 25 44 0.01 26 49 0.01 

Total 6389 38167 14.76 2262 13062 11.92 2464 15295 10.58 1667 11187 12.16 

 

 

  
  

Figure 1. Performance due to NOI NOF CPU Figure 2. Performance due to NOI NOF CPU 

 

 

 
  

  

Figure 3. Performance due to NOI NOF CPU Figure 4. Performance due to NOI NOF CPU 
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Figure 5. Performance due to NOI NOF CPU Figure 6. Performance due to NOI NOF CPU 

 

 

5. CONCLUSION 

In this paper, we have proposed a new non-monotone BFGS algorithm and combined it with a new 

modified self-scaling BFGS update to a sacrificial Hessian matrix with a known line search planning for non-

convex optimization problems. It is clear that a new non-monotone can progress the probability of finding a 

global optimum and also promote speed of convergence especially in presence of a narrow-curved valley and 

sufficient descent property of algorithm convergence. Thus, in our algorithms, we are enjoyable to get 

benefits from their properties. Lastly, our numerical results show that our new algorithms have competitive 

with the standard self-scaling BFGS method and have robust numerical results as compared to the non-

monotone (self-scaling BFGS) algorithm had proposed. 
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