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Abstract 
In this paper, we firstly devise a new and general p-ary subdivision scheme based on normal 

vectors with multi-parameters to generate fractals. Rich and colorful fractals including some known fractals 
and a lot of unknown ones can be generated directly and conveniently by using it uniformly. The method is 
easy to use and effective in generating fractals since the values of the parameters and the directions of 
normal vectors can be designed freely to control the shape of generated fractals. Secondly, we illustrate 
the technique with some design results of fractal generation and the corresponding fractal examples from 
the point of view of visualization, including the classical Lévy curves, Dragon curves, Sierpiński gasket, 
Koch curve, Koch-type curves and other fractals. Finally, some fractal properties of the limit of the 
presented subdivision scheme, including existence, self-similarity, non-rectifiability, and continuity but 
nowhere differentiability are described from the point of view of theoretical analysis.  
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1. Introduction 

Subdivision scheme defines a curve from an initial control polygon or a surface from an 
initial control mesh by subdividing them according to some refining rules, recursively. Since the 
first subdivision schemes were proposed in 1970s [1, 2], a lot of reseachers have focused on 
subdivision scheme due to its efficiency and simplicity. Now subdivision is an important subject 
in its own right with many applications in the fields like Computer Graphics, Computer Aided 
Geometric Design, and Computer Animation, etc. Subdivision scheme can be divided into 
approximate and interpolatory ones. Interpolation is a requirement in some application, so 
interpolation by using subdivision is an attractive characteristic. Many interpolatory subdivision 
schemes have been proposed [3-8].  

Fractal geometry [9], founded by Mandelbrot, deals with fractals, namely, geometric 
shape which is irregular, self-similar, and has fine or detailed structure at arbitrarily small scales. 
Since fractals were seen in many fields, there have been a lot of results in such varied branches 
of science as mathematics, computer science, chemistry, physics and biology, etc. Generation 
of fractal is an important issue in the fractal geometry. Many approaches to generate fractals 
have been proposed, such as iterated function systems method [10], L-system method [11], and 
subdivision method [12-14], etc [15, 16]. Using these subdivision methods fractal-like curves 
can be generated from the point of view of visualization, but few theoretical analysis about 
whether the limit curves are real fractals or not is presented. Furthermore, few general 
subdivision schemes which can be used to generate different types of fractals and can help us 
get desirable fractals. How to effectively generate known fractals or other fractals by using 
subdivision method is worth studying. 

Recently it was shown that subdivision scheme method is not only an important tool for 
the fast generation of smooth geometric objects, but also an efficient tool for the fast generation 
of fractal by selecting the corresponding subdivision parameters within some special ranges [17-
19]. But still very little attention has been paid to the fractal property analysis of subdivision 
schemes compared with the smooth properties analysis of those.  

In this paper, we propose a new general multi-control p-ary  2, Zp p   subdivision 

scheme based on normal vectors with multi-parameters to generate different fractals. We can 
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freely design the values of the parameters and the directions of the normal vectors to control the 
shape of generated curves. We illustrate the technique with some design results based on the 
presented subdivision scheme. Some fractal examples, including a few known fractals and other 
fractals are given. Some fractal properties of the limit curve of the presented subdivision 
scheme, including fractal existence, self-similarity, non-rectifiability, and continuity but nowhere 
differentiability are analyzed theoretically, which shows that the generated curves can really be 
fractals. 
 
 
2. Multi-control p-ary Subdivision Scheme 

In this section we present a p-ary  2, Zp p   subdivision scheme based on normal 

vectors with multi-parameters which can be uniformly used to generate some known and new 
fractals. 

Given the set of initial control points  0 0 0

0
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
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Where  2, Z , R, R, 0 1,j jp p p j p         are subdivision parameters, and 

1

k k k k
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, where k
in  is a unit normal vector perpendicular to vector 1
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i iP P
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. k

in  have two 

directions. In this paper, the direction of k
in  which is obtained by rotating vector 1

k k
i iP P


 

counterclockwise is called positive direction, and the direction of k
in  which is obtained by 

rotating vector 1
k k

i iP P


 clockwise is called negative direction. The subdivision parameters and the 

directions of the normal vectors can help control the shape of the subdivision curves. 
Remark 1. The geometric interpretation of the control effect of parameters 

, ,0 1j j j p      on locations of 1 ,0 1k
pi jP j p
    . For general  2, Zp p p   the subdivision 

scheme (1) contains p rules, and we can rewrite the subdivision scheme (1) simply as: 
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Where 1 1(1 ) ( )k k k k k k
j j i j i i j i iQ P P P P P          is the assistant point. Then we can find that 

parameters ,0 1j j p     determine the location of point k
jQ , namely, the distance between 

k
iP or 1

k
iP  and the normal of segment 1

k k
i iP P  at point k

jQ  , while parameters ,0 1j j p     

determine the displacement of point k
jQ along the direction of normal vector k
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pi jP 
  and the segment 1
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i iP P .  

Remark 2. The combined control effect of the parameters and the directions of the 
normal vectors. If we choose positive normal vectors, then we have nine different ranges that 

1 (0 1)k
pi jP j p
     possibly belong to (shown in Figure 1), namely, 

Case 1. When 1, 0j j    , 1 ,0 1k
pi jP j p
    , are in the range �. 

Case 2. When 0 1, 0j j    , 1 ,0 1k
pi jP j p
    , are in the range � including the two extended 

rays of normal of segment 1
k k

i iP P  passing through two points k
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k
iP  going up.  

Case 3. When 0, 0j j   , 1 ,0 1k
pi jP j p
    , are in the range �. 
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Since 3 1
6 1  , so when k  tends to infinity, the maximum error between functions  kF  

and  1kF   tends to 0, which means the function sequence  { }kF  is a Cauchy sequence. Since 

every function  kF  is a continuous function, so the function sequence  { }kF  is convergent to a 

continuous function as its limit. The limit curve is exactly a Koch-type curve. Theorem 1 holds. 
 
4.2. The Property of Non-rectifiability 

 Theorem 2. The Koch-type curve generated by subdivision scheme (5) is non-
rectifiable. 

Proof. Suppose iP  and jP  are arbitrarily fixed two control points on the subdivided 

control polygon after an arbitrary number of subdivision steps. We need to analyze the sum of 
the length of all the small edges between these two points after another k  subdivision steps. 
For simplicity, it is sufficient to discuss two adjacent fixed points: 0

0P  and 0
1P . After arbitrary k  

subdivision steps, there are 4k  small edge segments between 0
0P  and 0

1P . The sum of the 

length of all the small edges is 4
3[ ]k

kL  . We have  4
3[ ]k

kL k    , which means the limit 

curve of subdivision scheme (5) is non-rectifiable. Theorem 2 holds. 
 
4.3. The Property of Continuity but Nowhere Differentiability 

Theorem 3. The Koch-type curve generated by subdivision scheme (5) is continuous 
but nowhere differentiable. 

Proof. From Theorem 1 we know that the Koch-type curve is continuous. To show it is 
nowhere differentiable it is sufficient to show that there exists no tangent at any points on the 
Koch-type curve generated by subdivision scheme (5).  

On the Koch-type curve, which is the result corresponding to subdivision step k   , 
there are only four types of points, namely, 4 4 1 4 2, , ,i i iP P P  

   and 4 3iP
 , due to the infinite iteration 

property of subdivision. From the construction of the Koch-type curve, we know that they are 

connected orderly. The unit edge vectors 4 4 1

4 4 1

i j i j

i j i j

P P

P P

 
  

 
  



  and 4 4 1

4 4 1

i j i j

i j i j

P P

P P

 
  

 
  



 , 0,1, 2,3,j   located at the 

both sides of point 4 , 0,1, 2,3,i jP j
   are not collinear. Hence there exists no tangent at point 

4 , 0,1, 2,3.i jP j
   So the Koch-type curve is continuous but nowhere differentiable. Theorem 3 

holds. 
Based on the similar theoretical analysis process and results shown in this section, we 

can deduce that the limit curve of subdivision scheme (1) exists in a convergent subdivision 
range, which depends on the subdivision parameters. And it can exhibit some fractal features in 
a fractal subdivision range, which depends on the subdivision parameters too, including the self-
similarity, which is easy to be seen from the natural construction of subdivision scheme, non-
rectifiability, and continuity but nowhere differentiability. So we can conclude that the generated 
curves by using subdivision scheme (1) can be real fractals [15] in the fractal subdivision range. 
Hence, the presented method in this paper offers an effective means to generate fractals. 
 
 
5. Conclusion 

In this paper, a general multi-control p-ary subdivision scheme based on normal vectors 
acting as a uniform fractal generation method is proposed. Combining choosing of the values of 
the parameters with designating of the directions of normal vectors we can have a lot of 
flexibility to control the shape of generated fractals. Many fractal curves generated by using the 
presented subdivision scheme show that the method is easy to use and effective in generating 
various fractals. 
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