TELKOMNIKA, Vol. 11, No. 8, August 2013, pp. 4273~4281
e-ISSN: 2087-278X
B 4273

Normal Vector Based Subdivision Scheme to Generate
Fractal Curves

Yi Li*, Hongchan Zheng, Guohua Peng, Min Zhou
Department of Applied Mathematics, Northwestern Polytechnical University,
Xi'an 710072, China
*Corresponding author, e-mail: lliyi0313@163.com

Abstract

In this paper, we firstly devise a new and general p-ary subdivision scheme based on normal
vectors with multi-parameters to generate fractals. Rich and colorful fractals including some known fractals
and a lot of unknown ones can be generated directly and conveniently by using it uniformly. The method is
easy to use and effective in generating fractals since the values of the parameters and the directions of
normal vectors can be designed freely to control the shape of generated fractals. Secondly, we illustrate
the technique with some design results of fractal generation and the corresponding fractal examples from
the point of view of visualization, including the classical Lévy curves, Dragon curves, Sierpinski gasket,
Koch curve, Koch-type curves and other fractals. Finally, some fractal properties of the limit of the
presented subdivision scheme, including existence, self-similarity, non-rectifiability, and continuity but
nowhere differentiability are described from the point of view of theoretical analysis.
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1. Introduction

Subdivision scheme defines a curve from an initial control polygon or a surface from an
initial control mesh by subdividing them according to some refining rules, recursively. Since the
first subdivision schemes were proposed in 1970s [1, 2], a lot of reseachers have focused on
subdivision scheme due to its efficiency and simplicity. Now subdivision is an important subject
in its own right with many applications in the fields like Computer Graphics, Computer Aided
Geometric Design, and Computer Animation, etc. Subdivision scheme can be divided into
approximate and interpolatory ones. Interpolation is a requirement in some application, so
interpolation by using subdivision is an attractive characteristic. Many interpolatory subdivision
schemes have been proposed [3-8].

Fractal geometry [9], founded by Mandelbrot, deals with fractals, namely, geometric
shape which is irregular, self-similar, and has fine or detailed structure at arbitrarily small scales.
Since fractals were seen in many fields, there have been a lot of results in such varied branches
of science as mathematics, computer science, chemistry, physics and biology, etc. Generation
of fractal is an important issue in the fractal geometry. Many approaches to generate fractals
have been proposed, such as iterated function systems method [10], L-system method [11], and
subdivision method [12-14], etc [15, 16]. Using these subdivision methods fractal-like curves
can be generated from the point of view of visualization, but few theoretical analysis about
whether the limit curves are real fractals or not is presented. Furthermore, few general
subdivision schemes which can be used to generate different types of fractals and can help us
get desirable fractals. How to effectively generate known fractals or other fractals by using
subdivision method is worth studying.

Recently it was shown that subdivision scheme method is not only an important tool for
the fast generation of smooth geometric objects, but also an efficient tool for the fast generation
of fractal by selecting the corresponding subdivision parameters within some special ranges [17-
19]. But still very little attention has been paid to the fractal property analysis of subdivision
schemes compared with the smooth properties analysis of those.

In this paper, we propose a new general multi-control p-ary (p >2,pe Z) subdivision
scheme based on normal vectors with multi-parameters to generate different fractals. We can
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freely design the values of the parameters and the directions of the normal vectors to control the
shape of generated curves. We illustrate the technique with some design results based on the
presented subdivision scheme. Some fractal examples, including a few known fractals and other
fractals are given. Some fractal properties of the limit curve of the presented subdivision
scheme, including fractal existence, self-similarity, non-rectifiability, and continuity but nowhere
differentiability are analyzed theoretically, which shows that the generated curves can really be
fractals.

2. Multi-control p-ary Subdivision Scheme

In this section we present a p-ary (p=>2,peZ) subdivision scheme based on normal
vectors with multi-parameters which can be uniformly used to generate some known and new
fractals.

Given the set of initial control points P° = {P."}L0 ,PPeR’, let P¥ = {P."}:; be the set of

] ]

control points at level k(k >0,keZ),and {Pj"*‘}?:;n satisfy the following rules recursively:

Ppki+1 :(l_ao)Pik +aoPi51 +ﬂ0dik,0£ i< pkn:

P =(1-a)P  +aP¥ + Bdf,0<i < pn-1,

pi+l

P =(-a, )P +a, P +p,,d,0<i<pn-1

pi+p-1 i p-1" i+l

Where p(p>2, peZ), a;€R, p;€R, 0<j<p-1, are subdivision parameters, and

Pk Pk

[ R

PP*,. n* have two

df = ', where n* is a unit normal vector perpendicular to vector

directions. In this paper, the direction of n‘ which is obtained by rotating vector P*P*

il

counterclockwise is called positive direction, and the direction of n‘ which is obtained by

rotating vector P*P¥, clockwise is called negative direction. The subdivision parameters and the

directions of the normal vectors can help control the shape of the subdivision curves.

Remark 1. The geometric interpretation of the control effect of parameters
a;,B;,0< j< p-1 on locations of Ppkijlj,os j<p-1. For general p ( p=>2,pe Z) the subdivision
scheme (1) contains p rules, and we can rewrite the subdivision scheme (1) simply as:

pk+ :(1—051.)Pik +a P +ﬂjdik :Q}‘ +4d0<j<p-1,

pi+j jli+l joi
Where Qf =(1-a;)P" +a;P}, =P +a;(R}, —P") is the assistant point. Then we can find that
parameters «;,0< j< p-1 determine the location of point Q
P“or P

i+1

;‘ , hamely, the distance between

and the normal of segment P*P

i i+l

at point ij , while parameters j,,0< j<p-1
determine the displacement of point Q}‘ along the direction of normal vector n', namely, the

distance between P;*, and the segment PP, .
Remark 2. The combined control effect of the parameters and the directions of the
normal vectors. If we choose positive normal vectors, then we have nine different ranges that

P:ijlj (0< j< p-1) possibly belong to (shown in Figure 1), namely,

Case 1. When «; >1,5, >0 , P;j‘j,OS j<p-1,areinthe range (1.

Case 2. When0<¢; <15, >0, Ppkijlj,og j< p-1, are in the range [ including the two extended
rays of normal of segment P*P¥, passing through two points P and P¥, going up.

Case 3. Whenga,; <0,5, >0, P 0< j<p-1,areinthe range (.

pi+j>
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Case 4. Whena; >1,5,=0, P;‘ijlj,OS j< p-1, are in the range (], namely, in the extended ray

of segment P*P¥, to the right.
Case 5. When0<a; <1,5,=0, P;fj,os j<p-1, are in the range (1, namely, in the segment
Pk Pk

[T

Case 6. Whena; <0,5, =0, P;‘ij‘j,OS j< p-1, are in the range (], namely, in the extended ray
of segment P*P* to the left.

i+

Case 7.Whena; >1,5, <0, P, 0< j< p-1, are in the range .

pi+j°
Case 8. When0<a, <1, <0, Ppkijlj,og j< p-1, arein the range [ including the two extended
rays of normal of segment P“P*, passing through two points P* and P

i+1
Case 9. Wheng; <0,5, <0, P¥"L 0< j< p-1, are in the range (.

pi+j>

going down.

B

Figure 1. Nine Ranges P}’

Possibly belong to

3. Generation of Different Fractals

In the section we illustrate the technique by showing some of the special cases of
subdivision scheme (1) by choosing the values of the parameters, and the correspondingly
fractal curves generated by multi-control of the parameters and the directions of normal vectors
from the point of view of visualization.

3.1. A binary interpolatory subdivision scheme to generate Lévy and dragon curves
Using subdivision scheme (1), let p=2,a, = f, = 0,0, = f, =5, then we can get a binary
interpolatory subdivision scheme as follows:

{szi“zpik,osiszkn, @)

Pl =3P +1P! +1df,0<i<2n-1.

Subdivision scheme (2) can be used to generate the classical Lévy curve [20]. Figure 2
shows the result after one subdivision step and the Lévy curve after eleven subdivision steps by
using subdivision scheme (2) based on a unit segment as shown in Figure 2 (a). In Figure 2 and
the following figures, the initial control polygons are shown in dashed lines, and the generated
subdivision curves are shown in solid lines.

(a) Result after one subdivision step (b) Lévy curve after eleven subdivision steps

Figure 2. Results by using Subdivision Scheme (2)
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Figure 3 shows the subdivision parameter g, =(—1)i§ and the other parameters in

subdivision scheme (2) unchanged, with the positive directions of the normal vectors based on a
unit segment, an equilateral triangle and a quadrilateral, respectively. We can generate the
dragon curves [21] after ten subdivision steps.

(a) Dragon curve based ona (b) Dragon curve based onan  (c) Dragon curve based on a
unit segment equilateral triangle quadrilateral

Figure 3. Dragon curves by using subdivision scheme (2) with subdivision parameter
B, =(-1)'L and the other parameters in subdivision scheme (2) unchanged after ten subdivision

steps

Ifweset p=2,8, =4 =0,a,=1-a,a,=1- 4 in subdivision scheme (1), we can get the
generalized Chaikin corner-cutting subdivision scheme [17]. Apparently using the presented
multi-control p-ary subdivision scheme (1) we can generate more vivid fractals than using it.

3.2. A Ternary Interpolatory Subdivision Scheme to Generate Classical Sierpinski Gasket

Using subdivision scheme (1), let p=3,a, =, =0,a, =1,a, =2, = B, = (-)*" @ then
we can get a non-stationary and non-uniform ternary interpolatory subdivision scheme as
follows:

P! =P ,0<i<3"n,

Pl = 3R +4R + (D dE 0<i <301, ®)
Pi = 4R 3R + (DM L0 <350 -1,

Subdivision scheme (3) can be used to generate the classical Sierpinski gasket, also
called Sierpinski triangle [15], [22]. Figure 4 shows the results after one subdivision step, two
subdivision steps, three subdivision steps, and the classical Sierpihski gasket after seven
subdivision steps by using subdivision scheme (3) based on the same unit segment as shown in
Figure 3(a).

Remark 3. The method to generate Sierpinski gasket presented here is quite different
from the classical one, which can be thought as a procedure of repeatedly replacing an
equilateral triangle by three triangles of half the height [15].

(a)Result after one (b)Result after two (c)Result after three (d)Sierpinski gasket
subdivision step subdivision steps subdivision steps after seven
subdivision steps
Figure 4. Results by using Subdivision Scheme (3)
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Figure 5 shows two more Sierpinski gasket-like curves generated by applying
subdivision scheme (3) with the positive directions of the normal vectors after seven subdivision
steps based on the same initial control polygons as shown in Figure 3(b) and Figure 3(c).

W W S

(a)Sierpinski gasket based on an equilateral (b)Sierpinski gasket based on a quadrilateral
triangle

Figure 5. Sierpinski Gasket-like curves by using subdivision scheme (3) after seven subdivision
steps

3.3. A Quaternary Subdivision Scheme to Generate Koch-type Curves and other Curves
Setting p=4in subdivision scheme (1), we can get a quaternary interpolatory
subdivision scheme.

Pi" = (1-a,)P" +a,Rl + £ df,0<i<4"n,
Pi =(-a)R +aP +4df,0<i<4n—1,
Pﬁilz :(1_a2)Pik +a2Pi|:-] +ﬂ2dik,0S i< 4kn_1°

P =(-a,)P* +a,P* + Bdf,0<i<4*n-1.

(4)

By choosing values of the eight parameters and designating the directions of the normal
vectors we can generate many fractal curves and control the shape of the generated curves

freely. If we let &, =1,a,=1,0,=2,8,=L, and the other parameters being 0 in subdivision

scheme (4), we have a quaternary interpolatory subdivision scheme.

k+1 _ 2 pk 1 k k
P =3P +5P,,0<i<4'n-1], (5)
k+l _ 1 pk 1 pk V3 Ak Kk
P4i+2_3PI +3 |+1+Td| ,0<i<4'n-1,
Pily =R 3Rl 0<i<4'n-1

Subdivision scheme (5) can be used to generate the classical Koch curve [15], [23].
Figure 6 shows three curves generated by applying subdivision scheme (5) with the positive
directions of the normal vectors after five subdivision steps based on the same initial control
polygons as shown in Figure 3.

(a) The classical Koch curve  (b) Koch-type curve based on  (c) Koch-type curve based on
based on a unit segment an equilateral triangle a quadrilateral

Figure 6. Koch-type curves by using subdivision scheme (5) with the positive directions of the
normal vectors after five subdivision steps
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Figure 7 shows three curves generated by applying subdivision scheme (5) with the
negative directions of the normal vectors after five subdivision steps based on the same initial
control polygons as shown in Figure 3. The curve in Figure 7(a) is the same as in Figure 6(a)
but pointing downward. The curve in Figure 7(b) is called Koch snowflake, which can be thought
to be formed by fitting three classical Koch curves together.

(a) Koch curve based on a (b) Koch snowflake based on  (c) Koch-type curve based on
unit segment an equilateral triangle a quadrilateral

Figure 7. Koch-type curves by using subdivision scheme (5) with the negative directions of the
normal vectors after five subdivision steps

From Figure 6 to Figure 7 we know that given the parameters, the directions of the
normal vectors can help control the shape of the generated Koch-type curves.

In fact, subdivision scheme (4) can be used to generate more interesting curves
including approximating curves. Figure 8(a) and Figure 8(b) shows two interpolatory curves by
applying subdivision scheme (4) with the positive directions of the normal vectors based on the
same unit segment as shown in Figure 3(a). Figure 8(a) shows a tigerhead-like curve with

subdivision parameterse, =-1,a, =1,0,=3,6, =41,6,=%.0, =%, and the other parameters
being 0 after six subdivision steps. Figure 8(b) shows a human-like curve with subdivision
parametersa, =3,a, =1, o, =%, B =p=(-1)""L1 B =(-1)""L and the other parameters
being 0 after seven subdivision steps. Figure 8(c) shows an approximating curve with
subdivision parametersa, =-4,a,=—%, a,=1,a;=13,0,=f, =+, and the other parameters
being 0 with the negative directions of the normal vectors based on the same initial control
polygon as shown in Figure 3(c) after five subdivision steps.

(a) Tigerhead-like curve (b) Human-like curve (c) Approximating curve

Figure 8. More Interesting Curves

Due to the limitation of space, in the flowing part of this section we just show some
other special cases of the presented p-ary subdivision scheme (1) and the correspondingly
generated fractal curves by using them with the positive directions of the normal vectors based
on the same simple unit segment as in Figure 3(a).

3.4. P-ary Interpolatory Subdivision Scheme to Generate other Special Curves
1

Using subdivision scheme (1), let p=6,0,=4, =00, =0, =%, 0,=3, a,=a,=2,

B=p5= —%,ﬂz =p, :%,,@ = —%, then we can get a corresponding 6-ary subdivision scheme
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and use it to generate a crown-like fractal curve shown in Figure 9(a) after four subdivision
steps.

Using subdivision scheme (1), let p=7,0,=0,0,=a,=1,0;=0a,=3,05 =0 =7,
Bo=B=p=0,8,=p =%,0, =P =—+, then we can get a corresponding 7-ary subdivision

scheme and use it to generate Minkowski curve [16] shown in Figure 9(b) after five subdivision
steps.

(a) Crown-like fractal curve (b) Minkowski curve

Figure 9. Special Curves

From the above examples we know that many fractals including some known fractals
and a lot of unknown ones can be generated directly and quickly by using subdivision scheme
(1) based on the same simple unit segment as in Figure 3(a) only. So we can conclude that rich
and colorful fractals can be generated directly and quickly by using subdivision scheme (1), and
the presented method in this paper is easy to use and effective in generating various fractals.

4. Analysis of Fractal Properties

In this section we show fractal properties of the presented subdivision scheme (1) from
the point of view of theoretical analysis. For simplicity, we suppose the directions of normal
vectors are all positive and we take one of the special cases of presented subdivision scheme
(1), the subdivision scheme (5) as an example. The analysis of subdivision scheme (1) is similar
but complicated. We will prove that the limit curve of subdivision scheme (5) exists, which is a
Koch-type curve, and it is non-rectifiable, and continuous but nowhere differentiable.

4.1. The Property of Convergence
Theorem 1. The subdivision scheme (5) is convergent.

Proof. Suppose FY is a piecewise linear interpolatory function which satisfies
F“(4%i)=P", 0<i<4n.Then F" eC[0,n], vk 20,k € Z. And we have

[F (0)-FY )], = max|Pit ~22 = Lmax [RRY [ = Lmax|RY, - BY|.
According to subdivision scheme (5), we have:
k+ k+ k k
P4i+: - Py 1 :%( a— P,
Pﬁilz - P4ki:1l :%(Pl-lil - F)uk)+73| PikPilj-] | nik’
P4l?:]3 - Rtkuilz :%(Piil - Puk)_T}| Puk Plljrl | niko
k+ k+ k k
P4i+11 - P4i+l3 = %(PH] - PI )
S k+1 k+1 11 3 k k| _ B+l k k
o, max|RY' — R < max {4, + 32 max|R}, - B¥| =L max |RY, - Y.
1 I I 1
Hence, ”F(k“) (t)- = t) ) =%miax P¥ — P|k|
<t max R R <o < F (R max|[RY, —P|
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Since@d, so when k tends to infinity, the maximum error between functions F*

and F* tends to 0, which means the function sequence {F(k)} is a Cauchy sequence. Since

every function F® is a continuous function, so the function sequence {F(k)} is convergent to a
continuous function as its limit. The limit curve is exactly a Koch-type curve. Theorem 1 holds.

4.2. The Property of Non-rectifiability

Theorem 2. The Koch-type curve generated by subdivision scheme (5) is non-
rectifiable.

Proof. Suppose R and P; are arbitrarily fixed two control points on the subdivided

control polygon after an arbitrary number of subdivision steps. We need to analyze the sum of
the length of all the small edges between these two points after another k subdivision steps.
For simplicity, it is sufficient to discuss two adjacent fixed points: P} and P". After arbitrary k

subdivision steps, there are 4“ small edge segments between P’ and P°. The sum of the
length of all the small edges is L, =[]. We have L, =[£] > o(k —> «), which means the limit
curve of subdivision scheme (5) is non-rectifiable. Theorem 2 holds.

4.3. The Property of Continuity but Nowhere Differentiability

Theorem 3. The Koch-type curve generated by subdivision scheme (5) is continuous
but nowhere differentiable.

Proof. From Theorem 1 we know that the Koch-type curve is continuous. To show it is
nowhere differentiable it is sufficient to show that there exists no tangent at any points on the
Koch-type curve generated by subdivision scheme (5).

On the Koch-type curve, which is the result corresponding to subdivision step k=,

there are only four types of points, namely, PP, ,P,,,, and P, ., due to the infinite iteration

property of subdivision. From the construction of the Koch-type curve, we know that they are

. P40i0+j P43ic+ j+l P40io+j P40i0+j—l A
connected orderly. The unit edge vectors and ,1=0,1,2,3, located at the
I:)40io+j P4Oic+ j+l P40io+j I:)40io+j—1

both sides of point P;iij,j =0,1,2,3, are not collinear. Hence there exists no tangent at point

Pi..1=0,1,2,3. So the Koch-type curve is continuous but nowhere differentiable. Theorem 3

holds.

Based on the similar theoretical analysis process and results shown in this section, we
can deduce that the limit curve of subdivision scheme (1) exists in a convergent subdivision
range, which depends on the subdivision parameters. And it can exhibit some fractal features in
a fractal subdivision range, which depends on the subdivision parameters too, including the self-
similarity, which is easy to be seen from the natural construction of subdivision scheme, non-
rectifiability, and continuity but nowhere differentiability. So we can conclude that the generated
curves by using subdivision scheme (1) can be real fractals [15] in the fractal subdivision range.
Hence, the presented method in this paper offers an effective means to generate fractals.

5. Conclusion

In this paper, a general multi-control p-ary subdivision scheme based on normal vectors
acting as a uniform fractal generation method is proposed. Combining choosing of the values of
the parameters with designating of the directions of normal vectors we can have a lot of
flexibility to control the shape of generated fractals. Many fractal curves generated by using the
presented subdivision scheme show that the method is easy to use and effective in generating
various fractals.
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