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 The conjugate gradient methods are noted to be exceedingly valuable for 

solving large-scale unconstrained optimization problems since it needn't the 

storage of matrices. Mostly the parameter conjugate is the focus for 

conjugate gradient methods. The current paper proposes new methods of 

parameter of conjugate gradient type to solve problems of large-scale 

unconstrained optimization. A Hessian approximation in a diagonal matrix 

form on the basis of second and third-order Taylor series expansion was 

employed in this study. The sufficient descent property for the proposed 

algorithm are proved. The new method was converged globally. This new 

algorithm is found to be competitive to the algorithm of fletcher-reeves (FR) 

in a number of numerical experiments. 
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1. INTRODUCTION  

The problem of unconstrained optimization is generally formulated as: 

 

𝑚𝑖𝑛{𝑓(𝑥)|𝑥 ∈ 𝑅𝑛} (1) 

 

where 𝑓 ⥂⥂: 𝑅𝑛 → 𝑅1 is a function that is continuously differentiable. Numerous famous techniques are 

found for solving (1); however, the conjugate gradient (CG) techniques are the mainly characterized ones. 

Newton technique is famous if the gradient matrix is non negative definite, for more details see [1]. These 

CG-techniques are in the variety of iterations known by: 

 

𝑥0 ∈ 𝑅𝑛 , 𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝑘𝑆𝑘 (2) 

 

where k  is “the step length”, as a rule obtained by “the Wolfe line search: 

 

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝜆𝑘𝑆𝑘) ≥ −𝛼𝜆𝑘𝜂𝑘
𝑇𝑆𝑘 (3) 

 

𝑔(𝑥𝑘 + 𝜆𝑘𝑆𝑘)𝑇𝑆𝑘 ≥ 𝜎𝜂𝑘
𝑇𝑆𝑘 (4) 
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where 0 < 𝛼 < 𝜎 < 1. The iterative searcher directions kS  CG-technique are calculated as: 

 

𝑑0 = −𝑔0, 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 (5) 

 

at this point 𝛽𝑘 is a scalar given as the parameter of conjugate gradient, “𝜂𝑘+1”denotes gradient of𝑓(𝑥𝑘+1) at 

the points 𝑥𝑘+1, 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = 𝜂𝑘+1 − 𝜂𝑘. The next sufficient descent state (6): 

 

𝜂𝑘+1
𝑇 𝑆𝑘+1 ≤ −𝑐‖𝜂𝑘+1‖2 (6) 

 

A lot used for analyzing the worldwide CG-technique convergence in mixture with inexact 

techniques of line search [2]. In the technique of quasi-Newton (QN), the direction of search is calculated 

using an approximation of the Hessian matrix inverse. In meticulous (5) is changed by: 

 

𝑆𝑘+1 = −𝐵𝑘+1
−1 𝜂𝑘+1 (7) 

 

where by the Hessian matrix 𝐵𝑘+1 = 𝐺𝑘+1 = 𝛻2𝑓(𝑥𝑘+1) is updated during the iterations. More details can be 

found in [3], [4]. In modern years, a diversity of CG-formulas was known, majorly, differences are in the 

parameter 𝛽𝑘 , the work by discussed details on some CG-techniqus with special emphasis on their worldwide 

convergence. Furthermore, the design of CG-techniques had been studied by many of researchers for 

archetype refer to [5]-[10]. 

In this paper, the new proposed method is solved by second and third-order Taylor-series. The 

subsequent sections of study are organized in this way: the second section presents the outlines of the new 

algorithm and the deriving a new formula. Some interesting the convergence analysis of the new algorithm 

presented in the third section. Results of the current numerical experiments are presented in the fourth section 

by using the test problems found in [11]. Finally, the fifth section presents some obvious findings. 

 

 

2. A NEW CONJUGATE GRADIENT METHOD 

This section develops a new CG-method on the basis of approximating the Hessian with “a 

symmetric positive-definite matrix. Now, the second and third-order Taylor-series approximation is 

employed to 𝑓 at the point 𝑥𝑘 can be written as by following the same approaches as in [12] as: 

 

𝑓(𝑥𝑘) = 𝑓(𝑥𝑘+1) − 𝜂𝑘+1
𝑇 𝑟𝑘 +

1

2
𝑟𝑘

𝑇𝐺𝑘+1𝑟𝑘 , 𝑓𝑘 = 𝑓𝑘+1 − 𝜂𝑘+1
𝑇 𝑟𝑘 +

1

2
𝑟𝑘

𝑇𝐺𝑘+1𝑟𝑘 +
1

6
𝑟𝑘

𝑇𝑇𝑘+1𝑟𝑘 (8) 

 

where 𝑇𝑘+1 is the tensor of f  at the point 𝑥𝑘+1. Then, by using a 𝜂𝑘+1
𝑇 𝑆𝑘 = 0 in second -order Taylor-series, 

the next relation (9) is obtained: 

 

𝑟𝑘
𝑇𝐺𝑘+1𝑟𝑘 = 2(𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1)) (9) 

 

the relation (10) is obtained by third-order Taylor-series expressions: 

 

𝑟𝑘
𝑇𝐺𝑘+1𝑟𝑘 = 𝑦𝑘

𝑇𝑟𝑘 + 6(𝑓𝑘 − 𝑓𝑘+1) + 3(𝜂𝑘+1 + 𝜂𝑘)𝑇𝑟𝑘 (10) 

 

the step size 𝜆𝑘 is determined by many algorithms. In exact line search the step length 𝜆𝑘 is selected as (11). 

 

𝜆𝑘 = −
𝜂𝑘

𝑇𝑆𝑘

𝑆𝑘
𝑇𝐺𝑆𝑘

 (11) 

 

From some algebra, the (12) is obtained: 

 

𝑟𝑘
𝑇𝐺𝑘+1𝑟𝑘 = 𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1) −

𝜆𝑘𝜂𝑘
𝑇𝑆𝑘

2
, 𝑟𝑘

𝑇𝐺𝑘+1𝑟𝑘 =
1

2
𝑦𝑘

𝑇𝑟𝑘 + 3(𝑓𝑘 − 𝑓𝑘+1) +
3

2
𝜂𝑘+1

𝑇 𝑟𝑘 + 𝜂𝑘
𝑇𝑟𝑘 (12) 

 

by (12), the (13) is derived and denote by 𝐺𝑘+1
𝑄

 and as follows: 

 

𝐺𝑘+1
𝑄 =

𝑓(𝑥𝑘)−𝑓(𝑥𝑘+1)−𝛼𝑘𝜂𝑘
𝑇𝑆𝑘/2

𝑟𝑘
𝑇𝑟𝑘

𝐼𝑛×𝑛 , 𝐺𝑘+1
𝐶 =

1

2
𝑦𝑘

𝑇𝑟𝑘+3(𝑓𝑘−𝑓𝑘+1)+
3

2
𝜂𝑘+1

𝑇 𝑟𝑘+𝜂𝑘
𝑇𝑟𝑘

𝑟𝑘
𝑇𝑟𝑘

𝐼𝑛×𝑛 (13) 
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then, it can be written as: 

 

𝑆𝑘+1
𝑄 = − (

𝑟𝑘
𝑇𝑟𝑘

𝑓(𝑥𝑘)−𝑓(𝑥𝑘+1)−
𝜆𝑘𝜂𝑘

𝑇𝑆𝑘
2

) 𝜂𝑘+1, 𝑆𝑘+1
𝐶 = − (

𝑟𝑘
𝑇𝑟𝑘

1

2
𝑦𝑘

𝑇𝑟𝑘+3(𝑓𝑘−𝑓𝑘+1)+
3

2
𝜂𝑘+1

𝑇 𝑟𝑘+𝜂𝑘
𝑇𝑟𝑘

) 𝜂𝑘+1 (14) 

 

by use the conjugacy condition 𝑆𝑘+1
𝑇 𝑦𝑘 = 0 due to the conjugacy of Newton directions with exact line 

searches.  

 

𝑆𝑘+1
𝑇 𝑦𝑘 = − (

𝑟𝑘
𝑇𝑟𝑘

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1) − 𝜆𝑘𝜂𝑘
𝑇𝑆𝑘/2

) 𝜂𝑘+1
𝑇 𝑦𝑘 = 0 

𝑆𝑘+1
𝑇 𝑦𝑘 = − (

𝑟𝑘
𝑇𝑟𝑘

1
2

𝑦𝑘
𝑇𝑟𝑘 + 3(𝑓𝑘 − 𝑓𝑘+1) +

3
2

𝜂𝑘+1
𝑇 𝑟𝑘 + 𝜂𝑘

𝑇𝑟𝑘

) 𝜂𝑘+1
𝑇 𝑦𝑘 = 0 

(15) 

 

Similarly, by using CG methods for quadratic functions with exact line searches, formula (16) is obtained: 

 

𝑆𝑘+1
𝑇 𝑦𝑘 = −𝜂𝑘+1

𝑇 𝑦𝑘 + 𝛽𝑘𝑆𝑘
𝑇𝑦𝑘 = 0 (16) 

 

from (15) and (16), the (17 a and b) is derived as follows: 

 

− (
𝑟𝑘

𝑇𝑟𝑘

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1) − 𝛼𝑘𝜂𝑘
𝑇𝑆𝑘/2

) 𝜂𝑘+1
𝑇 𝑦𝑘 = −𝜂𝑘+1

𝑇 𝑦𝑘 + 𝛽𝑘𝑆𝑘
𝑇𝑦𝑘 

− (
𝑟𝑘

𝑇𝑟𝑘

1/2𝑦𝑘
𝑇𝑟𝑘 + 3(𝑓𝑘 − 𝑓𝑘+1) + 3/2𝜂𝑘+1

𝑇 𝑟𝑘 + 𝜂𝑘
𝑇𝑟𝑘

) 𝜂𝑘+1
𝑇 𝑦𝑘 = −𝜂𝑘+1

𝑇 𝑦𝑘 + 𝛽𝑘𝑆𝑘
𝑇𝑦 

(17 a) 

 

from above equation, we get: 

 

𝛽𝑘𝑆𝑘
𝑇𝑦𝑘 = − (

𝑟𝑘
𝑇𝑟𝑘

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1) − 𝛼𝑘𝜂𝑘
𝑇𝑆𝑘/2

) 𝜂𝑘+1
𝑇 𝑦𝑘 + 𝜂𝑘+1

𝑇 𝑦𝑘  

𝛽𝑘𝑑𝑘
𝑇𝑦𝑘 = − (

𝑟𝑘
𝑇𝑟𝑘

1/2𝑦𝑘
𝑇𝑟𝑘 + 3(𝑓𝑘 − 𝑓𝑘+1) + 3/2𝜂𝑘+1

𝑇 𝑟𝑘 + 𝜂𝑘
𝑇𝑟𝑘

) 𝜂𝑘+1
𝑇 𝑦𝑘 + 𝜂𝑘+1

𝑇 𝑦𝑘 

(17 b) 

 

then, the following equations are obtained: 

𝛽𝑘
𝐵𝑇𝑄

= (1 −
𝑟𝑘

𝑇𝑟𝑘

𝑓(𝑥𝑘)−𝑓(𝑥𝑘+1)−𝜆𝑘𝜂𝑘
𝑇𝑆𝑘/2

)
𝜂𝑘+1

𝑇 𝑦𝑘

𝑆𝑘
𝑇𝑦𝑘

, 𝛽𝑘
𝐵𝑇𝐶 = (1 −

𝑟𝑘
𝑇𝑟𝑘

1

2
𝑦𝑘

𝑇𝑟𝑘+3(𝑓𝑘−𝑓𝑘+1)+
3

2
𝜂𝑘+1

𝑇 𝑟𝑘+𝜂𝑘
𝑇𝑟𝑘

)
𝑔𝑘+1

𝑇 𝑦𝑘

𝑆𝑘
𝑇𝑦𝑘

 (18) 

 

putting (18) in (5), we obtained: 

 

𝑆𝑘+1 = −𝜂𝑘+1 + (1 −
𝑟𝑘

𝑇𝑟𝑘

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1) − 𝜆𝑘𝜂𝑘
𝑇𝑆𝑘/2

)
𝑔𝑘+1

𝑇 𝑦𝑘

𝑆𝑘
𝑇𝑦𝑘

𝑆𝑘 

𝑆𝑘+1 = −𝑔𝑘+1 + (1 −
𝑟𝑘

𝑇𝑟𝑘

1
2

𝑦𝑘
𝑇𝑟𝑘 + 3(𝑓𝑘 − 𝑓𝑘+1) +

3
2

𝜂𝑘+1
𝑇 𝑟𝑘 + 𝜂𝑘

𝑇𝑟𝑘

)
𝜂𝑘+1

𝑇 𝑦𝑘

𝑆𝑘
𝑇𝑦𝑘

𝑆𝑘 

(19) 

 

for simplicity, equation (19) is called by 𝛽𝑘 method. Also, 𝛽𝑘 can be written in this way and denoted by 𝛽𝑘
𝐵𝑇𝑄

 

and 𝛽𝑘
𝐵𝑇𝐶: 

 

𝛽𝑘
𝐵𝑇𝑄 =

1

𝑟𝑘
𝑇𝑦𝑘

(𝑦𝑘 − 𝜏1
‖𝑦𝑘‖2

𝑟𝑘
𝑇𝑦𝑘

𝑟𝑘)
𝑇

𝜂𝑘+1, 𝛽𝑘
𝐵𝑇𝐶 =

1

𝑟𝑘
𝑇𝑦𝑘

(𝑦𝑘 − 𝜏2
‖𝑦𝑘‖2

𝑟𝑘
𝑇𝑦𝑘

𝑟𝑘)
𝑇

𝜂𝑘+1  

 

where, 

 

𝜏1 =
(𝑟𝑘

𝑇𝑦𝑘)2

‖𝑦𝑘‖2 [
𝑟𝑘

𝑇𝑦𝑘

𝑟𝑘
𝑇𝑟𝑘

∗
𝑟𝑘

𝑇𝑟𝑘

𝑓(𝑥𝑘)−𝑓(𝑥𝑘+1)−
𝜆𝑘𝜂𝑘

𝑇𝑆𝑘
2

] , 𝜏2 =
(𝑟𝑘

𝑇𝑦𝑘)2

‖𝑦𝑘‖2 [
𝑟𝑘

𝑇𝑦𝑘

𝑟𝑘
𝑇𝑟𝑘

∗
𝑟𝑘

𝑇𝑟𝑘
1

2
𝑦𝑘

𝑇𝑟𝑘+3(𝑓𝑘−𝑓𝑘+1)+
3

2
𝜂𝑘+1

𝑇 𝑟𝑘+𝜂𝑘
𝑇𝑟𝑘

]  
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On the basis of above discussion, this section describes the algorithm frame of this study without 

fixed line search in this way. New algorithms (BTQ and BTC algorithms): 

Step 1: Give𝑥1 ∈ 𝑅𝑛 , 𝜀 > 0. Set𝑆1 = −𝜂1, 𝑘 = 1. If ‖𝜂1‖ ≤ 10−6, then stop. 

Step 2: Compute 𝜆𝑘 satisfying “the conditions (3-4). 

Step 3: Let 𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝑘𝑆𝑘  and𝜂𝑘+1 = 𝜂(𝑥𝑘+1). If ‖𝜂𝑘+1‖ ≤ 10−6, then stop.  

Step 4: Compute 𝛽𝑘 by the formulae (12) then generate 𝑆𝑘+1 b y equation (13) 

Step 5: Set k = k + 1 and continue with stege 2 

 

 

3. CONVERGENT ANALYSIS 

The following section proves the property of global convergence of new method. Theorem 3.1 

demonstrates that the direction of search in algorithms is continuously sufficient descent based on no line 

search. The property of sufficient descent is one of the important properties of the all conjugate gradient 

methods. 

 

3.1.  Theorem 

Let 𝑟𝑘 , 𝑦𝑘 , 𝜂𝑘+1 ∈ 𝑅𝑛 , 𝛽𝑘 ∈ 𝑅 and 𝛽𝑘
𝐵𝑇𝐶 =

1

𝑟𝑘
𝑇𝑦𝑘

(𝑦𝑘 − 𝜏
‖𝑦𝑘‖2

𝑟𝑘
𝑇𝑦𝑘

𝑟𝑘)
𝑇

𝜂𝑘+1, where 𝜏 ∈ (1/4, ∞). If 

𝑟𝑘
𝑇𝑦𝑘 ≠ 0, then 𝑆𝑘+1

𝑇 𝜂𝑘+1 ≤ −[1 − 1/4𝜏]‖𝜂𝑘+1‖2. 

 

Proof: Since 𝑆0 = −𝜂0, we have 𝜂0
𝑇𝑆0 = −‖𝜂0‖2, satisfying (6). Through multiplying (19) by 𝜂𝑘+1 (20) is 

obtained: 

 

𝑆𝑘+1
𝑇 𝜂𝑘+1 = −‖𝜂𝑘+1‖2 + (

𝜂𝑘+1
𝑇 𝑦𝑘

𝑟𝑘
𝑇𝑦𝑘

− 𝜏
‖𝑦𝑘‖2

(𝑟𝑘
𝑇𝑦𝑘)2 𝜂𝑘+1

𝑇 𝑟𝑘) 𝑟𝑘
𝑇𝜂𝑘+1 (20) 

 

yielding 

 

𝑆𝑘+1
𝑇 𝜂𝑘+1 =

(𝜂𝑘+1
𝑇 𝑦𝑘)(𝑟𝑘

𝑇𝜂𝑘+1)(𝑟𝑘
𝑇𝑦𝑘)−‖𝜂𝑘+1‖2(𝑟𝑘

𝑇𝑦𝑘)2−𝜏‖𝑦𝑘‖2(𝜂𝑘+1
𝑇 𝑟𝑘)2

(𝑟𝑘
𝑇𝑦𝑘)2  (21) 

 

The inequality 𝜔𝑇𝜐 ≤
1

2
(‖𝜔‖2 + ‖𝜐‖2) is applied with 𝜔 =

1

𝛿
(𝑟𝑘

𝑇𝑦𝑘)𝜂𝑘+1 and 𝜐 = 𝛿(𝜂𝑘+1
𝑇 𝑟𝑘)𝑦𝑘 , where 𝛿 ∈

(
1

√2
, √2𝑡], to the first term of the above equality, the (23) is obtained: 

 

(𝜂𝑘+1
𝑇 𝑦𝑘)(𝑟𝑘

𝑇𝜂𝑘+1)(𝑟𝑘
𝑇𝑦𝑘) ≤

1

2
[

1

𝛿2 (𝑟𝑘
𝑇𝑦𝑘)2‖𝜂𝑘+1‖2 + 𝛿2(𝑟𝑘

𝑇𝜂𝑘+1)2‖𝑦𝑘‖2] (22) 

 

this yields, 

 

𝑆𝑘+1
𝑇 𝜂𝑘+1 ≤

[
1

2𝛿2−1](𝑟𝑘
𝑇𝑦𝑘)2‖𝜂𝑘+1‖2+[

𝛿2

2
−𝜏](𝑟𝑘

𝑇𝜂𝑘+1)2‖𝑦𝑘‖2

(𝑟𝑘
𝑇𝑦𝑘)2  (23) 

 

From (18), the (24) is derived as follows: 

 

𝑆𝑘+1
𝑇 𝜂𝑘+1 ≤ [

1

2𝛿2 − 1] ‖𝜂𝑘+1‖2 ≤ − [1 −
1

2𝛿2] ‖𝜂𝑘+1‖2 (24) 

 

Therefore, the (25) is obtained: 

 

𝑆𝑘+1
𝑇 𝜂𝑘+1 ≤ − [1 −

1

4𝜏
] ‖𝜂𝑘+1‖2 (25) 

 

Consequently, it is necessary to have Assumption 3.2 for analyzing the global convergence of algorithms.  

 

3.2.  Assumption 

i. The level set𝐿 = {𝑥 ∈ 𝑅𝑛|𝑓(𝑥) ≤ 𝑓(𝑥0)} is constrained.  

ii. In a number of areas, “𝑈 and 𝐿, 𝑓(𝑥)” are continuously differentiable and their gradient id Lipschitz is 

continuous, i.e., a constant 𝐿 > 0 exists, like that: 
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‖𝜂(𝑧) − 𝜂(𝜊)‖ ≤ 𝐿‖𝑧 − 𝜊‖, ∀𝑧, 𝜊 ∈ 𝑈 (26) 

 

Under the above assumptions on 𝑓,” a constant 𝛤 > 0 exists, like that: 

 
‖𝜂𝑘+1‖ > 𝛤 (27) 

 

for all 𝑥 ∈ 𝐿. More details can be found in [13] verified that the next general result is applied to any CG 

method with strong Wolfe line search: 

 

3.3.  Lemma 

Supposing that assumptions (i) and (ii) are held, then consider any method of conjugate gradient (2) 

and (5) where 𝑆𝑘+1”is a descent direction and 𝜆𝑘”is achieved by the strong Wolfe line search (3) and (4). If: 

 

∑
1

‖𝑆𝑘+1‖2 = ∞,𝑘≥0  (28) 

 

then,  

 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝜂𝑘+1‖ = 0 (29) 

 

3.4.  Theorem 

Supposing that assumptions are held, then consider methods (2) and (5), where is a descent direction 

with and given by (18), and k is found by the Wolfe line search. If the objective function is uniformly, then 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓‖𝜂𝑘+1‖ = 0 .”  

 
‖𝑆𝑘+1‖ = ‖−𝜂𝑘+1 + 𝛽𝑘𝑆𝑘‖ ≤ ‖𝜂𝑘+1‖ + |𝛽𝑘|‖𝑆𝑘‖ 

≤ ‖𝜂𝑘+1‖ + ‖(𝑦𝑘 − 𝜏
‖𝑦𝑘‖2

𝑟𝑘
𝑇𝑦𝑘

𝑟𝑘)‖
‖𝜂𝑘+1‖

‖𝑟𝑘‖‖𝑦𝑘‖
‖𝑟𝑘‖ 

≤ ‖𝜂𝑘+1‖ +

‖𝑦𝑘‖‖𝜂𝑘+1‖ + 𝜏
‖𝜂𝑘+1‖‖𝑦𝑘‖2‖𝑟𝑘‖

‖𝑟𝑘‖‖𝑦𝑘‖

‖𝑟𝑘‖‖𝑦𝑘‖
‖𝑟𝑘‖ 

≤ ‖𝜂𝑘+1‖ +
‖𝑦𝑘‖‖𝜂𝑘+1‖ + 𝜏‖𝜂𝑘+1‖‖𝑦𝑘‖

‖𝑟𝑘‖‖𝑦𝑘‖
‖𝑟𝑘‖ 

≤ [1 + 1 + 𝜏]‖𝜂𝑘+1‖ ≤ [2 + 𝜏]‖𝜂𝑘+1‖ (30) 

 

This relation shows that: 

 

∑
1

‖𝑆𝑘+1‖2𝑘≥1 ≥ (
1

2+𝜏
)

1

𝛤
∑ 1𝑘≥1 = ∞ (31) 

 

based on Lemma 1, 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝜂𝑘+1‖ = 0” is derived, which equals “ 𝑙𝑖𝑚
𝑘→∞

‖𝜂𝑘+1‖ = 0 for uniformly convex 

function. 

 

 

4. NUMERICAL RESULTS 

This section explains some numerical experiments conducted for testing BTQ and BTC algorithms. 

Some test problems studied by Andrei [11] were used in this study (see Table 1) to analyze the efficiency of 

the new formula formed in this study in comparison to the method of FR. Comparison is based on iterations 

number (NI) and function evaluations number (NF) the CG algorithms by teepest descent directions. In all 

CG, the step length 𝜆𝑘 is yielded by Wolfe line search with 𝛼 = 0.001 and 𝜎 = 0.9, and the termination 

condition is ‖𝜂𝑘+1‖ ≤ 10−6. Some noted papers can be see [14]-[25].  

Tables 1 present list of some numerical results of this study. Based on the current numerical results, 

the proposed methods, BTQ and BTC, have minimum numbers of iterations, restarts and function evaluations 

in all implemented test problems in this study, except for problems 7 and 10, where the FR algorithm has less 

numbers of iterations, restarts and function evaluations against the new proposed BTQ and BTC algorithms. 

Generally, the percentage performance of the new proposed algorithms BTQ and BTC can be computed as 

compared to the standard FR algorithm for the general Tools NI, NR and NF shown in Table 2. 
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Table 1. Comparison of FR and new algorithms (BTQ and BTC) with n=100 and n=1000, test function 

P. No n 
FR algorithm BTQ algorithm BTC algorithm 

NI NR NF NI NR NF 

1 100 47 93 38 84 39 82 

1000 78 131 37 87 33 75 

2 100 43 88 43 95 45 100 
1000 46 92 40 87 37 79 

3 100 32 52 15 30 13 25 

1000 22 42 24 47 16 32 
4 100 25 43 23 45 22 44 

1000 46 741 30 204 29 52 

5 100 37 67 39 60 43 63 
1000 73 115 66 110 63 98 

6 100 15 31 11 23 9 19 

1000 8 17 8 17 7 15 
7 100 89 174 75 165 73 160 

1000 107 211 72 155 61 139 

8 100 71 110 40 79 31 60 

1000 47 84 68 131 30 57 

9 100 32 65 21 50 30 70 

1000 53 116 37 87 37 85 
10 100 74 123 92 141 75 115 

1000 370 616 345 583 277 456 

11 100 69 1202 30 56 26 47 
1000 98 1967 33 57 55 837 

12 100 49 80 10 19 17 32 

1000 129 166 12 24 14 27 
13 100 12 25 11 23 10 21 

1000 11 23 11 23 10 21 

14 100 122 156 14 28 11 20 
1000 130 166 15 29 15 27 

15 100 112 147 43 66 34 54 

1000 110 145 40 60 38 60 
Total   2157 7090 1343 2666 1199 2972 

 

 

Table 2. Relative efficiency of the new algorithms 
 FR algorithm BTQ algorithm BTC algorithm 

NI 100% 62.26% 55.58% 

NF 100% 37.60% 41.91% 

 
 

Problems numbers indicator (Table 1): 1) is the extended Rosenbrock, 2) is the extended White & 

Holst, 3) is the extended Beale, 4) is the generalized tridiagonal 1, 5) is the generalized tridiagonal 2, 6) is the 

extended PSC1, 7) is the extended Maratos, 8) is the extended Wood, 9) is the extended quadratic penalty 

QP2, 10) is the partial perturbed quadratic, 11) is the EDENSCH (CUTE), 12) is the DENSCHNC (CUTE), 

13) is the DENSCHNB (CUTE), 14) is the extended block-diagonal BD2, and 15) is the generalized quartic 

GQ2. Full details of these test problems can be found in Andrie [11]. 

 

 

5. CONCLUSIONS 

Practically, when the complexity and size of the test problem increase, greater improvements could be 

realized by the new algorithms because the new proposed algorithm is more stable and always preserves the 

descent search directions. Our reported results showed that the proposed methods are efficient for solving large-

scalc unconstrained optimization. Generally, the percentage performance of the new proposed algorithms BTQ and 

BTC can be computed as compared to the standard FR algorithm for the general tools NI, NR and NF. 
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