Indonesian Journal of Electrical Engineering and Computer Science
Vol. 25, No. 1, January 2022, pp. 25~34
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v25.i1.pp25-34 a 25

Optimizing the effect of charging electric vehicles on
distribution transformer using demand side management

Swapna Ganapaneni, Srinivasa Varma Pinni

Department of Electrical and Electronics Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India

Article Info

ABSTRACT

Article history:

Received Mar 14, 2021
Revised Oct 27, 2021

This paper mainly aims to present the demand side management (DSM) of electric ve-
hicles (EVs) by considering distribution transformer capacity at a residential area. The
objective functions are formulated to obtain charging schedule for individual owner
by i) minimizing the load variance and ii) price indicated charging mechanism. Both
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ii) minimizing overall charging cost, iii) lessening the peak load, and iv) avoiding
the overloading of distribution transformer. The proposed objective functions were
worked on a residential area with 8 houses each house with an EV connected to a
20 kVA distribution transformer. The formulations were tested in LINGO platform-
optimization modeling software for linear, nonlinear, and integer programming. The
results obtained were compared which gives good insight of EV load scheduling with-
out actual price prediction.
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1. INTRODUCTION

Electric vehicle (EV) is the one can satisfy the need of future transportation due to lack of enough
fossil fuels which tops the demand for electrical energy. In such a situation if charging and discharging of EVs
are not handled properly will overloads the grid. In this regard charging the EV at residential places is a key
issue resulting in several technical problems at the level of distribution transformer, demand side management
(DSM) is possibly a good solution.

An overview on the literature of DSM techniques is presented here. Rapid increase in day to day elec-
tricity demand, DSM helps to avoid utilities building extra capacity of the generation by means of decreasing
the peak demand through shifting and adjusting customers electricity consumption. DSM mainly involves three
programs like efficient energy management (EM), demand response (DR), effective load management (ELM)
by the customers [1]. Figure[I]represents the detailed classification of DSM.

Energy management (EM) mainly aims to reduce energy consumption which automatically minimizes
the energy cost. A good scope of energy management can be easily achieved in various sectors like industrial,
commercial, agricultural and even in households if energy saving tips are followed. Proper maintenance of
boilers, steam systems, compressed air systems, motor and drive systems, and lightening aspects, will lowers
the energy usage. Time to time audit of energy; awareness and training programs; and good metering and
billing systems, are the important aspects through which efficient energy management is obtained [[1].

Demand response (DR) is one important policy of DSM which concentrates mainly on the pricing
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system to manage the peak load. DR denotes “changes in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of electricity over time, or to incentive payments
designed to induce lower electricity use at times of high wholesale market prices or when system reliability is

jeopardized” [2]].
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Figure 1. Classification of demand side management techniques

Two major classification are done in the DR programs based on the pricing system are time-based
pricing system (TBPS) and incentive-based pricing system (IBPS) [3]. Direct load control (DLC), interrupt-
ible/curtailable service (I/CS), emergency demand response program (EDRP), capacity management (CM),
demand bidding (DB), ancillary service market (ASM) are classified under IBPS whereas time of use (ToU),
real time pricing (RTP), critical peak pricing (CPP) are categorized under TBPS.

— Direct load control (DLC): DLC is one approach of DR where customer’s loads are shuts down by the
utilities remotely on short notice for reliability problems. This is mainly executed on small consumers
like residential and small commercial customer [4]].

— Interruptible/curtailable service (I/CS): It is the program where customers on curtail of their equipment
gets a discount or credited on their bill when the system is under contingency and if they do not agree to
curtail, they are penalized.

— Emergency demand response program (EDRP): When an event occurs, emergency DR is a usual program
to implement. In the case of reliability events EDRP offers incentives to customers for reducing their
loads and cannot be penalized for not curtailing their load because the prices are pre-specified [3].

— Capacity management (CM): It is a demand side resource, during contingencies it commits to reduce
pre specified amount of load and penalizes the participants if they do not curtail the load on instructions.
Customers obliging the instructions are guaranteed to receive payments in exchange.

— ToU: Prices are set in advance but differs depending on the times of the day and will not reflect any
adjustments to the actual conditions of the system. Consumers will not have any incentives for reduced
consumption in electricity during peak periods and hourly metering is not required.

— RTP: Itis also termed as dynamic pricing as prices varies with real time conditions and reflects the actual
phenomenon of the system by providing best information about the power available at a location. Energy
consumption should be measured on hourly basis as it is charged appropriately, and customers are offered
with incentives for their reduced consumption of energy during peak periods.

— CPP: This is a dynamic pricing scheme where few peak hours are charged with high prices to reduce
peak demand and other time periods are charged with normal prices, there by permits the customers to
minimize their overall energy bill.
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Effective load management (ELM) techniques are the one where utility tries to reduce the peak con-
sumption by the subsequent approaches like peak clipping, valley filling, load shifting, strategic conservation,
strategic load growth, flexible load shape [6].

— Peak clipping: It is the way where load is reduced during peak time by means of DLC like shutting down
the equipment of the consumer. This method will not greatly influence the entire load curve but reflects
in reduction of load during peak period.

— Valley filling: It encourages energy consumption during off peak hours by the customers over offering in-
centives like allowing them to pay low tariff for changing their schedule to off peak hours, and discounts.

— Load shifting: This method aims to shift the load during peak hours to period where load is lessened
however overall demand remains constant in this phenomenon.

— Strategic conservation: It mainly drives to bring down seasonal energy consumption by encouraging
consumers towards the use of efficient devices and appliances, decreasing wastage of energy. It also
offers incentives to consumers who adopts technological changes in their usage.

— Strategic load growth: It mainly tries to control seasonal increase in energy consumption. The dealership
employs intelligent systems, effective devices and more viable sources of energy to reach their goals.

— Flexible load shape: It includes set of activities and integrated planning between concessionary and the
customer rendering to the requirement of the moment. Consumer loads are modeled with the help of
load limiting equipment such that there will not be much deviation in the actual load and will not disturb
security issues.

Upgrading the distribution transformer with penetration of EV in the distribution system is a cost ex-
pensive and unplanned charging of these EVs may cause the grid overloading. Therefore, a strategy DR is
applied to avoid overloading of transformers by considering the priority of each individual home and conve-
nience preference setting. However, impact of varying price signals is not considered in applying DR [7].

Real time optimal scheduling of a battery energy storage system is proposed to reduce peak load of
a building as an DSM technique to reduce cost of electrical energy in [8] and integration of renewable energy
sources are not considered. Microgrid grid resources were integrated to the Indian distribution system and have
been scheduled to reduce dependency on main grid and on the other hand peak loads were managed by means
of flexible load shaping which is a tool of DSM minimizes the customer’s dissatisfaction even diminished the
operation cost of micro grid [9].

PEVs charging control is done based on a new distributed random-access approach which does not
need centralized control and can be executed in real time. The work differs from the existing methodologies as
it considers the historical data to coordinate smart agents rather than RTP [10]]. Multi objective formulations
were done in [[11] to minimize total energy generation and cost associated for implementing DSM such that
energy planning was done in a decentralized manner, PEVs charging is shifted resulted in reduction of total
emissions and savings in cost.

Scheduling of PEVs at a building garage to reduce the peak load and energy cost is achieved in [12]]
by formulating an optimization model which minimizes the square of the Euclidean distance. Similarly, in
a decentralized system, non-cooperative game approach is followed for obtaining charging and discharging
schedules of the batteries and a distributed algorithm was developed where the total energy charging cost of a
PEV is minimized. However, a pricing mechanism for vehicle to building model is not proposed, impact of dis-
charging process of battery on its life is not evaluated, renewable energy sources integration is not considered.
Dynamic pricing mechanism is one of the possible solutions to achieve DSM was worked out in [13]] evaluated
the effects of herding unusual participation of customers, laziness of customers, and different usage group of
customers. Minimum size of the energy storage system is proposed in Plug in electric vehicle charging station
supported by renewable energy sources [14]].

Quadratic programming (QP) and multi agent system (MAS) approaches were discussed and com-
pared by Mets et al. in [[15] reduced the peak load and variability in the load of a distribution grid. MAS proved
to be the best however QP results give more optimal solutions. However, EVs charged at off peak time can be
helped to discharge their energy during peak periods back to the grid and vehicles arriving randomly to charge
at the workplace are not considered. A micro grid consisting of wind, photovoltaic generation, utilized the
stationary plug in hybrid electric vehicles by developing an optimal schedule for charging them to support the
dynamic nature of renewable resources is proposed in [16]]. A novel algorithm is proposed to charge large EV
fleet by predicting their load day a head satisfying grid constraints, the individual requirements of the customer
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like arrival and departure times, by minimizing their overall charging cost, developing their individual plans
in [17]]. Particle swarm optimization is implemented to optimally schedule the EVs in a coordinated manner
and minimized the active power losses compared to uncoordinated charging of EVs for an IEEE-33 bus radial
system [[18]. A meta heuristic algorithm used as optimization algorithm in [19] to optimize demand side of en-
hance time of use (ETOU) pricing for a commercial load demand and significantly analyzed that the technique
shifted the maximum demand from peak time to off peak time which minimized the cost of electricity. Impacts
of EV technology and how they help the world’s growing demand for energy is demonstrated in [20]].

Increase in number of EVs grows demand for electricity and to avoid interruptions in the grid, PV in-
tegration with EV charging station is presented thoroughly in [21]. Energy controller for micro grid is designed
in [22] to develop charging and discharging schedules of EVs by absorbing over produced electricity with the
integration of renewable energy and shaves the peak load of the micro grid.

This paper introduced an objective function to minimize the load variance and price indicated charging
mechanism for controlled scheduling of EVs during valley hours. Finally results obtained in both the methods
were compared and highlighted the best solution. The paper is outlined as follows: i) Section 2 consists of
problem formulation, modelling of EV load; ii) Section 3 consists of two objective functions formulations; and
iii) Section 4 summarizes the results by comparing both the scheduling schemes.

2. PROBLEM FORMULATION

The residential area under consideration is served by a 20 kVA distribution transformer from the grid.
It is having 8 houses and each house with an EV as shown in Figure [2| Each household load is the power
consumed for lighting, air conditioner, washing machine, and water heater. and not including the EV load. The
household load profile is adopted from [23]] which is in fact considered from the website of electric reliability
council of Texas (ERCOT), a South-Central Texas residential area. Basic household load profile of a day is
shown in Figure

2.1. Stochastic EV load modelling

As EVs charging adds extra load to the distribution transformer there is a need to know about their
daily travelling distances, estimating initial state of charge (SoC), starting time of charging to balance the
energy and to avoid upgrading the existing transformer. To account uncertainties in the behavior of EV load,
probabilistic distribution functions are used to estimate arrival time of the vehicle, distance travelled, initial
SoC and time required to charge its battery. As per national household travel survey (NHTS) 2009 report
which provides complete details of transportation in US, daily distance travelled by an EV follows Lognormal
distribution and arrival time of the vehicle follows Gaussian distribution functions.

Distance travelled by most of the people is around 20-25 miles a day and more than half of the people
travel less than 30 miles/day [23]. The travelled distance in miles per day can be approximated by Lognormal
distribution given by (1) with mean (y) of 3.37 and standard deviation (o) of 0.5 and it is shown in Figure 4]

1 )
Flist (d) = ——e~Und=n)/20" for 450 1
aist () = o e W
% of s0C; = [1 — (EC * dj)/Cbat] x 100 (2)

Based on the distance travelled initial state of charge (SoC) of all EVs can be estimated as following
from (2). Where soc; is the initial soc of 4t vehicle. d; is the distance travelled in miles by 4" vehicle.
E. is the energy consumed in kWh/miles. C},; is the battery capacity in kWh. The EV model considered
in this study is Nissan Leaf 2016 model, a car which solely runs on electricity with 24 kWh battery capacity
and having 0.28 kWh/miles consumption. Energy still required and time needed to charge the battery can be
obtained as from (3) and (4).

soc f — soc;

Ereq; = * Chat 3)

Where Ereq; energy required to fill 4" vehicle’s battery in kWh, 7 is the efficiency of the charger which is
considered as 0.95, SoC' is the final SoC to be attained by the end of the charging and (4),

Clime = ETeqj /P 4
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where Clipme is the charging time required to charge battery in Hours, P is the output power of the charger in
kW. Since it is assumed charging EVs is done at residential area from [24], [23]), level 1 charging output power
is 1.44 kW (120 V,12 A) and for level 2 it is 3.3 kW (240 V,14 A) are considered. Most of the household
owners charge their EVs after they return home from work at 16:00 to 21:00 according to NHTS 2009 report,
the randomness in connecting EVs to start charging follows Gaussian distribution as given in (6) with a mean
(n) of 17:00 and standard deviation (o) of 2.28. The distribution function is described as follows and the
distribution curve for arrival time of the EV is shown in Figure 3]

1
Fu(t) = ﬁe_(t_”)/%z, for 0<t<24 (5)

Transformer

Residential area

P

-5

Figure 2. Residential area served by distribution transformer under study
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Figure 3. Household load profile of a day

To come up with randomness in the arrival time and distance travelled by the EVs random function
is applied to their probability distribution function such that arrival time and distance travelled by each EV are
obtained. The uncontrolled load curve which include EVs along with household load, household load and EV
load are shown in Figure [f] and Figure [7] respectively for level 1 and level 2 charging. The uncontrolled load
results from household load and EVs load when every household owner connects their EV immediately they
arrive home. It is observed that from Figure [5] and Figure [6] due to uncontrolled charging of EVs distribution
transformer is overloaded for 4 hours about 25% in level 1 whereas for almost 2 hours to 50% in level 2
charging.
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3.  OPTIMIZATION PROBLEMS FOR CONTROLLED CHARGING OF EVS

In this section two objective function are designed based on DSM methodologies to control the charg-
ing of EVs such that optimal schedule of EVs are obtained which allows distribution transformer to operate
within its capacity limits.

3.1. Method 1: Minimizing load variance
The idea behind this objective function is to reduce load during peak hours, flatten the load curve
which minimizes the variance of energy required in a day. Minimizing the difference of load between off peak
hours and peak hours helps the distribution transformer to function at high efficiency. Appropriate Scheduling
of EVs achieves this objective more easily. The objective formulation of DSM can be expressed as follows and
EV,; is the optimization variable.
24 8 2
Minimize { T — Z Z (Hij + EVj) (6)
i=1 j=1
Where 7 is the total load profile to be met in a day in kW. H;; is the j th home load profile at i** time period in
kW. EV;; is the charging power of the j'"* vehicle at i*" time period in kW.

8 /24
and 7 = Z <Z H;; + Ereq])

j=1 \i=1
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Subjected to following constraints,

td
v j soc;+ »  EVijx n< Ereq,
1=ta
ViandVj 0 < EV;; < Emax;
8
Vi (HZJ + EVZ] ) é Ptrans
=1

J

where Soc; is the existing soc of the j"* vehicle before it connects for charging in kW. 1 is the efficiency of the
charger which is considered as 0.95. Ereq; charging power needed to fill j th vehicle’s battery in kW. Emax;
is the power rating of the charger in kW. P;,.,,,s transformer load in kW. ta,td are arrival and departure times
respectively.

3.2. Method 2: Price indicated charging mechanism

The charging price of the EVs mainly depends on the fluctuations in the load. Prior information
about electricity price helps consumers to shift their load from peak period to off peak period. The main aim
of this objective is to shift load from peak hours to off peak hours with the help of a price indicator. Thus,
this objective function schedules the charging of EVs more optimally without knowledge of real time prices
such that it minimizes the charging cost of the EVs and prevents distribution transformer getting overloaded.
Therefore, the objective function is (7),

24 24 8
MIN (Y Ei+Y > Py*Ci (7)
i=1 i=1 j=1
where

and E; is the total household load profile at i*" hour in kW. P;; is the charging power of the j th vehicle at i'"
time period in kW. C; is the price indicator which is the ratio of household load at i th period to the average
household load of the day. §; is the household load at i th period in kW. - is the average household load of the
day in kW.

4. SIMULATION RESULTS

This section presents the results of the proposed optimization problems in two different charging
levels. The proposed objectives are evaluated in LINGO platform. The aim is to achieve charging plan of
each vehicle while satisfying the capacity of the distribution transformer capacity, minimizing the total cost of
charging EVs and filling the batteries to 90% of the SoC. The optimization is performed on a residential area
with household load, EV load obtained from stochastic modelling and the total load on distribution transformer
based on uncontrolled charging of EVs. Here total load represents the sum of household load and EVs load.
Figure[6|and Figure[7) presents the 20 kVA distribution transformer overloading condition for level 1 and level 2
respectively for uncontrolled charging of EVs. Figure[]and Figure[9|for level 1 and level 2 respectively shows
the same after implementing the optimization for method 1 alleviating the problem of distribution transformer
overload condition while satisfying the EV owner requirements like arrival time, departure time and ensuring
that the battery reaches 90% of SoC.

The optimization problem in method 2 i.e. Price indicated charging mechanism is analysed on level
2 charging as more power is required to charge EVs in less duration when compared to level 1 and resulted
in significant peaks as shown in Figure|/| The optimization results show that EVs load is scheduled such that
the total load curve is well below within the rated capacity of distribution transformer which minimises the
overall cost of the electricity. However off-peak hours from 1:00 to 8:00 are turned out to be peak hours which
is treated as price indicated uncontrolled charging as shown in Figure 10}

From the household load profile of a day shown in Figure [3] off peak hours are from 1:00 to 10:00.
Overall charging cost of EVs are further minimised by slightly adjusting the departure time of vehicles up to
10:00 am. Figure|l1|shows the price indicated controlled charging of EVs.
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4.1. Comparison of proposed optimization methods for level 2 charging

The household load, EV load and total load of the distribution transformer when EV's are connected in
level 2 charging mode based on uncontrolled charging, minimising load variance and price indicated charging
mechanisms are presented in the Figure [I2] and Figure [I3] respectively. After performing the proposed opti-
mization methods for DSM, without disturbing non EV load i.e household load by proper management of EVs,
distribution transformer overloading problem is solved.

From the Figure[T2]it can be observed that alone considering household load is well below the limits
of the transformer but the total load of transformer along with household load when EVs are connected in un-
controlled manner overloaded the distribution transformer from 100 to 150% of its capacity for almost 3 hours
during peak hours in the night. So, to minimize the load fluctuations and peak load the above implemented
optimizations resulted in total load of controlled charging of EVs, total load of price indicated uncontrolled
charging of EVs, total load of price indicated controlled charging of EVs. Out of which price indicated con-
trolled charging of EVs balanced the system very well in terms of the total load on the transformer and in
minimizing the charging price of the EVs. In price indicated uncontrolled charging though the total load on
distribution transformer is well up to the capacity of transformer, off peak hours are loaded to full extent of
the transformer capacity which may result in increase of charging prices of EVs compared to price indicated
controlled charging. So, even though there is a slight violation in the departure times of vehicles price indicated
controlled charging seems to be best when compared to controlled and price indicated uncontrolled charging.
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However, without having the knowledge of price fluctuations, not disturbing the household load while satisfy-
ing EV owner’s requirements EVs load is scheduled in an optimal manner by adopting the transformer limits
in minimizing the load variance optimization i.e method 1. Therefore, out of the three cases if price is not a
constraint controlled charging of EVs, Price indicated uncontrolled charging yields the good solution to the
residential area as well as to the distribution grid following all their requirements even optimizing the cost of
charging EVs to most possible extent. Similarly, if there is minor flexibility considered in departure time of
EVs above all price indicated controlled charging gives the best solution obeying the limits on the transformer
as well as minimizing overall charging cost of EVs further proceeded to satisfy the EV owner requirements.
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—S—Household Inad

=& Uncontrolled EV load
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Figure 12. Household load, comparison of EV
load of uncontrolled, controlled, price
indicated uncontrolled, price indicated
controlled for level 2 charging of EVs
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Figure 13. Household load, comparison of total
load of uncontrolled, controlled, price
indicated uncontrolled, price indicated
controlled for level 2 charging of EVs

5. CONCLUSION

This paper firstly presented the methodology to model the stochastic EV load and total load at a res-
idential area including EV load is calculated. As uncontrolled charging of EVs resulted in overloading of
distribution transformer, demand side management techniques are implemented. The proposed optimization
methods alleviated the problem of overloading transformer. Total load on the distribution transformer is com-
pared in all the approaches. It is observed that method one minimized the load fluctuations by shifting EV load
from peak hours to off peak hours and method two is implemented where EVs load is scheduled during low
price hours and no knowledge on fluctuations in real time price is needed. Both methods satisfied the constraint
on the transformer capacity, avoided peak load on the system, minimized the charging cost of EVs and sched-
uled them within the given time limit. We also presented the price indicated controlled charging mechanism
which further optimized the charging price of EVs with slight deviation in departure times.
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