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 Battery management system is compulsory for long life and effective 

utilization of lithium ion battery. State of charge (SOC) is key parameter of 

battery management system. SOC estimation isn’t an easy job. Effective 

estimation of SOC involves complex algorithms where. Conventional 
methods of SOC estimation does not take continuously varying battery 

parameters into account thus large noise in both voltage and current signal 

are observed resulting in inaccurate estimation of SOC. Therefore, in order 

to improve the accuracy and precision in SOC estimation, improved adaptive 
algorithms with better filtering are employed and discussed in this paper. 

These adaptive algorithms calculate time varying battery parameters and 

SOC estimation are performed while bringing both time scales into account. 

These time scales may be slow-varying characteristics or fast-varying 
characteristics of battery. Some experimentations papers have proved that 

these adaptive filter algorithms protect battery from severe degradation and 

accurately calculate battery SOC. This paper reviews all previously known 

adaptive filter algorithms, which is the future of the electrical vehicles. At 
the end, a comparison is built based upon recent papers which talked on 

SOC at their differences in control strategies, efficiency, effectiveness, 

reliability, computational time and cost. 
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1. INTRODUCTION 

Electrical energy is much necessary to support life in current era whereas advancement in 

electrification has raised our dependency on electric and electronic devices [1]. Human efforts have been 

minimized by the use of smart devices. Electrical machines perform desired jobs with higher accuracy and 

efficiency [2], [3]. These power devices offer smart control for operations. The advancement in electrical 

technology has made it possible to operate electrical power devices even in absence of nearby power outlets 

[4]. The electric vehicle mobility is only made possible by the use of efficient storage devices [5]. These high 

energy storage capacity batteries have capability to support diverse power applications. A mobile phone to an 

electric vehicle, every electrically driven machine depends on batteries for their operation as a consequence 

of advancement in battery technology [6] Electric vehicle is getting high fame and appreciation by the 

manufacturers and customers [7]. Electric car requires a consistent flow of energy to perform efficient zero 

emission transportation. The power sources like wind and solar cannot be employed for charging electric 

vehicles [8], [9]. This high supply demand chain of energy is only ensured by use of batteries for complete 

regulated balanced power supply for operations [10].  

https://creativecommons.org/licenses/by-sa/4.0/
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This increasing use of power devices has induced a high load on energy storage devices to support 

machine functionality for longer time This long-time battery power backup is provided by the development 

of lithium-ion batteries [11]. This battery has revolutionized battery technology by offering a very high 

specific energy and high energy density [12]. This battery pack is consisted of series of lithium-based cells. 

lithium-ion battery is considered as powerhouse for electrically driven machines. lithium is lightest metal 

with low standard reduction potential thus offering high energy density [13], [14]. Meanwhile, lithium is 

highly reactive as well so a proper battery management system is really necessary to ensure safety and long 

life of lithium-based batteries [15]. Battery management system (BMS) is important for better utilization and 

implementation of battery’s potential and capacity to maximize the cycle life of Battery [16]. One of the very 

important features of BMS is estimation of state of charge [17]. An illustration of BMS is shown in Figure 1. 

One of the important parameters for battery safety is state of charge (SOC). SOC maintains battery in safe 

limits of charge and discharge. SOC is actually present amount of battery capacity andenables batteries to 

maintain certain levels of charge and discharge that could enhance its life span [18]. SOC acts as major 

parameter for management of batteries. Accurate estimation of SOC provides system stability and reduces 

harmful effects of battery aging on entire system of operation [19] and itavoids unsuitable overcharge and 

over discharge [20]. 

SOC is not calculated directly. It involves battery characteristics and parameters. The conventional 

SOC estimation methods like coulomb counting, model based, pen circuit voltage and internal resistance 

methods suffers through accumulation of few errors leading to major glitch in output resulting in inaccurate 

estimation of SOC [21]. Additionally, many chemical changes in battery and battery parameters are not taken 

into consideration fully so there is always a chance of error in estimation of exact SOC. Due to 

manufacturing differences, all batteries do not show a linear behavior towards charging and discharging [22]. 

This conditzion results in voltage imbalance for different batteries. Therefore, a cell showing with 100% 

SOC may not necessarily indicate the actual SOC of the battery. accurate estimation of SOC could only be 

performed by continuous monitoring of each cell in battery [23]. This is made possible through adaptive 

higher level of precise adaptive accurate algorithms [24]. In this paper adaptive filter algorithms for SOC 

estimation are discussed in detail. A comparative analysis is drawn based upon certain parameters. 
 

 

 
 

Figure 1. SOC estimation schematic diagram 

 

 

2. ADAPTIVE FILTER ALGORITHM 

The adaptive filter algorithems are widely used for accurate estimation of battery SOC. Adaptive 

filter algorithms provides a lossless transformation and low system complexity. Adaptive filter algorithms are 

of seven basic types. Figure 2 illustrates the types of adaptive filter algorithms for SOC estimation. 

 

 

 
 

Figure 2. Types of adaptive filter algorithms for soc estimation 
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2.1.  Kalman filter (KF) 

Kalman filter is one of the well-known techniques to estimate of SOC for the battery system. This 

method is also used for target tracking and navigation. This method provides wonderful solution for state 

observation and prediction. Kalman filter effectively estimates SOC of battery by filtering external 

disturbances and noises caused due to Gaussian distribution. This method involves high mathematical 

calculations and particular sampling interval. SOC of battery calculated by this method is thought to be more 

accurate. One of the more advantageous fact about Kalman filter is that it can assess system conditions like 

temperature and model parameters like noise with a better accuracy. Kalman filter estimates SOC as well as 

state parameters of battery. The key feature of Kalman filter is that it can minimize sum of squared errors 

between actual value and estimated value of states. This filter operates in two states. The first stage is 

predictive stage. In the first stage, state parameters and SOC are estimated along with gaussian noise. The 

second stage is called corrector stage. At this stage, noise and external disturbances are filtered and accurate 

estimation of battery SOC and parameters are obtained. Kalman filter predicts current state 𝑋𝑘of system from 

earlier estimated state 𝑋𝑘−1
 and then predicts SOC after filtering results [25]. 

 

𝑋𝑘+1
= 𝐴𝑘𝑋𝑘

+ 𝐵𝑘𝑈𝑘
+ 𝑊𝐾  (14) 

 

𝑌+1= 𝐶𝑘𝑋𝑘
+ 𝐷𝑘𝑈𝑘

+ 𝑉𝐾  (15) 

 

Here X is state of the system, U is the control input to the system, W is processing noise governed by 

gaussian distribution, Y is measured input, V is measured external noise while A, B, C, D are the covariance 

matrixes. As, the system is dynamic so these matrixes are time varying. The overall system dynamics are 

expressed through these matrixes given in [26]. In Kalman filtering, nonideal factors are reduced to zero and 

precise estimation of battery SOC is carried out. Kalman filter has a diverse utility. It can be applied for 

effective SOC estimation of almost all types of batteries because its estimation is based upon battery’s 

chemical properties not only its terminal voltage. Kalman filter also helps to measure battery state of health 

where it calculates internal resistance or self-impedance of each cell inside battery. Experimentally, Kalman 

filter implementation proved that ohmic resistances inside battery are not uniform which may sometimes lead 

to overcharge/discharge which has been discussed in [27]. As battery itself is a highly nonlinear system. 

Along other state transitions, it also undergoes through self-discharge and corrosion. A stochastic fuzzy 

neural network based extended Kalman filter particularly utilized where the acceptable estimate for SOC is to 

be calculated. Whereas maximum error of SOC estimation is 0.6% when compared to real SOC upon 

discharge test [28]. 

 

2.2.  Extended Kalman filter (EKF) 

Battery is a highly non-linear time varying system. It is quite hard to calculate exact SOC of battery 

due to its nonlinearity and various electrochemical processes. Extended Kalman filter is sophisticated 

mechanism where it is based upon extended Kalman filter greatly depends upon battery model and its 

electrochemical characteristics. System accuracy depends upon electrodynamics of battery and system noise, 

mean value of voltage, pertinence, covariance matrix [29]. Extended Kalman filter is used to measure battery 

SOC with improved accuracy and adopts system conditions. Extended Kalman filter minimizes mean of 

squared errors during the process and filter the estimations using measured noise covariance. Identification 

and estimation of the model parameters is greatly improved by this genetic algorithm [30]. Extended Kalman 

filter provides approximation of nonlinearity. Some experimental results showed that extended Kalman filter 

has better accuracy. The estimated value has smaller initial error of ±5% to real values [31]. Extended 

Kalman filter is employed to reduce the process noise thus model achieves most precise battery SOC results 

from unknown initial SOC. In particular lithium iron phosphete LiFePO4 battery, dual extended Kalman 

filter estimates battery SOC with maximum error of 4% [32]. There is another modification of Kalman filter 

called adoptive extended Kalman filter which uses improved Thevenin battery model for correct estimation 

of robust SOC of li-ion battery. The simulation results of adopted extended Kalman filter are more accurate 

and its system stability is more reliable then extended Kalman filter. It is confirmed through experimentation 

as well as from theory that adoptive extended Kalman filter estimated battery SOC by decreasing error from 

3.16% to 1.06%. 

 

2.3.  Unscented Kalman filter (UKF) 

Extended Kalman filter provides solution of SOC estimation for nonlinearities of first and second 

order battery model. It is not necessary that for each type of battery to have same order. There may exist 

some big errors especially when state-space model is nonlinear and abnormal in behavior. In previous models 
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discuissed above, estimated voltage was compared to the measured voltage. This difference between these 

two voltages was considered as correction term which adjusts battery SOC. This method is not effective for 

models involving significant errors. In order to resolve this problem, a modified method for battery SOC 

estimation was introduced for all state-space models with higher order of nonlinearity. This method is called 

unscented Kalman filter. This method helps to estimate all random parameters propagating in any nonlinear 

system. Here state distribution is represented as sigma points. These sigma points are actually mean and 

covariance of the state distribution in a complete nonlinear system. Unscented Kalman filter offers more 

accuracy and robustness as compare to extended Kalman filter. The unscented Kalman filter brings all 

random parameters under consideration in real time. This method uses OCV battery model with resistance 

connected in series. The implementation of Kalman filter reduces real mean square (RMS) errors of all cases 

to 3.1%, from 6% [33]. Battery voltage model and coulomb counting method is combined through unscented 

Kalman filter to determine battery parameters and state of charge. Coulomb counting method based dynamic 

SOC estimation model is developed with a correction factor for reducing error and increasing output 

precision. In particular LiFePO4 battery, this method reduces RMS errors to less than 3%. This is the best 

strategy to estimate SOC of each unit within battery. Unscented Kalman filter accepts unit to unit variation, 

observe, evaluate and optimize SOC value for each unit within battery. Unscented Kalman filter is a real time 

SOC estimation and error correction system so it has a wonderful ability to adjust with changing environment 

and time varying parameters of state. Unscented Kalman filter protects battery from over 

charging/discharging thus enhancing life of the battery [34]. Unscented Kalman filter is advantage of being 

closed loop which governs self-corrections. An adaptive unscented Kalman filter is designed for online 

estimation of SOC of electric vehicle batteries. This method has an adaptivity to attain conditions and predict 

noise covariances through output voltage sequence of zero-state hysteresis battery model. This adoptive 

algorithm has very low computational load so recursive SOC estimation of battery can be performed. 

 

2.4.  Sigma point Kalman filter (SPKF) 

In previous battery SOC estimation methods, battery model adopted was highly complex and 

involved greater nonlinearity. This behavior of the system is not easy to understand. This type of system 

involves multiple parameters. The SOC estimation of battery completely depends on state parameters. In 

order to calculate state parameters and SOC of battery an improved algorithm from unscented Kalman filter 

is introduced. This new improved algorithm is called sigma point Kalman filter. Sigma point Kalman filters 

uses sets of sigma points which represents mean and covariance of system. Mean and covariance of the 

model helps to calculate state parameters. This provides sufficient electrodynamic information for further 

estimation of SOC of battery. Sigma point Kalman filter is used widely for battery SOC estimation because it 

involves least complexity and takes less computation time. This model does not need Jacobian matrices to 

compute original values or derivatives. Sigma points provide simpler and sufficient replacement to this 

complex electrochemical data set of battery. Experimental results proved that SOC estimation of LiFeP04 

battery through sigma points Kalman filter offers more accuracy and high robustness [35]. The convergence 

behavior of sigma point Kalman filter makes it robust solution for SOC estimation of lithiumion batteries. 

Sigma point Kalman filter is cost efficient to implement. It involves a very low memory space. 

 

2.5.  Particle filter (PF) 

Most lithium-ion batteries in electric vehicles possess micro hysteresis during partial cycling. This 

micro hysteresis leads to major variations in state parameters of battery. It becomes hard for common 

Kalman filter to assess these parameters accurately [36]. Particle filter algorithm is applied to estimate states. 

Particle filter algorithm estimates probability density function using Monte Carlo simulation technique with 

set of random particles. Particle filter is effective even in non-gaussian distributions. Particle filters 

stochastically model behavior multimodal distributed lithium-ion battery with hysteresis in open circuit 

voltage. Particle filter estimates state of health of battery and state of charge of battery. Total available charge 

and battery capacity is represented by set of particles of any sample size. These sets do not have same size 

and each represent a particular quantity. Particle filter uses these sets of information to approximate state of 

charge and state of health of battery as well [37]. This algorithm is different in nature that it calculates an 

error free correct value before computation by stochastic processes while all previous algorithms correct 

value at the end by filtering error from final results. This particular filter enhances efficiency, robustness and 

addresses the hysteresis within battery. Unscented particle filter algorithm was devised the approximation 

purposes for almost all high-power lithium-ion batteries. Model considered was studied under the influence 

of drift noise, temperature, charging and discharging rate and operational. This type of filter method reduces 

root mean squared error and maximum absolute error to 12.6% while this error in extended Kalman filter and 

unscented Kalman filter was 30.2% [20]. 
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2.6.  Unscented particle filter 

SOC estimation method is quite influenced by the battery characteristics stated in [38], [39]. By 

using common Kalman filter and particle filter there are a big probability of error generation [40]. So, for the 

accurate SOC estimation of battery in EVs, modified algorithm-based methodology called unscented particle 

filter is introduced in [41]. The advantage of using unscented particle filter is its ability to sharply determine 

search range which helps in identification of battery model parameters. So, the probability of system failure 

is reduced and effective SOC estimation control is established, having high recognition accuracy [42]. 

Unscented particle filter can realize online dynamic parameters to enhance accuracy. In addition, unscented 

particle filter considers the complex environmental and operational conditions for battery in electric vehicles. 

Unscented particle filter has higher accuracy and system stability as compared to SOC estimation method 

based on least square unscented particle filter [43], [44]. This strategy uses for reduction of the computational 

complexity of system. This method helps genetic algorithm to converge quickly and accurately. The 

proposed algorithm is suitable for complex system identifications [45]. Finally, this algorithm will improve 

the accuracy of SOC estimation. This algorithm considers the accuracy, complexity, dynamic characteristics, 

temperature as well as some of the other factors power battery models. Some of these battery models are 

Rind model, Thevenin model, partnership for a new generation of vehicles (PNGV) model, and general 

nonlinear (GNL) model, and few more given in [46], [47].  

 

2.7.  H∞ filter 

H∞ is second order RC filter circuit. This filter is effective for high accuracy and robustness in 

uncertain environments. It is designed to estimate battery SOC considering time varying parameters. This is 

advantageous technique to estimate SOC because it considers effects of real time shift in characteristics of 

state parameters. Process noise and measurement noise characteristics are not needed to be pre-defined as it 

monitors real time shift in their values. This type of filter achieves SOC estimation with an acceptable error 

of 2.49% [48]. Adoptive H∞ filter uses universal linear model and some free parameters to estimate battery 

SOC. These free parameters are identified and recorded as functions of battery SOC. These functions are 

calculated through polynomial expression and least square methods. Time varying parameters are tuned and 

approximated to reduce system complexity minimize computation time and memory utility. This adoptive 

H∞ filter provides noise attenuation and enhances output precision [49]. This type of filter possesses high 

accuracy, low computational time and involves low cost of implementation. 

 

2.8.  Recursive least square (RLS) 

Recursive least square is another method been implemented in time varying systems for SOC. It 

represents dynamic voltage behavior and calibrates battery parameters. This is adoptive dynamic model with 

a forgetting factor with recursive least squares algorithm. Recursive least square uses recurrent neural 

network for adaptive model-based estimation of battery SOC. This type of SOC estimation uses battery 

model with three major parts. The first is Nernst equation. This Nernst equation is used to express 

relationship between SOC and OCV. Second part is a zero-state hysteresis correction term for parameter 

correction of hysteresis effect and third part is first-order RC network for stimulation of transient response 

and relaxation effect. This method predicts voltage of battery with negligible error of 0.1% as given in [50]. 

Recurrent neural network based SOC predictor uses full operating range of battery pack independent of 

over/under charged cells. This SOC predictor is based upon recursive least square algorithm with time 

varying forgetting factor. This advanced method helps to understand dynamic behavior of the Li-ion battery 

cell and its dynamic parameters. SOC-estimation error and measurement noise are calculated and gross 

output value is reduced to genuine value which results in higher precision of SOC estimated values in real 

time. Artificial neural network makes it possible to check dependencies and an uncertainty involved in SOC 

estimation and helps to understand nonlinear dynamic and complex behavior of battery system. A very large 

number of data points, representing all battery levels and state parameters helps to produce most accurate 

estimation of battery SOC [51]. Battery SOC can be calculated through this method with high accuracy and 

acceptable error of 2.121%. 

 

 

3. COMPARATIVE ANALYSIS OF ADAPTIVE FILTER ALGORITHM FOR SOC 

ESTIMATION OF LITHIUM ION BATTERIES 

Table 1. Shows the comparative analysis of SOC estimation methods for lithium ion battery with 

average error and cost. Moreover, the advantages and disadvantages of each is given. An effective 

comparison is drawn between all the algorithms based upon their average accuracy. 
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Table 1. Comparative analysis of SOC estimation methods for lithium ion battery 

S.# Name 
Avg. 

errors 
Cost 

System 

complexity 
Advantage Disadvantage 

Avg. 

accuracy 

Computation 

time 

1 KF [28], [34] ≤ ±1.76% High High High accuracy 
Complex 

computation 
≥98.5% Low 

2 EKF [39], [52] ≤ ±1% High High 
Dynamic state 

prediction 

Limited 

robustness 
≥99% Low 

3 
UKF [33], 

[34], [41] 
≤ ±4% Medium Medium 

Nonlinear 

compatibility 

Poor 

robustness 
≥97% Low 

4 
SPKF [38], 

[53] 
≤ ±2% Low Low 

Better 

robustness 

Heavy 

calculation 
≥98% Medium 

5 PF [37], [42] ≤ ±1.02% High High 
Fast 

computation 

Complex 

calculations 
≥99% Low 

6 H∞ Filter [54] ≤ ±2.49% Low Medium 
High time 

efficiency 
Hysteresis 
effects accuracy 

≥97.5% Low 

7 
RLS [50], [55], 

[56] 
≤ ±1.03% High High 

Eliminates 

noise 

System 

instability 
≥99% Low 

8 UPF [20], [41] ≤ ±2.6% High High 
Online error 

reduction 

Large memory 

unit 
≥98.2% Low 

 

 

4. CONCLUSION 

This paper reviews multiple algorithms for SOC estimation of lithium ion battery. A detailed study 

of each adaptive filter algorithm is done in this paper. Each adaptive filter algorithm is discussed in terms of 

its control concept, efficiency, reliability, average error and maximum accuracy. This paper reviewed 

adaptive filter algorithms for SOC estimation of lithium ion batteries. Each method is explained based on its 

operational strategy and its impacts on estimation precision. Each method is being analyzed on different 

operational conditions. This paper provides a comparative analysis of all known adaptive filter algorithms for 

SOC estimation of lithium ion battery. In electric cars using lithium ion batteries SOC estimator acts as fuel 

gauge. Accurate estimation of battery SOC isn’t easy. This paper presents some basic knowledge regarding 

SOC estimation concepts using adaptive filter algorithms and their significance.  
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