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 Coronavirus disease of 2019 (COVID-19) pandemic has caused over  

230 million infections with more than 4 million deaths worldwide. 

Researches have been using various mathematical and simulation techniques 

to estimate the future trends of the pandemic to help the policymakers and 
healthcare fraternity. Agent-based models (ABM) could provide accurate 

projections than the compartmental models that have been largely used. The 

present study involves a simulation of ABM using a synthetic population 

from India to analyze the effects of interventions on the spread of the disease. 
A disease model with various states representing the possible progression of 

the disease was developed and simulated using AnyLogic. The results 

indicated that imposing stricter non-pharmaceutical interventions (NPI) 

lowered the peak values of infections, the proportion of critical patients, and 
the deceased. Stricter interventions offer a larger time window for the 

healthcare fraternity to enhance preparedness. The findings of this research 

could act as a start-point to understand the benefits of ABM-based models 

for projecting infectious diseases and analyzing the effects of NPI imposed. 
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1. INTRODUCTION 

SARS-CoV-2 or Coronavirus disease of 2019 (COVID-19) layed its mark in India on January 30, 

2020, during when World Health Organization (WHO) announced it was a pandemic [1]. It has created a 

global emergency by spanning across 221 territories and countries with 230,362,559 infections and 4,723,957 

mortalities as of September 21, 2021 [2]. In India, the pandemic has caused 33,532,349 infections with 

445,808 deaths and 32,776,358 recoveries as of September 21, 2021 [2]. This majorly bothers countries like 

India, which has a denser population. The transmission of the infection is governed by multiple parameters 

including the level of air pollution, viral load, presence of comorbidities, age, and others. Imposing 

restrictions to movement and imposing lockdowns to avoid crowding, unnecessary movements, and others 

could be some steadfast non-pharmaceutical interventions (NPIs) to curtail the spread of infection. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:sp_anbu@cb.amrita.edu
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Understanding the transmission mode, dynamics, and timeframe of infection are important to provide an 

effective response to the pandemic [3]. 

Simulation and modeling are proven techniques capable of producing accurate estimates by wiping 

out the investment of cost, time, and risks. In India, most of the research works have employed 

compartmental models to provide COVID-19 estimates. Modified versions of the susceptible (S), infected (I), 

and recovered (R) models have been employed to add a few more states depending on study requirements. 

Susceptible (S), exposed (E), symptomatic (I), purely asymptomatic (P), hospitalized or quarantined (H), 

recovered (R) and deceased (D) (SIPHERD) [4], susceptible (S), exposed (E), infective (I) and recovered (R) 

(SEIR) [5], [6], and a few analytical models [7], have been employed. As these models consider entities in 

each compartment to be homogeneous, they do not incorporate individual-level details. However, these can 

be achieved through the agent-based modeling (ABM) approach that provides the choice of defining agent-

level parameters and defining the interactions between them [8]. Owing to the evolving technological 

competencies and the ability of ABMs to deliver more accurate results, these have attracted researchers from 

several domains, in particular those like healthcare that demand a higher level of accuracy [9]. The bottom-up 

approach followed by these models works such that the behavior of the system is the resultant of those of the 

individual agents [10], [11]. Encompassment of such agent-level details and interactions make them more apt 

to be used for comprehending transmission of close contact infections. 

ABMs have marked their presence to have been employed to address numerous problems relating 

COVID-19 such as effect of imposing and lifting of lockdowns and devising suitable intervention  

strategies [12]-[16], maintaining self-hygiene [14], [16], [17], transmission dynamics from infected people 

(man-man) and objects (airborne particulates) [14], time-dependent contacts [14], [16], shielding the 

vulnerable cohorts [16], [18], contact tracking at different locations [13], [17], [18], effect of viral load [17], 

genomic sequencing [19], and others. ABM-based recommendations for capacity planning of healthcare 

systems in India to handle the surge of infections and hospitalization was presented together by the center for 

disease dynamics, economics and policy (CDDEP) and Princeton University [20]. Models that represent the 

entire nation would be less helpful for policy-making as most of the strategies are devised locally based on 

the severity of infection. The methodologies of these studies with those that focus on individuals such as 

assessing the user experience [21], interactive chatbots to tackle mental health [22], wearable devices for 

real-time monitoring [23], and others, could help in lower-level analysis. It is more practical to tailor-make 

the interventions as some particularities such as migrant population, contact pattern, type of employments/ 

occupation, and others vary with location. It is evident from the literature that though ABMs can include 

granular information, technological capabilities need to be well developed. This study involves an ABM 

approach to compare the effects of various NPI scenarios on the spread of infection using a synthetic 

population from Telangana state, India. The study could provide a framework to help the decision-making 

using localized parameters. 

 

 

2. RESEARCH METHOD 

2.1.  Study design 
The area under study was a part of the Rangareddy district comprising of 5,48,323 agents. AnyLogic 

8.5.2 University edition was used to develop and simulate the ABM [24]. The study adheres to the standards 

of the international society for pharmacoeconomics and outcomes research (ISPOR-SMDM) modeling good 

research practices and ethical good practice in modeling [25], [26]. In this way, the variables chosen for 

study, scope, assumptions, and shortcomings were made clear to the readers. 

 

2.2.  Synthetic population 

Creating a synthetic population is classified among the successful techniques to represent a 

population whilst maintaining the confidentiality of each person. Synthetic populations are statistically 

comparable with the corresponding actual populations that they represent [27]. This study uses 5,48,323 

agents that represent 10.35% of Rangareddy’s population (52,96,741) according to Census of India 2011. To 

present age-wise discrimination, the population was split into three groups consisting of people aged less than 

5, from 5 to 59, and 60 and above consisting of 47,039, 4,59,372, and 41,912 agents respectively. 

 

2.3.  Transmission rates of COVID-19 

The transmission rate used in the study ranged from 1 to 10 percent as reported by the WHO (16-24 

Feb 2020) [28]. Lockdowns reduce the number of contacts made with agents but have no effect on the 

transmission rate. But, NPIs such as mask or social distancing could reduce the transmission rate directly.  
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2.4.  Contact network 

The transmission dynamics is governed by the contact network. The study conducted by  

Kumar et al. in Ballabgarh, India aimed to define the contact rate that would be useful for the study of close-

contact infections [29]. This was used as a reference to define contact rates for the present study. Arena’s 

(Version 16.00.00002) ‘Input Analyzer’ was used to derive the distributions for the number of people 

contacted by people of each age-groups. However, there are errors linked to these distributions generated as 

shown in Table 1. 
 

 

Table 1. Contact rate distribution of Ballabgarh [29] 

Age 
Population 

size 

Average contacts 

made each day 
Minimum Maximum Contact rates’ distribution  

Square Error 

(x10-3) 

Less than 5 378 15.11 4 48 Norm(15.1,  6.82) 6.6 

5 to 59 2185 17.19 1 67 Norm(17.2,  8.01) 3.2 

60 and above 380 12.86 1 41 Norm(12.9,  5.49) 2.3 

 

 

The proportion of population across the townships in India was used to derive the population 

densities as shown in Table 2 [30]. These were used to define the contact rates for these townships assuming a 

density-dependent (DD) contact rate using Ballabgarh’s population density (551 people/km2) as reference [29]. 

The slope in (1) is used to derive the contact rates for each age group based on the product of the proportion 

of the population in each township weighed according to their corresponding multiplication factors (Table 2). 

These multiplication factors were multiplied by the number of people contacted by each person and the 

resultant dataset was passed into the input analyzer to get the distribution followed. Lognormal was found to 

be the best fit distribution as shown in Table 3. 

 

Contact rate =  Slope × 
Population 

Area
 (1) 

 

 

Table 2. Indian township classification with population statistics [30] 
Census classification Population density per km2 Proportion of Indian population (%) Multiplication factor 
Statutory town 3977 26.3 7.22 
Census town 2069 4.5 3.75 
Outgrowth 1241 0.4 2.25 
Village 292 68.9 0.53 

 

 

Table 3. Parameters for the model 
Variables <5 5-59 >59 References 

Contacts made each day (age-wise) 

<5 Lognormal(2.77.0.90,6)  [29], [30] 

5 to 59 Lognormal(2.88,0.86,6) 

60+ Lognormal(2.60,0.84,5) 

Transmission rate upon contact  Random (1 to 10) percent [28] 

Asymptomatic infections (%)  80 [31] 

Incubation period (days) 5 [11],[3] 

Duration of treatment (days)  14 [3] 

Critical cases requiring intensive care unit (ICU) (%) 11 [32], [33] 

Length of treatment in ICU (days) Triangular(7,8,9) [3], [33] 

Patients who require ventilator support (%) 88 [33] 

Duration of ventilator support (days) Triangular(5,7,12) [3] 

Duration from arrival of symptom to admission (no intervention; days) 5 [34] 

Duration from arrival of symptom to admission (with intervention; days) 3 [34] 

Proportion of deceased people Number of deaths/ Number of infections  [2] 

 

 

2.5.  State chart 

The different states of existence of an agent are presented in the state chart as shown in Figure 1 that 

was developed using AnyLogic [35]. Initially, all agents are assumed to be healthy. Introduction of an 

infection results in transmission of infection to other agents upon contact. Infected agents become either 

asymptomatic or symptomatic. The former is untraceable and continue to infect healthy agents till they 

recover whilst the latter get isolated upon admission post their incubation period. Admitted agents recover or 

decease while present in admitted, ICU, or ventilator states [10]. 
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2.6.  Model parameters  

The variables used for the simulation have been gathered from various published sources such as 

manuscripts, reports, and pre-prints. As the research was conducted during the earlier phases, not all the 

variables could be collected from the region under study. However, some variables such as contacts per day, 

incubation period, asymptomatic infections, and others remain to be almost the same across multiple 

geographies. 

 

 

 
 

Figure 1. State chart for agent(s) (people) 

 

 

2.7.  Model scenarios 

Three scenarios were simulated over 365 days to analyze the effect of lockdowns on the spread of 

infection within the population. The rate of spread is proportional to the number of interactions within the 

population forms the basic idea of these scenarios. There is no NPI introduced in the first scenario that 

depicts a “no lockdown” condition. The next two scenarios that involve lockdowns necessitate a reduction in 

the number of contacts. The findings of a study by Prem et al. viz. number of interactions by individuals of 

each age-groups across various places such as school, office, home, and others, were used to develop the 

same [36]. The contacts made at school were eliminated to enact the NPI scenarios whilst reducing the 

contacts at the office and other locations by 50% and 75% for the second and third scenarios respectively. 

The results of these scenarios have been compared to comprehend the effects of interventions. 

 

 

3. RESULTS AND DISCUSSION 

The models were run separately for all three age groups for all the scenarios. The results indicated a 

similar trend for all the cohorts with differences in magnitude and longevity. An abrupt decline in the rate of 

spread, the number of admissions, and critical infections can be seen as the stringency of lockdown is 

increased (Figure 2 and Figure 3). Detailed output (age-wise), AnyLogic model file, synthetic population, 

and input spreadsheet can be accessed from the repository [37]. Also, the time taken to attain the peak is 

prolonged by imposing stricter lockdowns. 
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The number of people uninfected is higher with the increase in stringency of lockdowns as seen in 

Figure 2(a). Upon simulation for 365 days, the proportions of uninfected people as compared to the initial 

population are 28.53, 76.33, and 93.8 percent respectively for the no lockdown, 50 percent, and 75 percent 

scenarios. The peak infections attained in scenarios 2 and 3 (Figure 2(b)) are 1,29,779 and 33,973 those 

which correspond to the infections that would have occurred in 33 and 25 days in the first scenario. The peak 

infections in the three scenarios are 191,907, 37,790, and 7,986 that represent 35, 6.89, and 1.46 percent of 

the initial population respectively, as shown in Figure 2(c). The corresponding deaths in Figure 2(d) indicate 

0.42, 0.14, and 0.04 percent respectively of the initial population for the three scenarios. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 2. (a) Number of uninfected people, (b) Cumulative infections, (c) Number of infected people  

(for a given instant), and (d) Number of people deceased 

 

 

The peaks of asymptomatic people for the three scenarios in Figure 3(a) correspond to 31.71, 6.28, 

and 1.33 percent of the initial population respectively. The peak values of the three scenarios are 17,3892, 

34,414, and 7,281 that are reached on 44th, 84th, and 90th days respectively for the three scenarios. A similar 

trend is observed in the peak values of admitted people in Figure 3(b) that represent 6.42, 1.33, and 0.28 of 

the initial population for the three scenarios. Similar trends are observed across the three scenarios with 

respect to the peak numbers in ICU (Figure 3(c)) and ventilator (Figure 3(d)) supports. The 2,390, 496, and 

94 are the peak admissions in ICU, and 1,929, 405, and 78 are the peak number of patients requiring 

ventilator support respectively for the three scenarios. 

Peak values attained at each state are presented in Table 4. Percentage (%) values in the table 

correspond to the proportion of the initial healthy population. Comparing the values of the first scenario with 

the corresponding values of the other two scenarios indicate that there is a proportionate decrease in the peak 

values with an increase in the stringency of lockdown. Comparing the results of the first and third scenarios 

reveal an apparent decrease in the peaks of ICU admissions and people requiring ventilator support from 

2,390 to 94 and from 1,929 to 78 respectively. 
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(a) (b) 

  

  
(c) (d) 

 

Figure 3. (a) Number of asymptomatic people, (b) Number of admitted people, (c) Number of people in ICU,  

and (d) Number of people on ventilators 

 

 

Table 4. Peak values for various health conditions 

 
No lockdown 50% lockdown 75% lockdown 

 
Value % Day Value % Day Value % Day 

Uninfected 548,320 100 1 548,321 100 1 548,321 100 1 

Infected 191,907 35.00 43 37,790 6.89 84 7,986 1.46 90 

Asymptomatic 173,892 31.71 44 34,414 6.28 84 7,281 1.33 90 

Symptomatic 23,269 4.24 36 3,450 0.63 78 723 0.13 85 

Admitted 35,186 6.42 49 7,271 1.33 91 1,510 0.28 97 

ICU 2,390 0.44 60 496 0.09 104 94 0.02 125 

Ventilator 1,929 0.35 68 405 0.07 114 78 0.01 132 

Deceased 2,288 0.42 224 760 0.14 209 199 0.04 231 

Recovered 389,572 71.05 226 129,018 23.5 216 33,773 6.16 230 

 

 

4. SENSITIVITY ANALYSIS 

Healthcare systems, governments, and the general public have all been affected in one way or 

another by the pandemic. Incorporating multiple shielding mechanisms as described by the Swiss Cheese 

model has proven effective in controlling the spread of infection [38]. There have been several interventions 

in unison to combat the infection such as the use of face masks, sanitizers, following social distancing, 

avoiding mass gatherings, lockdowns, and others [38]. The incubation period of infected patients in India is 

seen to be longer (6.93 days) according to recent researches [39] with a larger proportion of the infected 

being asymptomatic (91%) [40]. The incubation period and proportion of asymptomatic infections have been 

altered to perform sensitivity analysis (SA) across five scenarios as shown in Figure 4(a)-(e). The number of 

people infected (Figure 4(a)), admitted (Figure 4(b)), in ICU (Figure 4(c)), and with ventilator support 

(Figure 4(d)) have increased substantially with increase in incubation days and asymptomatic proportion. ‘A’ 

and ‘IN’ in the notation of scenario names correspond to the incubation days and proportion of asymptomatic 

infections respectively (Figure 4(e)). 

SA shows that there is a higher number of infections in scenarios with longer incubation days. This 

increases the duration between exposure to admission (symptomatic) or recovery (asymptomatic) during 

when people transmit the infection. Higher asymptomatic infections are of serious concern as it increases 

untraceable transmissions. This demands the requirement of more contact tracking measures to isolate the 

potential spreaders, the asymptomatic people. A higher proportion of asymptomatic infections are the reason 

for the drop in admissions in the scenarios IN7A91 and IN5A91. These conservative estimates aim to 

improve the capacity planning of healthcare systems to manage similar events in the future. The variations 
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that could possibly happen in the rate of transmission and severity of the infection because of variations in 

mutations and external factors are to be explored to anticipate the required changes [41]. 
 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

 

Figure 4. Sensitivity analysis across five scenarios; (a) number of infected people, (b) number of admitted 

people, (c) number of people in icu, (d) number of people on ventilator, and (e) number of cumulative infections 
 

 

5. CONCLUSION 

ABM-based models have aimed to address smaller geographical territories as their core strength lies 

in focusing at the agent level. Agents with similar characteristics and parameters such as age, gender, health 

conditions, work culture, geographical location, and others, are more likely to be handled in a similar pattern 

with variations depending on the differences in their characteristics. The present study used a synthetic 

population from Rangareddy, Telangana state, India to simulate the developed ABM to analyze the effects of 

various NPIs on the spread of infection. Such local studies are of practical interest for the decision-makers to 

implement localized interventions as not all interventions are suitable on a large scale. The main focus was to 

provide a framework that explains how ABMs could be useful in projecting the spread of infectious diseases 

across geography. This can be extended to estimate the effects of one or more interventions on the spread to 

assist policymakers and preparedness of healthcare systems. A total of 5,43,823 agents split into three 

different age groups were simulated for the three scenarios that depict a no lockdown, 50 percent, and 75 

percent lockdown conditions. Several variables were used to simulate the model. Results revealed significant 

reductions in infections and mortalities upon imposing stricter lockdowns which was evident through a clear 

decline in the number of infections, hospitalizations, and critical infections. The reduction in peak values and 

delay in the occurrence of the peak values also indicated the effectiveness of lockdowns. SA revealed that a 

higher number of asymptomatic infections could lead to a proportionately higher rate of spread. ISPOR-

SMDM Modeling Good Research Practices and ethical good practices in modeling have been adhered to 

throughout the study.  
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ABMs have helped analyze several scenarios concerning COVID-19 including the comparison of a 

no lockdown and varied lockdown scenarios similar to that in this study. Apart from this, some of the 

explored dimensions include decreasing the contacts made outside the close circle, age-dependent 

lockdowns, tracking of symptomatic people, isolating the vulnerable population, following self-hygiene 

practices such as social distancing, masks, and others. In order to incorporate the effect of lockdowns, the 

number of contacts made outside the home was reduced proportionately. The increase in stringency of 

lockdowns not only reduced the peaks but also delayed their occurrences thereby providing more time 

window to plan their capacities to accommodate the surge of infections. This signifies the necessity to 

minimize the interactions among the people to flatten the curve.  

However, variables such as following social distancing, using face masks, gradual lifting of 

lockdowns, presence of comorbidities, and others have not been included in this model. Contact networks 

and population dynamics of specific territories need to be explored fully to produce accurate estimates. The 

effect of lockdowns on mental health could be explored to identify the causes and effects and the most 

vulnerable cohorts. These could help practitioners to connect with the target groups to keep them motivated 

to improve their psychological health. Use of wearable gadgets paired with mobile phones or those that 

facilitate real-time monitoring might be handy for the caretakers and practitioners. The variables used for the 

simulation do not correspond to those of Rangareddy which might causes deviations in some estimates. In 

addition, traditional ayurvedic medicine that is used as antivirals could help to combat the surge of infections 

effectively. 
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