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 A new scaled conjugate gradient (SCG) method is proposed throughout this 

paper, the SCG technique may be a special important generalization 

conjugate gradient (CG) method, and it is an efficient numerical method for 

solving nonlinear large scale unconstrained optimization. As a result, we 

proposed the new SCG method with a strong Wolfe condition (SWC) line 

search is proposed. The proposed technique's descent property, as well as its 

global convergence property, are satisfied without the use of any line 

searches under some suitable assumptions. The proposed technique's 

efficiency and feasibility are backed up by numerical experiments comparing 

them to traditional CG techniques.  

Keywords: 

CG method 

Large-scale nonlinear 

SCG method 

Sufficient descent property 

Unconstrained optimization This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Ghada M. Al-Naemi 

Department of Mathematics, Faculty of Computer Sciences and Mathematics 

University of Mosul 

Mosul, Iraq 

Email: drghadaalnaemi@uomosul.edu.iq 

 

 

1. INTRODUCTION  

CG method is universal method for solving nonlinear large-scale unconstrained optimization 

problems, because it has simple iterations, low memory requirements and very fast convergence  

properties [1]. Therefore, in this work, we considered this general unconstrained optimization problem: 

indexing and abstracting services depend on the accuracy of the title, extracting from it keywords useful in 

cross-referencing and computer searching. An improperly titled paper may never reach the audience for 

which it was intended, so be specific.  

 

𝑀𝑖𝑛{𝑓(𝑥): 𝑥 ∈ 𝑅𝑛} (1) 

 

Where 𝑓: 𝑅𝑛 →  𝑅 is smooth and its gradient vector defined 𝑔𝑛 = 𝛻𝑓(𝑥𝑛), and the initial point 𝑥0 ∈ 𝑅𝑛 is 

usually solved iteratively according to the recursive formula,  

 

𝑥𝑛+1 = 𝑥𝑛 + 𝜏𝑛𝑑𝑛 , 𝑛 ≥ 0 (2) 

 

where 𝑥𝑛 is current iteration, 𝜏𝑛 > 0 is the step-size calculated by the SWC,  

 

 
𝑓(𝑥𝑛+𝜏𝑛𝑑𝑛)≤𝑓(𝑥𝑛)+𝛿𝜏𝑛𝑔𝑛

𝑇𝑑𝑛

 |𝑔(𝑥𝑛+𝜏𝑛𝑑𝑛)𝑇𝑑𝑛|≤−𝜎𝑔𝑛
𝑇𝑑𝑛

 (3) 

https://creativecommons.org/licenses/by-sa/4.0/
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where 0 < 𝛿 < 𝜎 < 1 and 𝑑𝑛 is a search direction. The classical search direction 𝑑𝑛+1 are frequently defined by,  

 

𝑑𝑛+1 = {
−𝑔𝑛+1, 𝑖𝑓 𝑛 = 0

−𝑔𝑛+1 + 𝛽𝑛𝑑𝑛 , 𝑖𝑓 𝑛 ≥ 1 
 (4) 

 

generally, the parameter 𝛽𝑛 is selected so that if f(x) is a strictly convex quadratic function and if 𝜏𝑛 is 

calculated by the exact line search, then (2) and (4) can be simplified to the linear conjugate gradient 

technique [2]. Several formulas, such as hestenes and stiefel (HS), fletcher and reeves (FR), conjugate 

descent (CD), Polak-Ribiere (PRP), Liu and Storey (LS) and Dai-Yuan method (DY), have been  

proposed [3]-[9]. As demonstrated by the formula,  

 

𝛽𝑛
𝐻𝑆 =

𝑔𝑛
𝑇(𝑔𝑛−𝑔𝑛−1)

(𝑔𝑛−𝑔𝑛−1)𝑇𝑑𝑛−1
 ;  𝛽𝑛

𝐹𝑅 =
𝑔𝑛

𝑇𝑔𝑛

𝑔𝑛−1
𝑇 𝑔𝑛−1

 ;  𝛽𝑛
𝑃𝑅𝑃 =

𝑔𝑛(𝑔𝑛−𝑔𝑛−1)

||𝑔𝑛−1||
2    

 

𝛽𝑛
𝐶𝐷 = −

𝑔𝑛
𝑇𝑔𝑛

𝑔𝑛−1
𝑇 𝑑𝑛−1

 ;  𝛽𝑛
𝐿𝑆 =

𝑔𝑛
𝑇𝑦𝑛−1

−𝑔𝑛−1
𝑇 𝑑𝑛−1

 ;  𝛽𝑛
𝐷𝑌 =

𝑔𝑛
𝑇𝑔𝑛

𝑦𝑛−1
𝑇 𝑑𝑛−1

  

 

the primary distinction between SCG and CG is the calculation of the search direction. SCG's typical search 

direction is as follows,  

 

𝑑𝑛+1 = {
−𝑔𝑛+1, 𝑖𝑓 𝑛 = 0

−𝜗𝑛𝑔𝑛+1 + 𝛽𝑛𝑑𝑛, 𝑖𝑓 𝑛 ≥ 1 
 (5) 

 

where 𝜗𝑛 denotes a spectral parameter. Barzilai and Borwien [10] proposed the SCG method and developed 

their unconstrained optimization. Instead of global convergence, the idea is to use only teasing trends. Birgin 

and Martinez [11] proposed an unconstrained optimization method, but it lacked a sufficient descent 

condition. As a result, Andrai [12] proposed an accelerated CG technology that uses the Newton method to 

improve the CG method's performance. Following on from this thought, Farvaneh and Keyvan [13] proposed 

a new SCG [14]-[20] contain additional references in this field. 

 

 

2. NEW ALGORITHM AND THE DESCENT PROPERTY 

Obviously, for SCG, the method for selecting the spectral parameter 𝜗𝑛 and conjugate parameter 𝛽𝑛 

is critical. In this section, we explaine how our proposed SCG is dependent on the parameter 𝛽𝑛 proposed by 

Wei et al. [21], which is defined as (6).  

 

𝛽𝑛
𝑊𝑌𝐿 =

||𝑔𝑛||
2

−
||𝑔𝑛||

||𝑔𝑛+1||
 𝑔𝑛

𝑇𝑔𝑛+1

||𝑔𝑛+1||
2  (6) 

 

The new spectral parameter 𝜗𝑛 is prposed by (7),  

 

𝜗𝑛 = 1 +
𝑔𝑛+1

𝑇 𝑑𝑛− 
(𝑔𝑛+1

𝑇 𝑔𝑛)(𝑔𝑛+1 
𝑇 𝑑𝑛)

||𝑔𝑛||||𝑔𝑛+1||

||𝑔𝑛||
2  (7) 

 

note that, if an exact line search is used then 𝜗𝑛 = 1, so (5) reduced to (4). 

 

Algorithm SCG 

Step1: Select a starting point 𝑥0 ∈ 𝑅, given constand 0 < 𝛿 < 𝜎 < 1, stopping criteria 

 𝜀 = 10−6 > 0; Set 𝑑0 = −𝑔0. 

Step2: Compute ||𝑔𝑛||, if ||𝑔𝑛|| ≤ 𝜀, stop. Otherwise, continues. 

Step3: Calculate 𝛽𝑛
𝑊𝑌𝐿 , 𝜗𝑛 ,by (6) and (7) respectively and compute step length 𝜏𝑛 by (3). 

Step4: Update the new point by (2). Compute 𝑔𝑛+1 = 𝑔(𝑥𝑛+1); if ||𝑔𝑛+1|| ≤ 𝜀, stop; Otherwise, continues. 

Step5: Compute search direction 𝑑𝑛+1 by (5). 

Step6: If the Powell restart criteria 

 

|𝑔𝑛+1
𝑇 𝑔𝑛| ≥ 0.2||𝑔𝑛+1||

2
 (8) 
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is satisfied, set 𝑑𝑛+1 = −𝑔𝑛+1 and go back to Step3; otherwise continues. 

Step7: Put 𝑛 = 𝑛 + 1 and go to step3. 

We will discuss the sufficient descent property of the Algorithm SCG above without depending to any line 

search.  

 

2.1.  Theorm 

It can be concluded that the SCG method with the line search direction (5), 𝛽𝑛
𝑊𝑌𝐿 , 𝜗𝑛 defined in (6) 

and (7) respectively, and then,  

 

𝑔𝑛+1
𝑇 𝑑𝑛+1 ≤ −𝜉||𝑔𝑛+1||

2
 , 𝜉 ≥ 0  (9) 

holds for ∀𝑛 ≥ 0. 
 

Proof: To stimulate this confirmation, we use induction, if 𝑛 = 0, then 𝑔𝑜
𝑇𝑑0 = −||𝑔0||

2
, as a result; 

condition (9) is established. Now, condition (9) is also true in order to notify that every 𝑛 ≥ 0 is true. 

Multiply both sides of (5) by 𝑔𝑛+1
𝑇 to obtain,  

 

𝑔𝑛+1
𝑇 𝑑𝑛+1 = − (1 +

𝑔𝑛+1
𝑇 𝑑𝑛−

(𝑔𝑛+1
𝑇 𝑔𝑛)(𝑔𝑛+1 

𝑇 𝑑𝑛)

||𝑔𝑛||||𝑔𝑛+1||

||𝑔𝑛||
2 ) ||𝑔𝑛+1||

2
+

||𝑔𝑛+1||
2

−
||𝑔𝑛+1||

||𝑔𝑛||
 𝑔𝑛+1𝑔𝑛

||𝑔𝑛||
2 𝑔𝑛+1

𝑇 𝑑𝑛  

 

= −||𝑔𝑛+1||
2

−
||𝑔𝑛+1||

2
−

||𝑔𝑛+1||

||𝑔𝑛||
 𝑔𝑛+1𝑔𝑛

||𝑔𝑛||
2 𝑔𝑛+1

𝑇 𝑑𝑛 +
||𝑔𝑛+1||

2
−

||𝑔𝑛+1||

||𝑔𝑛||
 𝑔𝑛+1𝑔𝑛

||𝑔𝑛||
2 𝑔𝑛+1

𝑇 𝑑𝑛  

 

= −||𝑔𝑛+1||
2
 (10) 

 

therefore, the Algorithm SCG can satisfy the sufficient descent conditions without using any line searches. 

 

 

3. THE GLOBAL CONVERGENCE ANALYSIS 

The general situation of the objective function required for the overall global convergence of general 

CG in psychological analysis is as follows.  

 

3.1.  Assumption 

− The function 𝑓(𝑥) is constrained from below to the level set 𝛷 = {𝑥: 𝑥 ∈ 𝑅𝑛/𝑓(𝑥) ≤ 𝑓(𝑥0)}, where the 

point of departure is 𝑥0 . i.e., there is a constant α >0, which means ‖𝑥𝑛‖ ≤ 𝛼 ∀𝑥 ∈ 𝛷. 
− In certain neighborhood Ν of the level set Φ, the function f(x) is continuously differentiable and its 

gradient 𝑔(𝑥) is Lipschitz continuous, i.e. ∃ a constant, 𝐿 > 0 s. t.   

 

𝑑𝑛+1 = {
−𝑔𝑛+1, 𝑖𝑓 𝑛 = 0

−𝑔𝑛+1 + 𝛽𝑛𝑑𝑛 , 𝑖𝑓 𝑛 ≥ 1 
 (11) 

 

Assumption (I) clearly implies the existence of a constant 𝜔 > 0, s. t.,  

 

0 < ‖𝑔𝑛+1‖ ≤ 𝜔, ∀𝑥 ∈ 𝛷  [22] (12) 

 

the following Lemma, known as the Zountendijk condition Zountendijk [23], proposed it and is frequently 

used to demonstrate global convergence of CG techniques.  

 

3.2.  Lemma 

Suppose Assumption (I) holds. Suppose a general iterative method (2) and the direction (4) is 

descent direction. So, we have got,  

 

∑
(𝑔𝑛

𝑇𝑑𝑛)
2

||𝑑𝑛||
2

∞
𝑛=0 < ∞  (13) 

 

according to Assumptions (3.1), Theorem (2.1) and Lemma (3.1), the following results can be proved.  
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3.3.  Theorem 

Suppose that Assumption (I) holds. Any CG method of the form (2) and (5) with 𝑑𝑛 is a descending 

search direction and 𝜏𝑛 satisfies SWC. Then,  

 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 ||𝑔𝑛|| = 0  (14) 

 

or,  

 

∑
||𝑔𝑛||

4

||𝑑𝑛||
2𝑛≥1 < +∞ (15) 

 

Proof: Assume, for the sake of argument that the conclusion is not true. Then there exists a positive constant 

�̅� > 0 s.t. ‖𝑔𝑛+1‖ ≥ �̅�, ∀𝑛. We can deduce from (5) that 𝑑𝑛+1 + 𝜗𝑛𝑔𝑛+1 = 𝛽𝑛
𝑊𝑌𝐿𝑑𝑛. When we square both 

sides of this equation, we get,  

 

(𝑑𝑛+1 + 𝜗𝑛𝑔𝑛+1)(𝑑𝑛+1 + 𝜗𝑛𝑔𝑛+1) = (𝛽𝑛
𝑊𝑌𝐿)2||𝑑𝑛||

2
  

 

||𝑑𝑛+1||
2

= −(𝜗𝑛)2 ||𝑔𝑛+1||
2

− 2𝜗𝑛𝑔𝑛+1
𝑇 𝑑𝑛+1 + (𝛽𝑛

𝑊𝑌𝐿)2||𝑑𝑛||
2
  

 

dividing both sides of the above equation by ||𝑔𝑛+1||
4
, and use (10) we get,  

 

||𝑑𝑛+1||
2

(𝑔𝑛+1
𝑇 𝑑𝑛+1)

2 =
||𝑑𝑛+1||

2

||𝑔𝑛+1||
4 = −

( 𝜗𝑛)2

||𝑔𝑛+1||
2 −

2,𝜗𝑛

||𝑔𝑛+1||
2 + (𝛽𝑛

𝑊𝑌𝐿)2 ||𝑑𝑛||
2

||𝑔𝑛+1||
4  

 

= −
((𝜗𝑛)2+2𝜗𝑛)

||𝑔𝑛+1||
2  + (𝛽𝑛

𝑊𝑌𝐿)2 ||𝑑𝑛||
2

||𝑔𝑛+1||
4  

 

= −
((𝜗𝑛)2+2𝜗𝑛+1−1)

||𝑔𝑛+1||
2  + (𝛽𝑛

𝑊𝑌𝐿)2 ||𝑑𝑛||
2

||𝑔𝑛+1||
4  

 

=
1

||𝑔𝑛+1||
2 + (𝛽𝑛

𝑊𝑌𝐿)2 ||𝑑𝑛||
2

||𝑔𝑛+1||
4 − (

1

||𝑔𝑛+1||
2 +

(𝜗𝑛+1)2

||𝑔𝑛+1||
2)  

 

≤
1

||𝑔𝑛+1||
2 + (𝛽𝑛

𝑊𝑌𝐿)2 ||𝑑𝑛||
2

||𝑔𝑛+1||
4  

 

in [16] they proved 0 ≤ 𝛽𝑛
𝑊𝑌𝐿 ≤

2||𝑔𝑛+1||
2

||𝑔𝑛||
2  ∀𝑛 ≥ 0 

 

||𝑑𝑛+1||
2

||𝑔𝑛+1||
4  ≤

1

||𝑔𝑛+1||
2 + (

2||𝑔𝑛+1||
2

||𝑔𝑛||
2 )

2
||𝑑𝑛||

2

||𝑔𝑛+1||
4  

 

=  
1

||𝑔𝑛+1||
2 +

4||𝑑𝑛||
2

||𝑔𝑛||
4   

 

||𝑑𝑛+1||
2

||𝑔𝑛+1||
4 ≤

4||𝑑𝑛||
2

||𝑔𝑛||
4 +

1

||𝑔𝑛+1||
2  

 

In terms of 
||𝑑1||

2

(𝑔1
𝑇𝑑1)

2 =
1

||𝑔1||
2 , together with the above relations and||𝑔𝑛||

2
≥ 𝜔, we have,  

 

||𝑑𝑛+1||
2

||𝑔𝑛+1||
4 ≤

4||𝑑𝑛||
2

||𝑔𝑛||
4 +

1

||𝑔𝑛+1||
2 +

1

||𝑔𝑛||
2  

≤ ⋯  ≤ ∑
1

||𝑔𝑖||
2

𝑛
𝑖=1 ≤

𝑛

ῶ2  
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that is, 
||𝑔𝑛+1||

4

||𝑑𝑛+1||
≥  

ῶ2

𝑛
. Hence ∑

||𝑑𝑛+1||
2

||𝑔𝑛+1||
4𝑛≥1 ≥ +∞, this is contradicts lemma (3.1). Therefore, the proof is 

complete.  

 

 

4. THE NUMERICAL RESULTS 

In this section, we will present the outcomes of various test functions. To evaluate the new method, 

some test functions were chosen. These functions are taken into account by CUTE test function [24], [25]. 

Using SWC line search, the new SCG method, the classic [21] (WYL) method, the FR method, and the LS 

method are compared in terms of the number of iterations (NI) and the number of function evaluations (NF). 

All symbols are written in FORTRAN 77 double precision and collected as Visual FORTRAN (F6.6). The 

new SCG method is implemented using the SWC line search (3), and with 𝛿 = 0.001 , 𝜎 = 0.9, we tested 15 

well-known test functions, the dimensions of which are given below (1000, 5000, 10000, 50000, and 

100000). This algorithm’s stopping criterion is ||𝑔𝑛+1|| ≤ 10−6 and we enter 600 if the (NI) equal to or more 

than 600. The results obtained by the newly proposed method outperform those obtained by the other 

methods mentioned in the Table 1.  
 

 

Table 1. The comparison between the proposed method and the other classical methods 

No Test Function Dimension 
SCG method WYL method FR method 

ni nf ni nf ni nf 

1 ROSEN 1000 26 67 30 78 30 78 
  10000 26 67 30 78 30 78 

  100000 27 70 32 83 31 81 

2 WOLFE 1000 110 225 116 230 111 229 
  10000 120 244 123 248 135 280 

  100000 121 247 130 255 134 276 

 EX-BLOCK DIAGONAL  
BD1 

1000 23 49 21 45 22 46 
 10000 24 51 23 49 26 48 

 100000 26 53 25 53 27 52 

4 SHALLOW 1000 10 25 10 25 10 25 
  10000 10 25 10 25 10 25 

  100000 11 27 11 27 11 27 

5 WOOD 1000 28 64 29 66 29 66 
  10000 28 64 29 66 29 66 

  100000 30 68 29 66 30 68 

6 BEAL 1000 11 27 11 27 11 27 
  10000 11 27 11 27 600 490 

  100000 11 27 600 523 600 490 

7 POWELL 1000 38 122 56 162 36 110 
  10000 38 122 56 162 36 110 

  100000 41 138 56 162 39 131 

8 CUBIC 1000 16 45 16 45 16 45 
  10000 16 45 16 45 16 45 

  100000 16 45 16 45 16 45 

9 HIMMELBAU 1000 24 251 26 266 26 276 
  10000 8 391 10 405 10 401 

  100000 12 485 6 523 12 490 

10 DQDRTIC 1000 5 11 6 13 5 11 
  10000 5 11 6 13 5 11 

  100000 5 11 13 13 5 11 

11 DIXMAANB 1000 5 13 6 15 6 15 
  10000 6 16 7 16 7 16 

  100000 6 16 7 16 7 16 

12 STRAIT 1000 6 14 8 21 7 18 
  10000 6 14 8 21 6 15 

  100000 6 14 8 21 6 15 

13 BEAL U63 1000 10 27 13 32 12 29 
  10000 10 27 13 32 12 29 

  100000 11 29 15 39 13 32 

14 HILICAL 1000 30 78 29 75 29 73 
  10000 33 82 30 78 31 82 

  100000 36 92 36 85 36 88 

15 DENSCHNB 1000 9 21 9 21 9 21 
   9 21 9 21 9 21 

   9 21 9 21 9 21 

Total 1069 3589 1760 4339 2297 4629 
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Table 2 compares the performance percentages of the FR, WYL, and proposed SCG technologies. 

When compared to the FR-method, the WYL technique saves (NI 23.38%), (NF 6.26%) and the SCG 

technique saves (NI 53.46%). (NF 22.47%). Under the strong Wolfe line search, the proposed method 

outperformed the existing methods in terms of number of iterations and number of function evaluations. 

 

 

Table 2. The percentage performance of the proposed methods 
Measures FR method WYL method SCG method 

NI 100% 76.62% 46.54% 
NF 100% 93.74% 77.53% 

 

 

5. CONCLUSION 

In this paper, a new scaled conjugate gradient algorithm for unconstrained optimization problems is 

proposed. This method, independent of the line search, satisfies the sufficient descent condition. The 

proposed method has the advantage of being applicable to large-scale problems. The strong Wolfe line search 

is used to perform numerical computations on some standard benchmark problems. Preliminary findings 

indicate that the proposed method is both efficient and promising. As a result, it can be used as a different 

approach for large-scale unconstrained optimization problems. Furthermore, future research can focus on 

demonstrating the convergence of this method under different line search methods.  

 

 

ACKNOWLEDGMENTS 

The authors are grateful to the University of Mosul's College of Computer Sciences and 

Mathematics for their encouragement and support.  

 

 

REFERENCES 
[1] J. Jian, L. Yang, X. Jiang, P. Liu and M. Liu, “A spectral conjugate gradient method with descent property,” 

Journal of Mathematics, vol. 8, no. 2, p. 280, 2020, doi: 10.3390/math8020280.  

[2] N. S. Mohamed, M. Mamat, M. Rivaie and S. M. Shaharuddin, “Global Convergence of a New Coefficient 

Conjugate Gradient Method,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 

11, no. 3, pp. 1188-1193, 2018, doi: 10.11591/ijeecs.v11.i3.pp1188-1193.  

[3] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” Journal of Research of 

the National Bureau of Standards, vol. 49, pp. 409-436, 1952. [Online]. Available: 

https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf 

[4] R. Fletcher and C. M. Reeves. “Function minimization by conjugate gradients,” The Computer Journal, vol. 7, no. 

2, pp. 149-154, 1964, doi: 10.1093/comjnl/7.2.149.  

[5] R. Fletcher, “Practical Method of Optimization,” vol. I: Unconstrained Optimization, Wiley, New York, NY, USA, 

2nd edition, 1997, doi: 10.1002/9781118723203.  

[6] E. Polak and G. Ribière, “Note Sur la convergence de directions conjugates,” Rev, Revue Française d'Informatique 

et de Recherche Opérationnelle, vol. 3, no. 16, pp. 35-43, 1969, [Onlie]. Available: 

http://www.numdam.org/item?id=M2AN_1969__3_1_35_0 

[7] B. T. Polyak, “The conjugate gradient method in extreme problems,” USSR Computational Mathematics and 

Mathematical Physics, vol. 9, no. 4, pp. 94-112, 1969, doi: 10.1016/0041-5553(69)90035-4.  

[8] Y. Liu and C. Storey, “Efficient generalized conjugate gradient algorithms. I. Theory,” Journal of Optimization 

Theory and Applications, vol. 69, pp. 129-137, 1991, doi: 10.1007/BF00940464.  

[9] Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient with a strong global convergence property,” SIAM Journal 

on Optimization, vol. 10, no. 1, pp. 177-182, 2000, doi: 10.1137/S1052623497318992.  

[10] J. Brzilai and J. Borwein, “Two-point step size gradient methods,” IMA J. Numerical Analysis, vol. 8, no. 1, pp. 

141-148, 1988, doi: 10.1093/imanum/8.1.141.  

[11] E. Birgin and J. Martinez, “A spectral conjugate gradient method for unconstrained optimization,” Applied 

Mathematics Optimization, vol.43, pp. 117-128, 2001, doi: 10.1007/s00245-001-0003-0.  

[12] N. Andrie, “Scaled conjugate gradient algorithm for unconstrained optimization,” Computational Optimization and 

Application, vol. 38, pp. 401-416, 2007, doi: 10.1007/s10589-007-9055-7.  

[13] F. Farvaneh, A. Keyvan, “A modified spectral conjugate gradient method with global convergence,” Journal of 

Optimization Theory and Application, vol. 182, pp. 667-690, 2019, doi: 10.1007/s10957-019-01527-6.  

[14] H. Ahmed and Ghada M. Al-Naemi, “A modified Dai-Yuan conjugate gradient methods and its global 

convergence,” Iraqi Journal of Science, vol. 53, no. 3, pp. 620-628, 2012.  

[15] G. M. Al-Naemi. “A Global Convergence of Spectral Conjugate Gradient Method for Large Scale Optimization,” 

Journal of Education and Science, vol. 27, no. 3, pp. 143-162, 2018, doi: 10.33899/edusj.2018.159323.  

https://doi.org/10.3390/math8020280


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

New scaled algorithm for non-linear conjugate gradients in unconstrained… (Ghada M. Al-Naemi) 

1595 

[16] A. S. Ahmed, H. M. Khudur and M. S. Najmuldeen, “A new parameter in three-terms conjugate gradient 

algorithms for unconstrained optimization,” Indonesian Journal of Electrical Engineering and Computer Science 

(IJEECS), vol. 23, no. 1, pp. 338-344, July 2021, doi: 10.11591/ijeecs.v23.i1.pp338-344.  

[17] J. K. Liu, Y. M. Feng and L. M. Zou, “A spectral conjugate gradient method for solving large-scale and 

unconstrained optimization,” Elsevier Ltd., vol. 77, pp. 731-739, 2018, doi: 10.1016/j.camwa.2018.10.002.  

[18] M. Dawahdeh, I. M. Sulaiman, M. Rivaie and M. Mama, “A New Spectral Conjugate Gradient Method with Strong 

Wolfe-Powell Line Search,” International Journal of Emerging Trends in Engineering Research, vol. 8, no. 2, 

February 2020, doi: 10.30534/ijeter/2020/25822020.  

[19] A. H. Sheekoo Ghada and M. Al-Naemi, “Global convergence Condition for a New Spectral Conjugate Gradient 

Method for Large-Scale Optimization,” Journal of Physics conference series IOP Publishing, vol. 1879, no. 2021, 

2021, doi: 10.1088/1742-6596/1879/3/032001.  

[20] N. S. Mohamed, “Global Convergence of a New Coefficient Conjugate Gradient Method,” Indonesian Journal of 

Electrical Engineering and Computer Science (IJEECS), vol. 11, no. 3, pp. 1188-1193, 2018, doi: 

10.11591/ijeecs.v11.i3.pp1188-1193.  

[21] Z. Wei, S. Yao and L. Liu, “The convergence properties of some new conjugate gradient method,” Appl. Math. 

Compute, vol. 183, no. 2, pp. 1341-1350, 2006, doi: 10.1016/j.amc.2006.05.150.  

[22] F. N. Jardow and G. M. Al-Naemi, “A New Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization 

with Inexact line search,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 20, 

no. 2, pp. 939-947, November 2020, doi: 10.11591/ijeecs.v20.i2.pp939-947.  

[23] G. Zoutendijk, “Nonlinear programming, computational methods,” Integer and Nonlinear Programming, vol. 143, 

pp. 37-86, 1970.  

[24] I. Bongartz, A. R. Conn, N. Gould and P. L. Toint, “CUTE: Constrained and unconstrained testing environment,” 

ACM Transactions on Mathematical Software, vol. 21, no. 1, pp. 123-160, 1995, doi: 10.1145/200979.201043.  

[25] N. Andrei, "An Unconstrained Optimization Test Functions Collection," Adv. Model. Optimization, vol. 10, no. 1, 

pp. 147-161, 2008. [Online]. Available: http://www.apmath.spbu.ru/cnsa/pdf/obzor/.pdf 


