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 The sudden surge in the video transmission over internet motivated the 

exploration of more promising and potent video compression architectures. 

Though the frame prediction based hand designed techniques are performing 

well and widely used but the recent deep learning based researches in this 

domain provided further directions of pure deep learning based next 

generation codecs. As the bandwidth over the internet is varying, adaptive 

bit rate representation is more suitable for video quality adjustment in tune 

with bandwidth variation. The proposed architecture comprises of end to end 
trainable video compression network consisting of majorly three modules 

namely-motion extension network, flow autoencoder and frame autoencoder. 

Frame autoencoder generates the individual compressed frames, flow 

autoencoder is used for optical flow based motion compensation chore and 
next frame is predicted by the motion extension network. The network is 

designed and evaluated in incremental manner. The analysis of the outcomes 

demonstrates the promising performance of the network quantitatively and 

qualitatively. Moreover, the results reveal that inclusion of optical flow 
based motion compensation network to the MotionNet architecture has 

enhanced the performance. 
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1. INTRODUCTION 

A superfluous rise in video content over the internet has been observed over the past few years. As 

the bandwidth is limited and cannot be scaled rapidly, the growing voluminous video content has put a 

significant stress over the bandwidth. The sudden increase in the demand of streaming services has majorly 

contributed to the growing video content. The introduction of enhanced video and image standards has also 

contributed to its complexity. To meet the high video quality requirements of the people, the service 

providers have to look for more potent compression techniques. The widely used existing video compression 

schemes are improved and enhanced using diverse AI based approaches. As after some significant 

improvements to traditional compression schemes, current enhanced techniques are performing at their par, 

only marginal improvements can be obtained for these schemes with further enhancements. Such outcomes 

encouraged the researchers to explore next generation of deep learning based video compression schemes. 

The promising results of image compression achieved using deep learning based techniques have encouraged 

the experimentation of such techniques in video compression domain also. Afterwards, a number of models 

comprising of convolutional neural networks (CNN), recurrent neural networks and autoencoders were 

proposed and experimented. The proposed model also comprises of CNN and convolutional gated recurrent 
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unit (ConvGRU) layers for modelling the deep learning based end to end video compression architecture and 

are an extension of the MotionNet architecture as presented in [1]. 

A number of video related chores like object and action detection and classification are directly 

affected by the compression quality and efficiency [2]. Moreover, compression architecture has a direct 

impact on the compression rate [3]. The widely used video compression schemes primarily comprise of hand 

designed techniques. In the traditional schemes, the redundancies among the frames are addressed using 

discrete cosine transform and block based motion estimation techniques [4], [5]. During the last few years, 

the emergence of deep learning as a powerful tool in image and video compression has also led to further 

explorations to improve the efficiency and performance. A lot of image compression strategies have been 

proposed and experimented. These techniques resulted in significant and competent results [6]-[15] when 

compared with widely used existing methods like joint photographic experts group (JPEG) or better portable 

graphics (BPG) [16], [17]. The deep neural network (DNN) has the capability to address large non-linear 

transform and large scale end to end training as they comprises of a number of multiple hidden layers. But 

traditional image codecs does not comprise of such scheme.  

Several deep learning based proposed image compression schemes were enhanced and extended for 

their applicability in video compression. These schemes cannot be simply applied or extended to videos but 

encounters some challenges pertaining to incorporation, generation, representation and compression of 

motion information. The adjacent video frames comprising of temporal redundancies. The schemes related to 

removal of such redundancies must be incorporated in compression architecture to achieve efficient 

compression. The technique chosen for motion information processing has a direct impact on the 

compression architecture. Optical flow is found to be an efficient motion representation scheme. The optical 

flow is based on the production of flow fields. Hence, the efficiency of learning based optical flow 

techniques can be improved by improving the accuracy of produced flow fields. Sometimes the accurate flow 

fields may not resulted in optimal performance [18]. Optical flow also makes the data voluminous and when 

this data is compressed by direct application of existing compression scheme, it requires more number of bits 

for motion representation [19], [20]. Some of the major recent developments in the field of video 

compression comprises of end to end designed and trainable complex compression networks employing 

frame prediction schemes with different optimization modules. One such hybrid network comprising of 

Spatio-temporal coherence with predictive coding named pixel-motion CNN (PMCNN) has been proposed 

by Zhibo et al. Though this network possesses high complexity but resulted in promising outcomes. Another 

efficient optical flow based end to end trained network for prediction and regeneration of frames has been 

proposed and experimented by Lu et al. Video compression architecture can also be designed using image 

interpolation. It is observed that pure outperforming deep learning based approaches have rigorous 

computation requirements and high complexity. These challenges motivated the researchers to explore and 

look for more lightweight and competing deep learning based networks for video compression. 

The proposed model represents a deep learning based end to end video compression architecture 

which is an extension of the MotionNet architecture as presented in [1]. The network comprises of three sub 

networks namely flow autoencoder, frame autoencoder and motion extension network. One of the layers of 

frame autoencoder is ConvGRU based, a convolutional recurrent neural network, comprises productive edges 

of both recurrent neural network (RNN) and CNN. The whole network is trained, learned and optimized in a 

joint manner. This model presents one to one correspondence with traditional architecture. The random 

number of emission steps has been used for the training. The visual quality of regenerated frames have been 

is measured by structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) whereas flow end 

point error (EPE) and time per frame (TPF) are used for efficiency measurements. The results show marginal 

improvement in frame visual quality in tradeoff with reconstruction time. Some of the works related to deep 

learning based compression techniques has been discussed below in this section. The architectural details of 

the proposed network have been detailed out in section 2. The experimental results and its comparative 

analysis are given in section 3. Section 4 presents the conclusion of the whole work.  

 

 

2. RELATED WORK 

A video comprises of sequence of image frames. Several image compression methods are extended 

for their applicability to videos. The widely used image compression standards like JPEG are manually 

designed employing quantization, discrete cosine transform (DCT) and entropy encoding [16]. Such 

traditional image compression standards are evolved in an integrated manner and hence instead of end to end 

optimization, only individual modules can be optimized to attain overall optimization. This limits the optimal 

performance of the traditional compression schemes. 

The researchers proposed and experimented several different deep learning based compression 

techniques for images. Some of the initial image compression architectures were designed using recurrent 
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neural networks [8], [11], [21]. These networks were optimized by minimizing the mean square error 

between the real and regenerated frames while the number of bits used being ignored. A number of 

convolutional neural networks based image compression networks were also proposed and experimented [7], 

[10], [12] and their performance was analyzed in comparison with the existing image codecs. The initial 

techniques employed non-adaptive arithmetic coding but the advanced compression networks, proposed later, 

comprises of rate distortion optimization schemes and adaptive coding to enhance the compression efficiency 

and the performance. An efficient discrete cosine based image compression technique for JPG, PNG and 

BMP formats have also been proposed and experimented [21]. Several prominent works were also done in 

the field of color image compression [22], [23]. Further researches resulted in invention of some new image 

compression techniques like adversarial training, multi scale image decomposition and importance maps. A 

significant improvement in image compression has been observed and their promising outcomes motivated 

the application of these techniques in the design of deep learning based video compression architecture. 

H.264 or high efficiency video coding (HEVC) are the widely used traditional video codecs. Though 

being hand designed, they have good efficiency and widely used by various online platforms. These schemes 

basically employ predictive coding architecture and evolved by integration of multiple modules. Such 

network cannot be end to end optimized but overall optimization is achieved by optimization of individual 

modules. Several different techniques based on deep neural networks have been proposed as enhancements to 

existing traditional for the improvement in their performance like mode decision, entropy coding, intra 

prediction and residual coding. These enhancements are also block based and improve the corresponding 

block only. The models based on block based learning strategies are found to have block artifact issues. In 

addition, the models employing traditional block estimation schemes based motion information transfer do 

not perform optimally. Some autoencoder based extensions to the existing H.264 codec have also been 

proposed but they were limited to particular domains only. The processing of motion data in these works are 

not deep learning based. Frame interpolation based RNN architecture for video compression has also been 

proposed and experimented. But this architecture is also not end to end optimized and does not employ deep 

learning strategy for motion compensation. A notable deep learning based end to end video compression 

framework, deep video compression (DVC), has been proposed in [24]. An effective adversarial video 

compression based on soft edge detection has also been proposed and experimented [25]. It has been 

observed that the notable outperforming pure deep learning based schemes have high complexity and 

computation issues. Such challenges motivated the further exploration of pure deep learning based end to end 

trainable and optimizable lightweight video compression networks. This paper also presents a lightweight 

compression network for video compression comprising of three sub-networks. 

 

 

3. METHOD 

The proposed video compression architecture is an extension of the MotionNet architecture as 

presented in [1]. Optical flow is found to be an efficient representation for motion estimation. Hence, a flow 

autoencoder has been added to the MotionNet architecture for better motion compensation. The whole 

network presents a deep tool employed end to end trained and learned video compression architecture. The 

motion extension network along with flow and frame auto encoders collectively forms the compression 

network. The frame autoencoder comprises of encoder and decoder units for individual frame compression. 

For the motion compensation, flow autoencoder has been employed. This sub network predicts the motion 

information, compress it and finally transmit it to the motion extension network for next frame prediction. 

The motion extension network makes the next frame prediction based on current frame, previous predicted 

frame and flow information. The different network components of the architecture have been discussed 

below in detail. 

 

3.1.  Frame autoencoder 

The frame autoencoder comprises of encoder and decoder networks for encoding the frame and then 

decoding the original frame form compressed format. The encoder network comprises of five layers 

comprising of four convolutional layers and one ConvGRU layer. The input frame goes through these 

varying five layers and compressed in binary format. This binary format has been quantized before 

decompression. The decoder has been designed in same fashion as of the encoder. Hence, the frame is 

reconstructed using four convolutional and one ConvGRU based layers of the decoder network. Both the 

encoder and decoder networks are trained together. The design of the frame autoencoder has been given in 

Figure 1.  
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Figure 1. Frame autoencoder 

 

 

3.2.  Flow autoencoder 

A video comprises of frames with motion information among them. The motion information is 

required for the next frame prediction. Optical flow is one of the efficient ways of motion representation. 

Farneback based flow estimation has been used. Flow autoencoder is used to efficiently compress and 

represent the flow information. The flow autoencoder comprises of five convolutional layers both in encoder 

and decoder networks. Generalized divisive normalization has been between each two convolutional layers to 

expedite non-linearity. The encoder encodes the flow information into binary format which then 

reconstructed using the similarly designed decoder network. The details of flow autoencoder have been given 

in Figure 2.  

 

3.3.  Motion extension network 

The motion extension network is an in integral part of video compression architecture. The motion 

extension network reconstructs the frame from the compressed format. The network has been designed the in 

incremental manner. Firstly, motion extension network was used along with frame autoencoder only, named 

as MotionNet (R), as described in [1] where R represents that the network is trained with randomized 

emission step training strategy. The number of emission steps has been chosen from one to ten. Later, in this 

paper, the same network has been extended to incorporate the flow autoencoder to expedite motion 

information, named as extended-MotionNet (R). In extended network, the frame is reconstructed using 

current compressed frame, previous reconstructed frame and flow information by flow autoencoder. The 

details of the extended architecture have been given in Figure 3. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Flow incorporated neural network based lightweight video compression architecture (Sangeeta) 

943 

 
 

Figure 2. Flow autoencoder 

 

 
Figure 3. Extended motion extension network 

 

 

3.4.  Proposed video compression network 

The video compression network comprises of all three sub networks. The entire network has been 

end to end trained. To measure the structural distortion among the reconstructed and the original frame, the 

following loss function has been used. 

 

F (xt, x’t) = λ1 SSIM (xt, x’t) + λ2 MSE (xt, x’t) 

 

Here, the structural similarity index metric loss has been measured by SSIM (xt, x’t) and the mean 

square error between the input and the output has been represented by MSE (xt, x’t). λ1 and λ2 are the 

multipliers. A number of emission steps, ranging from one to ten, have been used to refine the output. Each 

additional emission step improves the reconstruction quality, subsequently leading to declined compression 

efficiency. The randomized emission steps have been used to train the network. 

 

3.5.  Video decoding 

The binary coded output of frame encoder and flow encoder are required for video reconstruction. 

The number of emission step will control the size of frame encoder data and so the bit-rate of signal. The 

Intermediate frame is calculated by passing binary code frame data through frame decoder. Flow information 

is also decoded via flow decoder network. Finally motion extension network takes previous image, merges 
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this with decoded flow information to create intermediate representation of current image. It merges this 

intermediate representation on already decoded intermediate frame to result in high quality current frame. 
 

Idecoded = fdecoder (Iencoded , Fencoded , Idecodedprev
) 

 

where Iencoded and Fencoded are binaried encoding of current frame and flow vectors, Idecodedprev
 is 

previously decoded frame and fdecoder is representation of decoder neural network.  

 

3.6.  Dataset 

The randomized training strategy has been used to train the proposed network. The number of 

emission steps varies from one to ten. MotionNet (R) represents the results obtained without flow 

autoencoder and extended-MotionNet (R) represents the outcomes after incorporating the flow values. 
 

Dataset YouTube UGC 

Video quality A mix of 360p, 480p, 720p and rescaled to 64x64 pixels 

Total video samples 826 

Training set 571 examples, each 20s long 

Training With a batch size of 10, randomly selected from the video frames 

Test data set 96 examples and selected from the beginning. 
 

 

4. RESULTS & DISCUSSION 

4.1.  Experimental results and analysis 

The performance of the network has been evaluated in terms of both qualitative and quantitative 

parameters. Qualitative performance relates to the visual quality of the frames generated by the network. SSIM 

and PSNR are the widely used parameters for visual perception measurement. SSIM, structural similarity 

index measure, is used to measure the structural similarity among the original and reconstructed frames where 

PSNR, peak signal to noise ratio is measured in terms of mean square error. SSIM is better parameter than 

PSNR for visual perception. The SSIM and PSNR values with addition of each emission step have been given 

in Figures 4 and 5 respectively. The inclusion of flow autoencoder has improved the SSIM by 0.009 means 

indicates a small improvement in frame quality. Their comparative graphical representation has been given in 

Figures 4 and 5 respectively representing the pattern of change in SSIM and PSNR values during the varying 

emission steps. The qualitative performance or efficiency of the network has been measured using flow end 

point error and time per frame parameters. Keeping in view the motion perspective, Flow EPE represents the 

error in the reconstructed frame and the time taken by the network to reconstruct an individual frame has been 

given by time per frame parameter. The individual values of both parameters have been given in Figures 6 and 

7 respectively. The graphical representation of the same to show the variation with each emission step wise has 

been presented in Figures 6 and 7 respectively. The results show that addition of flow autoencoder has 

marginally increased the reconstruction time. 

The performance of the video compression architecture over varying bandwidth can better be 

measured with the average values of parameters used and the same has been given in Table 1. The inclusion 

of flow autoencoder has significantly increased the SSIM value from 0.8955 to 0.9036, which presents 

improvement in visual quality of frames. A small improvement in end point error and reconstruction time has 

also been observed. 
 

 

  
 

Figure 4. Variation of SSIM per emission 
 

Figure 5. Variation of PSNR per emission 
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Figure 6. Variation of flow EPE per emission 
 

Figure 7. Variation of TPF per emission 
 

 

Table 1. Average performance values 
 Baseline MotionNet (R) Extended-MotionNet (R) 

Avg. SSIM 0.67 0.8955 0.9036 

Avg. EPE 1.154 0.3293 0.3199 

Avg. PSNR 18.9 25.33 26.22 

Avg. TPF 0.015 0.02317 0.02662 

 

 

4.2.  Comparison with state of art results 
During the last few years, numerous deep learning based models and architectures have been 

invented and studied in tune with already existing widely used traditional codecs. The quality of 

reconstructed frames by the proposed network has been compared with some of the prominent traditional and 

deep learning schemes. The MS-SSIM value of the proposed network is comparable to these codecs and the 

comparative results of the same are given in Table 2. The limitation of the comparison is that the other 

factors of compression have not been considered and results obtained over a small dataset. But the network 

shows a promising direction of further exploration in deep learning based video compression domain. 
 

 

Table 2. Comparative MS-SSIM results of proposed network 
Architecture H.264 H.265 [24] [25] Proposed Extended-MotionNet(R) 

MS-SSIM 0.955 0.96 0.955 0.9476 0.963 

 

 

5. CONCLUSION 

The proposed architecture presents an end to end trained and learned lightweight deep learning based 

video compression architecture. The MotionNet network has been extended to incorporate motion compensation 

autoencoder with farneback based flow estimation. As the whole network is designed in incremental fashion, the 

experimental results show that the use of flow autoencoder has enhanced the performance of the simple MotionNet 

architecture comprising of frame autoencoder only. The increased value of SSIM reflects improvement in 

reconstructed frame but in tradeoff with efficiency measured in terms of frame reconstruction time. This network 

can be further scaled and enhanced with the inclusion of optimization networks, and entropy coding.  
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