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 One of the most challenging aspects in the nonlinear control of a magnetic 

levitation (Maglev) system is to find an efficient control algorithm to 

achieve the stability and accuracy of the closed-loop system. The challenge 
is then to develop a linearizing control algorithm to maintain a steel ball at a 

desired position. In this paper, a novel linearizing control algorithm is 

proposed, which consists of the Lyapunov direct method (LDM) and the 

model reference control (MRC). The Lyapunov function is developed using 
the nonlinear equations of the magnetic levitation system, and the reference 

model is a linear second order system. Two control methods are developed 

to guarantee system robustness and output stability. Firstly, a new integral 

linear quadratic regulator (ILQR) is designed for the reference model. Then, 
an additional innovative proportional gain is combined with the linearizing 

controller to make the nonlinear control signal stronger. The simulation 

results indicate that the proposed linearizing controller has excellent set-

point tracking, no time delay, fast rising and settling times, and achieves 

states stability. 
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1. INTRODUCTION 

Rapid urbanization due to rural exodus has brought a crisis in the transportation sector because a lot 

more people now make use of transport in the urban environment. Additionally, the environment has been 

impacted negatively due to the excessive use of fossil fuels in the transportation sector to meet the demands 

[1]–[4]. The fast depletion of non-renewable resources has highlighted the need for clean, efficient, and 

sustainable means of transport [4]. The Maglev system has been identified as a solution to the crisis in the 

transportation sector because it is an electromechanical system, and therefore it does not make use of fossil 

fuels [5]. The magnetic levitation (Maglev) system is open loop instable and highly nonlinear, which makes it 

a very challenging control problem [6]–[8]. The efficient control of a Maglev system can reduce the 

operating cost, fuel economy, driving range and performance in various industries [9], [10]. One of the most 

efficient methods to stabilize and ensure robustness of the Maglev system is the linearization technique [11]–

[13]. The linearization method draws deductions about the local stability of a nonlinear system around an 

operating point from the stability characteristics of the system’s linear estimation. The stability of dynamic 

systems can be analyzed in a very precise way with Lyapunov methods if the equivalent mathematical 

models are expressed as systems of normal differential equations [14], [15]. In the paper, Wong [16], the 

design of a phase lead compensator to stabilize nonlinear and linearized models of a magnetic levitation 

system was proposed. The controller showed satisfactory results on both models of the magnetic levitation 
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system. But the controller was not robust, which was a major drawback. The linear and nonlinear state-space 

regulators to control a nonlinear dynamic model of a magnetic levitation system was proposed [17]. The 

controllers could guarantee the stability of the closed-loop system only in small intervals. In large intervals, 

the controllers could not bring the system to equilibrium. 

Zhang et al. [18], the feedback linearization technique was applied to improve the performance of a 

magnetic levitation system. Feedback linearization showed better results compared to Taylor linearization 

technique. A hybrid excitation control algorithm based on Taylor series expansion around an operating point 

to bring a magnetic levitation system to stability was suggested [19]. This method showed that when the 

position of the levitation system is far away from its equilibrium point, the controller cannot guarantee the 

stability of the closed-loop system. Jinquan et al. [20], an adaptive robust regulator to control a nonlinear 

magnetic levitation train suspension system was designed. The controller showed satisfactory results to 

variation of parameters, but only if the states of the magnetic levitation system were subjected to constraints. 

To improve the performance of a hybrid excitation magnetic levitation system, [21] designed a linear 

controller based on robust feedback linearization method. This method provided a limited degree of 

robustness because the total mass of the suspension could not be accurately measured. Claudio et al. [22], the 

study and design of a magnetic levitator system based on electronic components were proposed. The 

electronic circuit developed provided a certain degree of stability when a triode or triode alternating current 

(TRIAC) was used to regulate the flow of current in the circuit. A significant drawback of this technique is 

that it only works for the linearized model of the magnetic levitation system and cannot be applied to its 

nonlinear model which is the nature of the system. The development of a decoupling control solution to solve 

the instability of a module suspension system was done [23]. The solution had positive results, but the 

authors did not consider the actual effects of the track irregularities during real-time operation of the 

suspension module, which has a significant impact on the nonlinear behavior of the system. A solution to 

solve the fluctuations of the suspension system when a magnetic levitation system passes at low speed over a 

track step was proposed [24]. The authors developed a feedback linearization controller based on a 

decoupling technique. In comparison to a traditional derivative and integral (PID) control algorithm, the 

decoupling controller reduced the fluctuations by a maximum of 49.6%. Unfortunately, the control solution 

showed limitations because it cannot be applied to wider operating ranges such as medium and high-speed 

situations.  

This paper proposes a linearizing control algorithm as possible solution to the industrial challenges 

of achieving accurate control of a nonlinear magnetic levitation system. Lyapunov stability theory based on 

the model reference control technique is applied to the nonlinear magnetic levitation system. The research 

gap and merit of the linearizing controller developed in this paper compared to the other controllers reviewed 

in the literature is that the proposed controller can stabilize all the states of closed-loop system at quicker rate 

and significantly improve their performances. To guarantee an overshoot below 2%, fast rise time, perfect 

set-point tracking and robustness of the closed-loop to parameters uncertainties, two innovative approaches 

are proposed: (a) An additional proportional controller gain is multiplied to the nonlinear controller. This 

combination of controllers guarantees the robustness of the resulting nonlinear control signal; and (b) A 

reference model made of the combination of a linear model controlled by an iterative linear quadratic 

regulator (ILQR) controller is designed. This combination makes the states of the reference model stable to 

changes of the behavior of the nonlinear model in real-time. 
 

 

2. RESEARCH METHOD 

The research design will be explained in two sections, namely, first the theory behind designing a 

linearizing control algorithm based on the Lyapunov stability theory (subsection 2.1). Then, the steps to 

design the linearizing controller to stabilize the Maglev system will be provided (subsection 2.2). 

 

2.1.  Theory to design a linearizing control algorithm based on the Lyapunov stability 

The nonlinear magnetic levitation system is characterized by the nonlinear state as (1) and (2) [25]: 
 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢  (1) 
 

𝑦 = 𝐶𝑥 (2) 
 

where 𝑥 ∈ ℜ𝑛 is the state vector (n-vector);  𝑢 ∈ ℜ𝑚 is the control vector;  𝑓 ∈ ℜ𝑛 is the vector valued 

function; 𝑦 ∈ ℜ1 is the plant output; 𝐶 ∈ ℜ1×𝑛 is the output matrix. 

The nonlinear model of the magnetic levitation system is used to develop the equation of the 

linearizing controller. Model reference control (MRC) and Lyapunov second method for stability are used to 

design a linearizing controller. In the next sections, the steps to develop the controller are described. 
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2.1.1. Reference model 

To properly make the output of the Maglev system accurate, it is necessary to design an ideal 

reference model system. The idea is to make the error vector between state vector of the reference model and 

the state vector of the Maglev system go to zero as the time tends to infinity. The design problem is to 

develop a controller that always produces a signal that forces the state of the magnetic levitation system 

toward the reference model state [26]–[28]. Figure 1 shows the block diagram of the closed-loop MRC 

system configuration, where v is the control input of the reference model. 
 

 

 
 

Figure 1. Model-reference control system algorithm 
 

 

The reference model can be different, linear, or nonlinear, time invariant or time variant, and so on. 

In this paper, it is assumed that the reference model is linear and described by (3): 
 

  𝑥𝑑̇ = 𝐴𝑥𝑑 + 𝐵𝑣  

  𝑦 = 𝐶𝑥𝑑  (3) 
 

where  𝑥𝑑 ∈ ℜ𝑛 is the state vector of the model;  𝑣 ∈ ℜ𝑚 is the control vector for the reference model;  𝐴 ∈
ℜ𝑛×𝑛 is the constant state matrix; 𝐵 ∈ ℜ𝑛×𝑚 is the constant control matrix and  𝐶 ∈ ℜ1×𝑛 is the constant 

output matrix. It is assumed that the eigenvalues of 𝐴 have negative real parts so that the model-reference 

system has an asymptotically stable state of equilibrium. The control input  𝑣 can be selected in such a way 

that 𝑥𝑑 follows some desired trajectory, which then will be followed by the nonlinear magnetic levitation 

system. The error vector 𝜺 is defined by (4): 
 

𝜀 = 𝑥𝑑 − 𝑥  (4) 

 

where 𝜀 ∈ ℜ𝑛, 𝑥 is the actual state of the plant. The requirements towards the closed-loop systems are that 

the error 𝜀 must be reduced to zero by a suitable control vector 𝑢. To include the model equation and the 

plant equation in the error (4) it is necessary to differentiate the error (4) according to the time: 
 

𝜀̇ =   𝑥𝑑̇ − �̇� = 𝐴𝑥𝑑 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢  

 

= 𝐴𝑥𝑑 − 𝐴𝑥 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢  

 

= 𝐴(𝑥𝑑 − 𝑥) + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢  

 

∴  𝜺 = 𝒙𝒅 − 𝒙, then the above equation can be simplified as (5). 

 

𝜀̇ = 𝐴𝜀 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢  (5) 
 

The (5) is a differential equation for the error vector. Then a linearizing controller can be designed such that 

at steady state  𝑥 = 𝑥𝑑 and �̇� = �̇�𝑑, or 𝜀 = 𝜀̇ = 0. Thus, the equilibrium  𝜀 = 0  will be the origin of the 

coordinate system.  

 

2.1.2. Linearizing controller 

Based on the understanding of the Lyapunov direct method, the positive definite Lyapunov function 

𝑉 for the system is constructed and its time derivative �̇� is examined. If  �̇� is negative definite, that means 

that the energy contained in the system is continuously dissipating. The system is moving towards the stable 

equilibrium. The following sub-steps present the procedures of how the linearizing controller design is based 

on the Lyapunov direct method. 
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Step 1: Construction of a Lyapunov function for the system and determination of its first derivative. 

An ideal point to start the design of the control vector 𝑢 is to construct a Lyapunov function system. In this 

paper, the Lyapunov function is assumed to be in quadratic form (6). 
 

𝑉(𝜀) = 𝜀𝑇 (6) 
 

where 𝑃 ∈ ℜ𝑛×𝑛  is a positive-definite Hermitian or real symmetric matrix. Because the function 𝑉(𝜀) is in 

quadratic form and the matrix  𝑃 is positive definite, it is true that  𝑉(𝜀)  is positive definite. 

Differentiating the positive definite function  𝑉(𝜀) along the system trajectory, its time derivative is 

obtained as: 
 

�̇�(𝜀) = 𝜀̇𝑇𝑃𝜀 + 𝜀𝑇𝑃𝜀̇  

= [𝐴𝜀 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢]𝑇𝑃𝜀 + 𝜀𝑇𝑃[𝐴𝜀 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢]  

= [𝐴𝑇𝜀𝑇 + 𝐴𝑇𝑥𝑇 + 𝐵𝑇𝑣𝑇 − 𝑓𝑇(𝑥) − 𝑔𝑇(𝑥)𝑢𝑇]𝑃𝜀 + 𝜀𝑇𝑃[𝐴𝜀 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢]  

= 𝐴𝑇𝜀𝑇𝑃𝜀 + 𝐴𝑇𝑥𝑇𝑃𝜀 + 𝐵𝑇𝑣𝑇𝑃𝜀 − 𝑓𝑇(𝑥)𝑃𝜀 − 𝑔𝑇(𝑥)𝑢𝑇𝑃𝜀 + 𝜀𝑇𝑃𝐴𝜀 + 𝜀𝑇𝑃𝐴𝑥 + 𝜀𝑇𝑃𝐵𝑣  

−𝜀𝑇𝑃𝑓(𝑥) − 𝜀𝑇𝑃𝑔(𝑥)𝑢  

�̇�(𝜀) = 𝜀𝑇[𝐴𝑇𝑃 + 𝑃𝐴]𝜀 + 2𝑁 (7) 

 

where: 

2𝑁 = 𝐴𝑇𝑥𝑇𝑃𝜀 + 𝜀𝑇𝑃𝐴𝑥 − 𝑓𝑇(𝑥)𝑃𝜀 − 𝑔𝑇(𝑥)𝑢𝑇𝑃𝜀 − 𝜀𝑇𝑃𝑓(𝑥) − 𝜀𝑇𝑃𝑔(𝑥)𝑢 + 𝐵𝑇𝑣𝑇𝑃𝜀 + 𝜀𝑇𝑃𝐵𝑣  

= 𝜀𝑇𝑃𝐴𝑥 + 𝜀𝑇𝑃𝐴𝑥 − 𝜀𝑇𝑃𝑓(𝑥) − 𝜀𝑇𝑃𝑔(𝑥)𝑢 − 𝜀𝑇𝑃𝑓(𝑥) − 𝜀𝑇𝑃𝑔(𝑥)𝑢 + 𝜀𝑇𝑃𝐵𝑣 + 𝜀𝑇𝑃𝐵𝑣  

2𝑁 = 2𝜀𝑇𝑃[𝐴𝑥 − 𝑓(𝑥) − 𝑔(𝑥)𝑢 + 𝐵𝑣] (8) 
 

since  𝑃 is a symmetrical matrix and  𝑃𝑇 = 𝑃: 
 

𝑁 = 𝜀𝑇𝑃[𝐴𝑥 − 𝑓(𝑥) − 𝑔(𝑥)𝑢 + 𝐵𝑣]  (9)  
 

𝑁 is a scalar quantity. 

Step 2: Calculation of the linearizing control algorithm. 𝑉(𝜀)
 
is assumed to be a Lyapunov function, 

if its first derivative is negative definite then the system expressed in (7) is stable. The first derivative of   

𝑉(𝜀) is the sum of two expressions: 
 

�̇�(𝜀) = 𝜀𝑇[𝐴𝑇𝑃 + 𝑃𝐴]𝜀 + 2𝑁 (10) 
 

for 
 
�̇�(𝜀)  to be negative definite, the two terms of (10) must be negative definite: 

 

𝜀𝑇[𝐴𝑇𝑃 + 𝑃𝐴]𝜀 < 0  𝑜𝑟  𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄  
 

where  𝑄 is a positive definite matrix and  �̇�(𝜀) = 𝜀𝑇[𝐴𝑇𝑃 + 𝑃𝐴]𝜀 + 2𝑁 (first condition). 
 

𝑁 ≤ 0 (Second condition). 
 

Based on (9) and (10), it can be concluded that  𝑁 can be made negative or equal to zero through 

suitable selection of the plant control vector 𝑢 which is part of the first derivative of the Lyapunov function 

�̇�(𝜀). Then from noting that  𝑉(𝜀) → ∞ as ‖𝜀‖ → ∞ , the equilibrium state  𝜀 = 0  is asymptotically stable in 

the larger range. The fulfilment of condition (1) can be achieved by an ideal choice of the matrix 𝑃 since the 

eigenvalues of the state matrix  𝐴  are selected to be with negative real parts. The problem to solve now is to 

select an appropriate vector  𝑢  so that  𝑁  is either zero, or negative scalar quantity. The determination of the 

linearizing controller  𝑢  can be done with proper selected values of the matrix  𝑃  or the matrix  𝑄 . The 

obtained linearizing controller  𝑢  makes the system stable and follows the desired trajectory determined by 

the reference model. 

 

2.2.  Design of a lyapunov-based and MRC-based linearizing controller for the magnetic levitation system 

Based on the study and understanding of the MRC theory, the Lyapunov stability theory, the 

Lyapunov direct method and the LQR control method, the following sub-sections cover explicitly the design 

of the linearizing controller to stabilize the nonlinear magnetic levitation system. 
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2.2.1. The nonlinear model of the magnetic levitation system 

Figure 2 shows the schematic diagram of the magnetic levitation system developed by [16]. The 

magnetic levitation system is an electro-mechanical system made of the following components: an 

electromagnet, a current controller, a sensor, photo-emitters, a photo-receiver, and a steel ball. The goal of 

the system is to control the position of the steel ball by regulating the current in the electromagnet through 

the input voltage. The dynamic of the system is derived based on the first principles of basic electrical and 

mechanical laws. 
 

 

 
 

Figure 2. Magnetic levitation system [16] 
 

 

The nonlinear reduced order of the magnetic levitation system described in Figure 2 is selected for 

the investigation [29]. This reduced order model is defined as: 
 

 

[
�̇�1

�̇�2
] = [

𝑥2

−𝑔 −
𝑐

𝑚
𝑥2

] + [
0
1

𝑚𝑎(𝑥1+𝑏)4
] 𝑢, 𝑥(0) = 𝑥0  (11) 

 

𝑦 = 𝐶𝑥 (12) 

 

the states of the nonlinear magnetic levitation system are defined as: 

 

𝑥1 = 𝑏𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  

𝑥2 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑙𝑙  
 

where:  𝐶 = [1 0]; 𝑎, 𝑏 and 𝑐 are constants related with the magnetic coil properties. The values of the 

parameters of the process are: 

 

𝑔 = 9.81 𝑁/𝐾𝑔  

𝑚 = 0.12 𝐾𝑔  (13) 

 

𝑎 = 0.95  

𝑏 = 6.28  

𝑐 = 0.15 𝑁/𝐾𝑔  (14) 
 

the nonlinear model represented in (11) and (12) can be rewritten in the common form as (15). 

 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢   

𝑦 = 𝐶𝑥  (15) 

 

Figure 3 shows the behaviour of the nonlinear reduced order model of the magnetic levitation 

system. The simulation is done with the following parameters: 

− Initial conditions: [0.05m 0]’ 

− Step input: 0.3[volts] 

The position state response of the nonlinear model of the magnetic levitation system shows that 

under step continuous force, the ball position moves toward infinity as the time goes. This analysis confirms 

that the magnetic ball levitation is a nonlinear open loop unstable system that needs to be controlled 

efficiently.  
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Figure 3. Open loop response of the nonlinear model of magnetic levitation system when the step input is at 

0.3 volts 
 

 

2.2.2. Model of the desired linear system (reference model) 

The linear reference model can be written in the following form: 

 

�̇�𝑑 = 𝐴𝑥𝑑 + 𝐵𝑣, 𝑥𝑑(0) = 𝑥𝑑0 (16) 
 

𝑦𝑑 = 𝐶𝑥 (17) 
 

where  𝑥𝑑 ∈ ℜ2 is the desired state space vector,  𝑣 ∈ ℜ1 is the control vector for the reference model,  𝐴 ∈
ℜ2×2  and  𝐵 ∈ ℜ2×1  are the state and control matrices of the reference model in the state-space form,  𝑥𝑑0 is 

the initial state. The model of the magnetic levitation is of second order. Therefore, the desired model is 

selected to be of second order too. The eigenvalues of the state matrix  𝐴𝑑 are selected to be with negative 

real parts to ensure stability of the reference model.  

 

2.2.3. Determination of the error between the reference model and the maglev states 

The error between the reference model and the nonlinear model of the magnetic levitation system is (18). 
 

𝜀 = 𝑥𝑑 − 𝑥, 𝜀 ∈ ℜ2×2 (18) 
 

The error signal  𝜺  must be reduced to zero by a suitable control vector  𝒖. The differential equation of the 

error is (9). 
 

𝜀̇ = �̇�𝑑 − �̇� = 𝐴𝑥𝑑 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢  

= 𝐴𝑥𝑑 + 𝐴𝑥 − 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢  
= 𝐴[𝑥𝑑 − 𝑥] + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢  

= 𝐴𝜀 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢 (19) 
 

The problem is to design a control vector  𝑢, such that at the equilibrium state  𝑥 = 𝑥𝑑, �̇� = �̇�𝑑, 𝜀 = 𝜀̇ = 0 is 

achieved.  

− Design of of the linearizing controller 

Step 1: Construction of Lyapunov function 

The construction of the Lyapunov function for the error differential shown in (18) is: 
 

𝑉(𝜀) = 𝜀𝑇𝑃𝜀 (20) 
 

Where  𝑃  is a symmetrical positive definite matrix,  𝑃 ∈ ℜ2×2. 

Step 2: Calculation of the first derivative of the Lyapunov function 

The calculation of the first derivative of the Lyapunov function is the following: 
 

�̇�(𝜀) = 𝜀̇𝑇𝑃𝜀 + 𝜀𝑇𝑃𝜀̇  

= [𝐴𝜀 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢]𝑇𝑃𝜀 + 𝜀𝑇𝑃[𝐴𝜀 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢]  
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= [𝐴𝑇𝜀𝑇 + 𝐴𝑇𝑥𝑇 + 𝐵𝑇𝑣𝑇 − 𝑓𝑇(𝑥) − 𝑔𝑇(𝑥)𝑢𝑇]𝑃𝜀 + 𝜀𝑇𝑃[𝐴𝜀 + 𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢] 

              = 𝐴𝑇𝜀𝑇𝑃𝜀 + 𝐴𝑇𝑥𝑇𝑃𝜀 + 𝐵𝑇𝑣𝑇𝑃𝜀 − 𝑓𝑇(𝑥)𝑃𝜀 − 𝑔𝑇(𝑥)𝑢𝑇𝑃𝜀 + 𝜀𝑇𝑃𝐴𝜀 + 𝜀𝑇𝑃𝐴𝑥 + 𝜀𝑇𝑃𝐵𝑣 − 𝜀𝑇𝑃𝑓(𝑥)
− 𝜀𝑇𝑃𝑔(𝑥)𝑢 

= 𝜀𝑇[𝐴𝑇𝑃 + 𝑃𝐴]𝜀 + 2𝜀𝑇𝑃[𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢]  

= −𝜀𝑇𝑄𝜀 + 2𝑁  

𝑄 = 𝐴𝑇𝑃 + 𝑃𝐴  
 

where the matrix  𝑄 is symmetrical and positive definite.  

 

𝑁 = 𝜀𝑇𝑃[𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢] (21) 
 

The derived (21) is the expression of the first derivative of the Lyapunov function. To make the 

error in the closed loop system to go to zero as time goes to infinity (𝑡 → ∞), it is fundamental for this 

equation to be negative definite. The first expression of this equation is negative definite as  𝑄  is selected to 

be positive definite. Then the second expression 𝑁 can be made zero or negative  𝑁 ≤ 0  by a convenient 

selection of the control  𝑢. 

Step 3: Calculation of the linearizing controller   

The calculation of the linearizing controller  𝒖  is done by some transformations of the expression 

for  𝑵: 
 

𝑁 = 𝜀𝑇𝑃[𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥) − 𝑔(𝑥)𝑢] ≤ 0  

𝑁 = 𝜀𝑇𝑃[𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥)] − 𝜀𝑇𝑃[𝑔(𝑥)𝑢] ≤ 0  

 𝜀𝑇𝑃[𝐴𝑥 + 𝐵𝑣 − 𝑓(𝑥)] ≤ 𝜀𝑇𝑃[𝑔(𝑥)𝑢] (22) 
 

The expressions from both sides of the equation are scalars, which depend on time. That is the 

reason why it is possible to divide both sides by  𝜺𝑻𝑷[𝒈(𝒙)] and obtain:  
 

𝑢 ≥
𝜀𝑇𝑃[𝐴𝑥+𝐵𝑣−𝑓(𝑥)]

𝜀𝑇𝑃[𝑔(𝑥)]
 (23) 

 

Step 4: Representation of the diagram of the closed-loop system 

Based on (23), a diagram of the closed loop system can be drawn. The expression of the linearizing 

controller is multiplied by a new proportional gain  𝑰 > 𝟎  to make the realization in the (23) stronger. The 

nonlinear controller developed makes the first derivative of the Lyapunov function negative. Then, it 

linearizes the closed loop system consisting of the linearizing controller and the magnetic levitation system. 

This combination makes the behaviour of the closed-loop system follow the behaviour of the reference 

model. The block diagram of the closed loop system is shown in Figure 4.  
 

 

 
 

Figure 4. Block diagram of the closed loop system 
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2.2.4. Design of a linear control for the linearized closed-loop system 

Figure 4 shows that the desired vector  𝒙𝒅  depends on the input control vector  𝒗  for the reference 

model. Different values of   𝒗  will give different values of  𝒙𝒅. From the expression of the nonlinear control 

given by (23), the values of  𝒖  depend on the parameters of the nonlinear magnetic levitation model. The 

implementation of the linearizing controller then cannot be very successful because of the influence of the 

disturbances, and the changes of the plant parameters. The linearizing and stabilizing effects could be lost 

and could make the system unstable. This means that an additional innovative Integral Linear Quadratic 

Regulator (ILQR) controller must be designed to make the closed loop system more robust and its output 

exactly to follow the desired behaviour of the reference model.  

Step 1: Specification of the closed-loop system with the reference model and for the linearized closed-loop 

system 

Let assume that the desired output of the entire closed loop system is a set point value  𝒚𝒔𝒑. Because 

of this assumption, it is crucial to determine the optimal control law such that:  𝒚 = 𝒚𝒔𝒑 or   𝜺 = 𝒚𝒔𝒑 − 𝒚  

when  𝒕 → ∞. 

Step 2: Design of the linear quadratic controller 

The expression of the error signal between the set-point and the output of the plant is defined as: 

 
𝜀�̇� = 𝐴𝜀𝑑 + 𝐵𝑣, 𝜀𝑑0 = 𝑦𝑠𝑝 − 𝐶𝑥𝑑0  
 

the aim is to design a linear integral quadratic controller to make the error between the set-point and the 

current value of the system output to go to zero. Then the extended version of the model is built as (24). 

    

�̇�𝑑 = 𝐴𝑑𝑥𝑑 + 𝐵𝑣  

�̇�𝑛+1 = 𝑦𝑠𝑝 − 𝑦𝑑  , 𝑥𝑑(0) = 𝑥𝑑0 (24) 

𝑦𝑑 = 𝐶𝑥𝑑  
  

It is necessary to design the linear integral quadratic controller in the state-space form: 

 

𝑣 = �̅�∅�̅�𝑑 = 𝐻𝑥𝑑 + 𝐻𝑛+1𝑥𝑛+1, �̅�∅ ∈ ℜ𝑚×(𝑛+1)    (25) 

 

where:  �̅̇�𝑑 = �̅��̅�𝑑 + �̅�𝑣 + [
02×1

1
] 𝑦𝑠𝑝 

 

�̅� = [
𝐴𝑑 0

−𝐶𝑑 0
] , �̅� = [

𝐵𝑑

0
] , �̅� = [𝐻 𝐻1]  (26) 

 

The fundamental idea of (24) and (25) is that the servo problem is converted to a problem for design 

of a linear quadratic regulator in which the set-point is zero. The problem to find the matrix controller  �̅� can 

be (27): 

  

𝐽𝑝 = ∫ [‖�̅�𝑑‖2�̅� + ‖𝑣‖2�̅�]𝑑𝑡
∞

0
, �̅� ∈ ℜ(𝑛+1)×(𝑛+1), �̅� ∈ ℜ𝑚×𝑚  (27) 

 

where: �̅� > 𝟎 and �̅� ≥ 𝟎 are weighting matrices [30], [31]. Equation (27) is minimized under the model (24) 

Step 3: Solution of the linear quadratic regulator problem 

The resolution of linear quadratic regulator problem is given by (28). 

  

𝑣 = −�̅�∅�̅�𝑑 = −�̅�𝑥𝑑 + 𝐻1𝜀 = −�̅�−1�̅�𝑇�̅��̅�𝑑  (28) 

 

In (28),  �̅�  is the solution of the Riccati as: 

 

�̅�∅ = [𝐻 𝐻1] ∈ ℜ1×2  

 

the solution of the problem can be found in MATLAB using the ‘lqr’ function, its structure is as follow: 

 

[�̅�∅, �̅�, 𝐸] = 𝑙𝑞𝑟(�̅�, �̅�, �̅�, �̅�)  

 

�̅�∅ is the matrix of the regulator;  �̅� is the matrix of the Riccati equation and  𝑬 is the vector of the poles of 

the closed-loop matrix 
 
 [�̅� − �̅��̅�∅] . To make the system stable, all the poles must be with real negative 

parts.  
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The control  𝒗 is obtained as (29).  

 

𝑣 = −𝐻𝑥𝑑 + 𝐻1𝜀  (29) 

 

The augmented matrices with the additional integrator states can be expressed as: 

 

�̅� = [
𝐴𝑑 0

−𝐶𝑑 0
] = [

0 1 0
−2 −3 0
−1 0 0

] ;  

�̅� = [
𝐵𝑑

0
] = [

0
1
0

]  

where: 

 

�̅� = [
𝐴𝑑 ∈ ℜ2×2 0 ∈ ℜ2×1

𝐶𝑑 ∈ ℜ1×2 0 ∈ ℜ1×1] ;  𝑎𝑛𝑑 �̅� = [
𝐵 ∈ ℜ2×1

0 ∉ ℜ1×1 ]   

 

The values of the weighting matrices  �̅�  and   �̅�  are summarized in Table 1.  

Table 1 also shows the different values of   �̅�  at different set points. 

Step 4: Application of the linear integral controller to the closed-loop system with the linearizing controller 

and the reference model 

The structure of the block diagram with the linearizing MRC based on Lyapunov second method is 

shown in Figure 5. For the implementation of the linear controller in the closed-loop system, it is important 

that the feedback is not taken from the output of the reference model but from the output of the nonlinear 

model of the magnetic levitation process. Using the process real output will lead to better results as the 

integral LQR controller compensates for disturbances over the real process. 

 

 

Table 1. Parameters obtained for the ILQR 
Set points Initial conditions Matrix 

�̅� 

Matrix 

�̅� 

Feedback controller gain  
�̅� 

0.01m [0.05 0 0]’ 
[
91000 0 0

0 300 0
0 0 10

] 
0.1 [952.67 67.1 −10] 

0.09m [0.05 0 0]’ 
[
69000 0 0

0 750 0
0 0 25

] 
1 [261.37 31.8 −5] 

 

 

 
 

Figure 5. Block diagram of the Lyapunov stability based on model reference control system 

 

 

3. SIMULATION RESULTS AND ANALYSIS 

The simulation is done in MATLAB/Simulink environment. The closed-loop diagram based on 

Lyapunov direct method is shown in Figure 6. This closed loop diagram comprises four important sub-

systems: 

− Reference model (Figure 7) 

− Integral LQR controller (Figure 8) 

− Magnetic levitation nonlinear model (Figure 9) 

− Linearizing controller (Figure 10) 
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Figure 6. Simulink diagram of the Lyapunov direct method based on MRC 

 

 

 
 

Figure 7. Simulink block diagram of the linear reference model and its controller 

 

 

 
 

Figure 8. Simulink block diagram of the ILQR controller 
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Figure 9. Magnetic levitation system nonlinear state-space model 
 

 

 
 

Figure 10. Simulink block diagram of the linearizing controller based on of Lyapunov second method 

 

 

The reference model is formed by the combination of the linear controller and the linear plant. The 

nonlinear controller produces the nonlinear control signal determined in (23). The simulation results are 

shown in the next section. 

 

3.1.  Simulation results 

The following results of the simulations are presented in this section: 

− Linear integral controller signal 

− Error signal between the set point and the output of the nonlinear magnetic levitation system 

− Linearizing control signal 

− Position of the ball 
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3.1.1. Scenario 1 

The initial conditions of the plant are defined as: 

− Initial conditions: [𝟎. 𝟎𝟓 𝟎]′. 
− The set-point is changed to:  𝒚𝒔𝒑 = 𝟎. 𝟎𝟏[𝒎] 

Figure 11 presents the linear control signal when the set point is at 0.01 [m]. In Figure 12, the error 

signal between the set point and the nonlinear plant output when the set point is 0.01[m] is presented. In 

Figure 13, the behaviour of the nonlinear linearizing controller signal when the set point is 0.01[m] is shown, 

The simulation results when the set-point is  𝒚𝒔𝒑 = 𝟎. 𝟎𝟏[𝒎] show perfect stability of the linear and 

nonlinear control signals, the error signal quickly goes to zero. Additionally, there is perfect set-point 

tracking, no overshoot and a fast rising and settling times. The position of the ball at a set-point of 0.01[m] is 

presented in Figure 14. 

 

3.1.2. Scenario 2 

− The initial conditions remain the same. 

− The set point is increased to:  𝒚𝒔𝒑 = 𝟎. 𝟎𝟗[𝒎] 
Figure 15 shows the behaviour of the linear control signal when the set-point is at 0.09 [m]. In 

Figure 16, the behaviour of the error signal between the set point and the nonlinear plant is presented when 

the set-point is 0.09[m]. Figure 17 presents the nonlinear linearizing control signal when the set-point is 

0.09[m]. The position of the ball when the set-point is 0.09[m] is shown in Figure 18. The simulation results 

when the set-point is  𝑦𝑠𝑝 = 0.09[𝑚] show outstanding position control of the magnetic levitation system, 

closed-loop stability, very fast rising and settling time, and a small overshoot of 1%. 

 

 

 
 

Figure 11. Linear control signal when the set point is 
 
𝑦𝑠𝑝 = 0.01[𝑚] 

 

 

 
 

Figure 12. Error signal between the set point and the nonlinear plant output when the set point is 𝑦𝑠𝑝 =
0.01[𝑚] 
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Figure 13. Nonlinear linearizing controller signal when the set point is 
 
𝑦𝑠𝑝 = 0.01[𝑚] 

 

 
 

Figure 14. Position of the ball when the set point is  𝑦𝑠𝑝 = 0.01[𝑚] 
 

 

 
 

Figure 15. Linear control signal when the set point is  𝑦𝑠𝑝 = 0.09[𝑚] 
 
 

 
 

Figure 16. Error signal between the set point and the nonlinear plant output when the set point is 
           

𝑦𝑠𝑝 = 0.09[𝑚] 
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Figure 17. Nonlinear linearizing controller signal when the set point is  𝑦𝑠𝑝 = 0.09[𝑚] 
 

 

 
 

Figure 18. Position of the ball when the set point is  𝑦𝑠𝑝 = 0.09[𝑚] 
 

 

4. DISCUSSION OF RESULTS 

The simulation results of the magnetic levitation system show the following observations: 

− The system is stable. 

− The error signals go to zero. 

− The plant output always follows the reference model and the set points trajectories. 

− All the states of the system are stabilized. 

The specifications of the dynamic output behaviour of the closed-loop system are indicated in  

Table 2. The time delay, percentage of overshoot, rising time, steady state error and settling time are the 

performance indicators analyzed. 

 

 

Table 2. Simulation results comparison 
Characteristics Magnetic levitation results for the set-points 

0.01m 0.09m 

Time Delay 0s 0s 

Overshoot 0% 1% 

Rising Time 0.4s 1.3s 

Steady State Error 0.001 0.001 

Settling Time 2.3s 1.7s 

 

 

5. CONCLUSION 

The first contribution of this paper is the design of a new linearizing controller for a nonlinear 

magnetic levitation system based on Lyapunov direct method and linear model reference theory. The 

reference model is the combination of a linear model controlled by an ILQR. This combination stabilizes the 

states of the reference model to changes of the behaviour of the nonlinear model in real-time. Additionally, a 

new proportional control gain along with the linearizing controller is combined to provide robustness to the 
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overall behaviour of the closed-loop system. The results of the simulations of the closed-loop system show 

excellent performance. The contribution of this paper may be extended in the following research areas in 

future: i) Real-time implementations of linearizing controller and integral linear quadratic regulator in 

LabVIEW compact RIO controller and programmable logic controllers (PLCs) for hardware-in-the-loop 

testing, ii) Evaluate the performance of the developed nonlinear controller in a network, where delays are 

affecting the closed-loop systems, and iii) The nonlinear control algorithm can be evaluated for the 

stabilization of systems with stochastic behaviors. 
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